/* * This file is part of the libpayload project. * * Copyright (C) 2015 Google, Inc. */ #include #include #include "bitmap.h" /* * 'canvas' is the drawing area located in the center of the screen. It's a * square area, stretching vertically to the edges of the screen, leaving * non-drawing areas on the left and right. The screen is assumed to be * landscape. */ static struct rect canvas; static struct rect screen; /* * Framebuffer is assumed to assign a higher coordinate (larger x, y) to * a higher address */ static struct cb_framebuffer *fbinfo; static uint8_t *fbaddr; static char initialized = 0; #define LOG(x...) printf("CBGFX: " x) /* * This is the range used internally to scale bitmap images. (e.g. 128 = 50%, * 512 = 200%). We choose 256 so that division and multiplication become bit * shift operation. */ #define BITMAP_SCALE_BASE 256 #define ROUNDUP(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) #define ABS(x) ((x) < 0 ? -(x) : (x)) static const struct vector vzero = { .x = 0, .y = 0, }; static void add_vectors(struct vector *out, const struct vector *v1, const struct vector *v2) { out->x = v1->x + v2->x; out->y = v1->y + v2->y; } /* * Transform a vector: * x' = x * a_x + offset_x * y' = y * a_y + offset_y */ static void transform_vector(struct vector *out, const struct vector *in, const struct scale *a, const struct vector *offset) { out->x = a->x.nume * in->x / a->x.deno + offset->x; out->y = a->y.nume * in->y / a->y.deno + offset->y; } /* * Returns 1 if v is exclusively within box, 0 if v is inclusively within box, * or -1 otherwise. Note that only the left and bottom edges are considered. */ static int within_box(const struct vector *v, const struct rect *bound) { if (v->x < bound->offset.x + bound->size.width && v->y < bound->offset.y + bound->size.height) return 1; else if (v->x <= bound->offset.x + bound->size.width && v->y <= bound->offset.y + bound->size.height) return 0; else return -1; } static inline uint32_t calculate_color(const struct rgb_color *rgb) { uint32_t color = 0; color |= (rgb->red >> (8 - fbinfo->red_mask_size)) << fbinfo->red_mask_pos; color |= (rgb->green >> (8 - fbinfo->green_mask_size)) << fbinfo->green_mask_pos; color |= (rgb->blue >> (8 - fbinfo->blue_mask_size)) << fbinfo->blue_mask_pos; return color; } /* * Plot a pixel in a framebuffer. This is called from tight loops. Keep it slim * and do the validation at callers' site. */ static inline void set_pixel(struct vector *coord, uint32_t color) { const int bpp = fbinfo->bits_per_pixel; int i; uint8_t * const pixel = fbaddr + (coord->x + coord->y * fbinfo->x_resolution) * bpp / 8; for (i = 0; i < bpp / 8; i++) pixel[i] = (color >> (i * 8)); } /* * Initializes the library. Automatically called by APIs. It sets up * the canvas and the framebuffer. */ static int cbgfx_init(void) { if (initialized) return 0; fbinfo = lib_sysinfo.framebuffer; if (!fbinfo) return -1; fbaddr = phys_to_virt((uint8_t *)(uintptr_t)(fbinfo->physical_address)); if (!fbaddr) return -1; screen.size.width = fbinfo->x_resolution; screen.size.height = fbinfo->y_resolution; screen.offset.x = 0; screen.offset.y = 0; /* Calculate canvas size & offset, assuming the screen is landscape */ if (screen.size.height > screen.size.width) { LOG("Portrait screen not supported\n"); return -1; } canvas.size.height = screen.size.height; canvas.size.width = canvas.size.height; canvas.offset.x = (screen.size.width - canvas.size.width) / 2; canvas.offset.y = 0; initialized = 1; LOG("cbgfx initialized: screen:width=%d, height=%d, offset=%d canvas:width=%d, height=%d, offset=%d\n", screen.size.width, screen.size.height, screen.offset.x, canvas.size.width, canvas.size.height, canvas.offset.x); return 0; } int draw_box(const struct rect *box, const struct rgb_color *rgb) { struct vector top_left; struct vector size; struct vector p, t; const uint32_t color = calculate_color(rgb); const struct scale top_left_s = { .x = { .nume = box->offset.x, .deno = CANVAS_SCALE, }, .y = { .nume = box->offset.y, .deno = CANVAS_SCALE, } }; const struct scale size_s = { .x = { .nume = box->size.x, .deno = CANVAS_SCALE, }, .y = { .nume = box->size.y, .deno = CANVAS_SCALE, } }; if (cbgfx_init()) return CBGFX_ERROR_INIT; transform_vector(&top_left, &canvas.size, &top_left_s, &canvas.offset); transform_vector(&size, &canvas.size, &size_s, &vzero); add_vectors(&t, &top_left, &size); if (within_box(&t, &canvas) < 0) { LOG("Box exceeds canvas boundary\n"); return CBGFX_ERROR_CANVAS_BOUNDARY; } for (p.y = top_left.y; p.y < t.y; p.y++) for (p.x = top_left.x; p.x < t.x; p.x++) set_pixel(&p, color); return CBGFX_SUCCESS; } int clear_canvas(struct rgb_color *rgb) { const struct rect box = { vzero, .size = { .width = CANVAS_SCALE, .height = CANVAS_SCALE, }, }; if (cbgfx_init()) return CBGFX_ERROR_INIT; return draw_box(&box, rgb); } int clear_screen(struct rgb_color *rgb) { uint32_t color; struct vector p; if (cbgfx_init()) return CBGFX_ERROR_INIT; color = calculate_color(rgb); for (p.y = 0; p.y < screen.size.height; p.y++) for (p.x = 0; p.x < screen.size.width; p.x++) set_pixel(&p, color); return CBGFX_SUCCESS; } /* * This check guarantees we will not try to read outside pixel data. */ static int check_bound(const struct vector *image, const struct bitmap_header_v3 *header, const struct scale *scale) { struct vector p = { .x = (image->width - 1) * scale->x.deno / scale->x.nume, .y = (image->height -1) * scale->y.deno / scale->y.nume, }; struct rect bound = { .offset = vzero, .size = { .width = header->width, .height = header->height, }, }; return within_box(&p, &bound) < 0; } static int draw_bitmap_v3(const struct vector *top_left, const struct scale *scale, const struct vector *image, const struct bitmap_header_v3 *header, const struct bitmap_palette_element_v3 *palette, const uint8_t *pixel_array) { const int bpp = header->bits_per_pixel; int32_t dir; struct vector p; if (header->compression) { LOG("Compressed bitmaps are not supported\n"); return CBGFX_ERROR_BITMAP_FORMAT; } if (bpp >= 16) { LOG("Non-palette bitmaps are not supported\n"); return CBGFX_ERROR_BITMAP_FORMAT; } if (bpp != 8) { LOG("Unsupported bits per pixel: %d\n", bpp); return CBGFX_ERROR_BITMAP_FORMAT; } if (scale->x.nume == 0 || scale->y.nume == 0) { LOG("Scaling out of range\n"); return CBGFX_ERROR_SCALE_OUT_OF_RANGE; } if (check_bound(image, header, scale)) return CBGFX_ERROR_SCALE_OUT_OF_RANGE; const int32_t y_stride = ROUNDUP(header->width * bpp / 8, 4); /* * header->height can be positive or negative. * * If it's negative, pixel data is stored from top to bottom. We render * image from the lowest row to the highest row. * * If it's positive, pixel data is stored from bottom to top. We render * image from the highest row to the lowest row. */ p.y = top_left->y; if (header->height < 0) { dir = 1; } else { p.y += image->height - 1; dir = -1; } /* * Plot pixels scaled by the nearest neighbor interpolation. We scan * over the image on canvas (using d) and find the corresponding pixel * in the bitmap data (using s). */ struct vector s, d; for (d.y = 0; d.y < image->height; d.y++, p.y += dir) { s.y = d.y * scale->y.deno / scale->y.nume; const uint8_t *data = pixel_array + s.y * y_stride; p.x = top_left->x; for (d.x = 0; d.x < image->width; d.x++, p.x++) { s.x = d.x * scale->x.deno / scale->x.nume; uint8_t index = data[s.x]; if (index >= header->colors_used) { LOG("Color index exceeds palette boundary\n"); return CBGFX_ERROR_BITMAP_DATA; } const struct rgb_color rgb = { .red = palette[index].red, .green = palette[index].green, .blue = palette[index].blue, }; set_pixel(&p, calculate_color(&rgb)); } } return CBGFX_SUCCESS; } static int get_bitmap_file_header(const void *bitmap, size_t size, struct bitmap_file_header *file_header) { const struct bitmap_file_header *fh; if (sizeof(*file_header) > size) { LOG("Invalid bitmap data\n"); return CBGFX_ERROR_BITMAP_DATA; } fh = (struct bitmap_file_header *)bitmap; if (fh->signature[0] != 'B' || fh->signature[1] != 'M') { LOG("Bitmap signature mismatch\n"); return CBGFX_ERROR_BITMAP_SIGNATURE; } file_header->file_size = le32toh(fh->file_size); if (file_header->file_size != size) { LOG("Bitmap file size does not match cbfs file size\n"); return CBGFX_ERROR_BITMAP_DATA; } file_header->bitmap_offset = le32toh(fh->bitmap_offset); return CBGFX_SUCCESS; } static int parse_bitmap_header_v3(const uint8_t *bitmap, const struct bitmap_file_header *file_header, /* ^--- IN / OUT ---v */ struct bitmap_header_v3 *header, const struct bitmap_palette_element_v3 **palette, const uint8_t **pixel_array) { struct bitmap_header_v3 *h; size_t header_offset = sizeof(struct bitmap_file_header); size_t header_size = sizeof(struct bitmap_header_v3); size_t palette_offset = header_offset + header_size; size_t file_size = file_header->file_size; h = (struct bitmap_header_v3 *)(bitmap + header_offset); header->header_size = le32toh(h->header_size); if (header->header_size != header_size) { LOG("Unsupported bitmap format\n"); return CBGFX_ERROR_BITMAP_FORMAT; } header->width = le32toh(h->width); header->height = le32toh(h->height); header->bits_per_pixel = le16toh(h->bits_per_pixel); header->compression = le32toh(h->compression); header->size = le32toh(h->size); header->colors_used = le32toh(h->colors_used); size_t palette_size = header->colors_used * sizeof(struct bitmap_palette_element_v3); size_t pixel_offset = file_header->bitmap_offset; if (pixel_offset > file_size) { LOG("Bitmap pixel data exceeds buffer boundary\n"); return CBGFX_ERROR_BITMAP_DATA; } if (palette_offset + palette_size > pixel_offset) { LOG("Bitmap palette data exceeds palette boundary\n"); return CBGFX_ERROR_BITMAP_DATA; } *palette = (struct bitmap_palette_element_v3 *)(bitmap + palette_offset); size_t pixel_size = header->size; if (pixel_size != header->height * ROUNDUP(header->width * header->bits_per_pixel / 8, 4)) { LOG("Bitmap pixel array size does not match expected size\n"); return CBGFX_ERROR_BITMAP_DATA; } if (pixel_offset + pixel_size > file_size) { LOG("Bitmap pixel array exceeds buffer boundary\n"); return CBGFX_ERROR_BITMAP_DATA; } *pixel_array = bitmap + pixel_offset; return CBGFX_SUCCESS; } int draw_bitmap(const struct vector *top_left_rel, size_t scale_rel, const void *bitmap, size_t size) { struct bitmap_file_header file_header; struct bitmap_header_v3 header; const struct bitmap_palette_element_v3 *palette; const uint8_t *pixel_array; struct vector top_left, image; struct scale scale; struct vector t; int rv; if (cbgfx_init()) return CBGFX_ERROR_INIT; rv = get_bitmap_file_header(bitmap, size, &file_header); if (rv) return rv; /* only v3 is supported now */ rv = parse_bitmap_header_v3(bitmap, &file_header, &header, &palette, &pixel_array); if (rv) return rv; /* * Calculate absolute coordinate and self-scale (scale relative to image * size). If relative scale is zero, the image is displayed at the * original scale and tol_left_rel is treated as absolute coordinate. */ if (scale_rel) { const struct scale s = { .x = { .nume = top_left_rel->x, .deno = CANVAS_SCALE, }, .y = { .nume = top_left_rel->y, .deno = CANVAS_SCALE, }, }; transform_vector(&top_left, &canvas.size, &s, &canvas.offset); scale.x.nume = scale_rel * canvas.size.width; scale.x.deno = header.width * CANVAS_SCALE; } else { add_vectors(&top_left, top_left_rel, &vzero); scale.x.nume = 1; scale.x.deno = 1; } scale.y.nume = scale.x.nume; scale.y.deno = scale.x.deno; /* Calculate height and width of the image on screen */ image.width = header.width; image.height = ABS(header.height); transform_vector(&image, &image, &scale, &vzero); /* Check whether the right bottom corner is within screen and canvas */ add_vectors(&t, &image, &top_left); if (scale_rel && within_box(&t, &canvas) < 0) { LOG("Bitmap image exceeds canvas boundary\n"); return CBGFX_ERROR_CANVAS_BOUNDARY; } if (within_box(&t, &screen) < 0) { LOG("Bitmap image exceeds screen boundary\n"); return CBGFX_ERROR_SCREEN_BOUNDARY; } return draw_bitmap_v3(&top_left, &scale, &image, &header, palette, pixel_array); }