/* * This file is part of the coreboot project. * * Copyright (C) 2003-2004 Linux Networx * (Written by Eric Biederman for Linux Networx) * Copyright (C) 2003 Greg Watson * Copyright (C) 2004 Li-Ta Lo * Copyright (C) 2005-2006 Tyan * (Written by Yinghai Lu for Tyan) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include #include /** * See if a device structure exists for path. * * @param parent The bus to find the device on. * @param path The relative path from the bus to the appropriate device. * @return Pointer to a device structure for the device on bus at path * or 0/NULL if no device is found. */ struct device *find_dev_path(const struct bus *parent, const struct device_path *path) { struct device *child; for (child = parent->children; child; child = child->sibling) { if (path_eq(path, &child->path)) { break; } } return child; } /** * See if a device structure already exists and if not allocate it. * * @param parent The bus to find the device on (TODO: comment correct?). * @param path The relative path from the bus to the appropriate device. * @param device_id TODO * @return Pointer to a device structure for the device on bus at path. */ struct device *alloc_find_dev(struct bus *parent, struct device_path *path, struct device_id *id) { struct device *child; child = find_dev_path(parent, path); if (!child) { child = alloc_dev(parent, path, id); } return child; } /** * Given a PCI bus and a devfn number, find the device structure. * * @param bus The bus number. * @param devfn A device/function number. * @return Pointer to the device structure. */ struct device *dev_find_slot(unsigned int bus, unsigned int devfn) { struct device *dev, *result; result = 0; for (dev = all_devices; dev; dev = dev->next) { if ((dev->path.type == DEVICE_PATH_PCI) && (dev->bus->secondary == bus) && (dev->path.pci.devfn == devfn)) { result = dev; break; } } return result; } /** * Given a smbus bus and a device number, find the device structure. * * @param bus The bus number. * @param addr A device number. * @return Pointer to the device structure. */ struct device *dev_find_slot_on_smbus(unsigned int bus, unsigned int addr) { struct device *dev, *result; result = 0; for (dev = all_devices; dev; dev = dev->next) { if ((dev->path.type == DEVICE_PATH_I2C) && (dev->bus->secondary == bus) && (dev->path.i2c.device == addr)) { result = dev; break; } } return result; } /** * Find a device of a given vendor and type. * * @param devid Pointer to device_id struct * @param from Pointer to the device structure, used as a starting point * in the linked list of all_devices, which can be 0 to start * at the head of the list (i.e. all_devices). * @return Pointer to the device struct. */ struct device *dev_find_device(struct device_id *devid, struct device *from) { printk(BIOS_SPEW, "%s: find %s\n", __func__, dev_id_string(devid)); if (!from) from = all_devices; else from = from->next; for (; from; from = from->next) { printk(BIOS_SPEW, "Check %s\n", dev_id_string(&from->id)); if (id_eq(devid, &from->id)) break; } printk(BIOS_SPEW, "%sfound\n", from ? "" : "not "); return from; } /** * Find a PCI device of a given vendor and type. * This is a convenience function since PCI device searches * are by far the most common. * * @param vendor vendor number * @param device device number * @param from Pointer to the device structure, used as a starting point * in the linked list of all_devices, which can be 0 to start * at the head of the list (i.e. all_devices). * @return Pointer to the device struct. */ struct device *dev_find_pci_device(u16 vendor, u16 device, struct device *from) { struct device_id id; id.type = DEVICE_ID_PCI; id.pci.vendor = vendor; id.pci.device = device; return dev_find_device(&id, from); } /** * Find a device of a given class. * * @param class Class of the device. * @param from Pointer to the device structure, used as a starting point * in the linked list of all_devices, which can be 0 to start * at the head of the list (i.e. all_devices). * @return Pointer to the device struct. */ struct device *dev_find_class(unsigned int class, struct device *from) { if (!from) from = all_devices; else from = from->next; while (from && (from->class & 0xffffff00) != class) from = from->next; return from; } /* WARNING: NOT SMP-safe! */ const char *dev_path(const struct device *dev) { static char buffer[DEVICE_PATH_MAX]; buffer[0] = '\0'; if (!dev) { memcpy(buffer, "", 7); } else { switch (dev->path.type) { case DEVICE_PATH_ROOT: memcpy(buffer, "Root Device", 12); break; case DEVICE_PATH_PCI: #if PCI_BUS_SEGN_BITS sprintf(buffer, "PCI: %04x:%02x:%02x.%01x", dev->bus->secondary >> 8, dev->bus->secondary & 0xff, PCI_SLOT(dev->path.pci.devfn), PCI_FUNC(dev->path.pci.devfn)); #else sprintf(buffer, "PCI: %02x:%02x.%01x", dev->bus->secondary, PCI_SLOT(dev->path.pci.devfn), PCI_FUNC(dev->path.pci.devfn)); #endif break; case DEVICE_PATH_PNP: sprintf(buffer, "PNP: %04x.%01x", dev->path.pnp.port, dev->path.pnp.device); break; case DEVICE_PATH_I2C: sprintf(buffer, "I2C: %02x:%02x", dev->bus->secondary, dev->path.i2c.device); break; case DEVICE_PATH_APIC: sprintf(buffer, "APIC: %02x", dev->path.apic.apic_id); break; case DEVICE_PATH_PCI_DOMAIN: sprintf(buffer, "PCI_DOMAIN: %04x", dev->path.pci_domain.domain); break; case DEVICE_PATH_PCI_BUS: sprintf(buffer, "PCI_BUS: %04x", dev->path.pci_bus.bus); break; case DEVICE_PATH_APIC_CLUSTER: sprintf(buffer, "APIC_CLUSTER: %01x", dev->path.apic_cluster.cluster); break; case DEVICE_PATH_CPU: sprintf(buffer, "CPU: %02x", dev->path.cpu.id); break; case DEVICE_PATH_CPU_BUS: sprintf(buffer, "CPU_BUS: %02x", dev->path.cpu_bus.id); break; case DEVICE_PATH_IOPORT: sprintf(buffer, "IOPORT: %02x", dev->path.ioport.iobase); break; default: printk(BIOS_ERR, "%s: Unknown device path type: %x\n", dev->dtsname, dev->path.type); break; } } return buffer; } /* WARNING: NOT SMP-safe! */ const char *dev_id_string(const struct device_id *id) { static char buffer[DEVICE_ID_MAX]; buffer[0] = '\0'; if (!id) { memcpy(buffer, "", 7); } else { switch (id->type) { case DEVICE_ID_ROOT: memcpy(buffer, "Root Device", 12); break; case DEVICE_ID_PCI: sprintf(buffer, "PCI: %04x:%04x", id->pci.vendor, id->pci.device); break; case DEVICE_ID_PNP: sprintf(buffer, "PNP: %04x", id->pnp.device); break; case DEVICE_ID_I2C: sprintf(buffer, "I2C: %04x", id->i2c.id); break; case DEVICE_ID_APIC: sprintf(buffer, "APIC: %02x:%02x", id->apic.vendor, id->apic.device); break; case DEVICE_ID_PCI_DOMAIN: sprintf(buffer, "PCI_DOMAIN: %04x:%04x", id->pci_domain.vendor, id->pci_domain.device); break; case DEVICE_ID_APIC_CLUSTER: sprintf(buffer, "APIC_CLUSTER: %02x:%02x", id->apic_cluster.vendor, id->apic_cluster.device); break; case DEVICE_ID_CPU: sprintf(buffer, "CPU", id->cpu.cpuid[0], id->cpu.cpuid[1], id->cpu.cpuid[2]); break; case DEVICE_ID_CPU_BUS: sprintf(buffer, "CPU_BUS: %02x:%02x", id->cpu_bus.vendor, id->cpu_bus.device); break; default: printk(BIOS_ERR, "%s: Unknown device ID type: %x\n", __func__, id->type); memcpy(buffer, "Unknown", 8); break; } } return buffer; } const char *bus_path(const struct bus *bus) { static char buffer[BUS_PATH_MAX]; sprintf(buffer, "%s,%d", dev_path(bus->dev), bus->link); return buffer; } int path_eq(const struct device_path *path1, const struct device_path *path2) { int equal = 0; if (path1->type == path2->type) { switch (path1->type) { case DEVICE_PATH_NONE: break; case DEVICE_PATH_ROOT: equal = 1; break; case DEVICE_PATH_PCI: equal = (path1->pci.devfn == path2->pci.devfn); break; case DEVICE_PATH_PNP: equal = (path1->pnp.port == path2->pnp.port) && (path1->pnp.device == path2->pnp.device); break; case DEVICE_PATH_I2C: equal = (path1->i2c.device == path2->i2c.device); break; case DEVICE_PATH_APIC: equal = (path1->apic.apic_id == path2->apic.apic_id); break; case DEVICE_PATH_PCI_DOMAIN: equal = (path1->pci_domain.domain == path2->pci_domain.domain); break; case DEVICE_PATH_APIC_CLUSTER: equal = (path1->apic_cluster.cluster == path2->apic_cluster.cluster); break; case DEVICE_PATH_CPU: equal = (path1->cpu.id == path2->cpu.id); break; case DEVICE_PATH_CPU_BUS: equal = (path1->cpu_bus.id == path2->cpu_bus.id); break; default: printk(BIOS_ERR, "%s: Unknown device type: %x\n", __func__, path1->type); break; } } return equal; } int id_eq(struct device_id *path1, struct device_id *path2) { int equal = 0; if (path1->type == path2->type) { switch (path1->type) { case DEVICE_ID_NONE: break; case DEVICE_ID_ROOT: equal = 1; break; case DEVICE_ID_PCI: equal = (path1->pci.vendor == path2->pci.vendor) && (path1->pci.device == path2->pci.device); break; case DEVICE_ID_PNP: equal = (path1->pnp.device == path2->pnp.device); break; case DEVICE_ID_I2C: equal = (path1->i2c.id == path2->i2c.id); break; case DEVICE_ID_APIC: equal = (path1->apic.vendor == path2->apic.vendor) && (path1->apic.device == path2->apic.device); break; case DEVICE_ID_PCI_DOMAIN: equal = (path1->pci_domain.vendor == path2->pci_domain.vendor) && (path1->pci_domain.device == path2->pci_domain.device); break; case DEVICE_ID_APIC_CLUSTER: equal = (path1->apic_cluster.vendor == path2->apic_cluster.vendor) && (path1->apic_cluster.device == path2->apic_cluster.device); break; case DEVICE_ID_CPU: equal = (path1->cpu.cpuid == path2->cpu.cpuid); break; case DEVICE_ID_CPU_BUS: equal = (path1->cpu_bus.vendor == path2->cpu_bus.vendor) && (path1->cpu_bus.device == path2->cpu_bus.device); break; default: printk(BIOS_ERR, "%s: Unknown device type: %x\n", __func__, path1->type); break; } } return equal; } /** * See if we have unused but allocated resource structures. * If so remove the allocation. * * @param dev The device to find the resource on. */ void compact_resources(struct device *dev) { struct resource *resource; int i; /* Move all of the free resources to the end. */ for (i = 0; i < dev->resources;) { resource = &dev->resource[i]; if (!resource->flags) { memmove(resource, resource + 1, (dev->resources - i) * sizeof(*resource)); dev->resources -= 1; memset(&dev->resource[dev->resources], 0, sizeof(*resource)); } else { i++; } } } /** * See if a resource structure already exists for a given index. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. * @return The resource if it already exists. */ struct resource *probe_resource(struct device *dev, unsigned int index) { struct resource *resource; int i; /* See if there is a resource with the appropriate index. */ resource = NULL; for (i = 0; i < dev->resources; i++) { if (dev->resource[i].index == index) { resource = &dev->resource[i]; break; } } return resource; } /** * See if a resource structure already exists for a given index and if * not allocate one. Then initialize the resource to default values. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. */ struct resource *new_resource(struct device *dev, unsigned int index) { struct resource *resource; /* First move all of the free resources to the end. */ compact_resources(dev); /* See if there is a resource with the appropriate index. */ resource = probe_resource(dev, index); if (!resource) { if (dev->resources == MAX_RESOURCES) { die("MAX_RESOURCES exceeded."); } resource = &dev->resource[dev->resources]; memset(resource, 0, sizeof(*resource)); dev->resources++; } /* Initialize the resource values. */ if (!(resource->flags & IORESOURCE_FIXED)) { resource->flags = 0; resource->base = 0; } resource->size = 0; resource->limit = 0; resource->index = index; resource->align = 0; resource->gran = 0; return resource; } /** * Return an existing resource structure for a given index. * * @param dev The device to find the resource on. * @param index The index of the resource on the device. */ struct resource *find_resource(struct device *dev, unsigned int index) { struct resource *resource; /* See if there is a resource with the appropriate index. */ resource = probe_resource(dev, index); if (!resource) { printk(BIOS_EMERG, "%s missing resource: %02x\n", dev_path(dev), index); die(""); } return resource; } /** * Round a number up to the next multiple of gran. * * @param val The starting value. * @param gran Granularity we are aligning the number to. * @returns The aligned value. */ resource_t align_up(resource_t val, unsigned long gran) { resource_t mask; mask = (1ULL << gran) - 1ULL; val += mask; val &= ~mask; return val; } /** * Round a number up to the previous multiple of gran. * * @param val The starting value. * @param gran Granularity we are aligning the number to. * @returns The aligned value. */ resource_t align_down(resource_t val, unsigned long gran) { resource_t mask; mask = (1ULL << gran) - 1ULL; val &= ~mask; return val; } /** * Compute the maximum address that is part of a resource. * * @param resource The resource whose limit is desired. * @returns The end. */ resource_t resource_end(struct resource * resource) { resource_t base, end; /* Get the base address. */ base = resource->base; /* For a non-bridge resource granularity and alignment are the same. * For a bridge resource align is the largest needed alignment below * the bridge. While the granularity is simply how many low bits of * the address cannot be set. */ /* Get the end (rounded up). */ end = base + align_up(resource->size, resource->gran) - 1; return end; } /** * Compute the maximum legal value for resource->base. * * @param resource The resource whose maximum is desired. * @returns The maximum. */ resource_t resource_max(struct resource * resource) { resource_t max; max = align_down(resource->limit - resource->size + 1, resource->align); return max; } /** * Return the resource type of a resource. * * @param resource The resource type to decode. */ const char *resource_type(struct resource *resource) { static char buffer[RESOURCE_TYPE_MAX]; sprintf(buffer, "%s%s%s%s", ((resource->flags & IORESOURCE_READONLY) ? "ro" : ""), ((resource->flags & IORESOURCE_PREFETCH) ? "pref" : ""), ((resource->flags == 0) ? "unused" : (resource->flags & IORESOURCE_IO) ? "io" : (resource->flags & IORESOURCE_DRQ) ? "drq" : (resource->flags & IORESOURCE_IRQ) ? "irq" : (resource->flags & IORESOURCE_MEM) ? "mem" : "??????"), ((resource->flags & IORESOURCE_PCI64) ? "64" : "")); return buffer; } /** * Print the resource that was just stored. * * @param dev The device the stored resource lives on. * @param resource The resource that was just stored. * @param comment TODO */ void report_resource_stored(struct device *dev, struct resource *resource, const char *comment) { char buf[10]; unsigned long long base, end; base = resource->base; end = resource_end(resource); buf[0] = '\0'; if (!(resource->flags & IORESOURCE_STORED)) printk(BIOS_DEBUG, "%s lying: %s(%s) %02lx\n", __func__, dev_path(dev), dev->dtsname, resource->index); if (resource->flags & IORESOURCE_BRIDGE) { #if PCI_BUS_SEGN_BITS sprintf(buf, "bus %04x:%02x ", dev->bus->secondary >> 8, dev->link[0].secondary & 0xff); #else sprintf(buf, "bus %02x ", dev->link[0].secondary); #endif } printk(BIOS_DEBUG, "%s %02lx <- [0x%010llx - 0x%010llx] " "size 0x%08Lx gran 0x%02x %s%s %s\n", dev_path(dev), resource->index, base, end, resource->size, resource->gran, buf, resource_type(resource), comment); } void search_bus_resources(struct bus *bus, unsigned long type_mask, unsigned long type, resource_search_t search, void *gp) { struct device *curdev; for (curdev = bus->children; curdev; curdev = curdev->sibling) { int i; for (i = 0; i < curdev->resources; i++) { struct resource *resource = &curdev->resource[i]; /* If it isn't the right kind of resource ignore it. */ if ((resource->flags & type_mask) != type) { continue; } /* If it is a subtractive resource recurse. */ if (resource->flags & IORESOURCE_SUBTRACTIVE) { struct bus *subbus; subbus = &curdev->link[IOINDEX_SUBTRACTIVE_LINK (resource->index)]; search_bus_resources(subbus, type_mask, type, search, gp); continue; } search(gp, curdev, resource); } } } void search_global_resources(unsigned long type_mask, unsigned long type, resource_search_t search, void *gp) { struct device *curdev; printk(BIOS_SPEW, "%s: mask %lx type %lx \n", __func__, type_mask, type); for (curdev = all_devices; curdev; curdev = curdev->next) { int i; printk(BIOS_SPEW, "%s: dev %s, #resources %d\n", __func__, curdev->dtsname, curdev->resources); for (i = 0; i < curdev->resources; i++) { struct resource *resource = &curdev->resource[i]; printk(BIOS_SPEW, "%s: dev %s, resource %d, flags %lx base 0x%llx size 0x%llx\n", __func__, curdev->dtsname, i, resource->flags, resource->base, resource->size); /* If it isn't the right kind of resource ignore it. */ if ((resource->flags & type_mask) != type) { continue; } /* If it is a subtractive resource ignore it. */ if (resource->flags & IORESOURCE_SUBTRACTIVE) { continue; } search(gp, curdev, resource); } } } void dev_set_enabled(struct device *dev, int enable) { if (dev->enabled == enable) { return; } dev->enabled = enable; if (dev->ops && dev->ops->phase5_enable_resources) { dev->ops->phase5_enable_resources(dev); } } void disable_children(struct bus *bus) { struct device *child; for (child = bus->children; child; child = child->sibling) { int link; for (link = 0; link < child->links; link++) { disable_children(&child->link[link]); } dev_set_enabled(child, 0); } }