/* SPDX-License-Identifier: GPL-2.0-or-later */ /** * @file ddr2.c * * \brief Utilities for decoding DDR2 SPDs */ #include #include #include #include #include #include /*============================================================================== * = DDR2 SPD decoding helpers *----------------------------------------------------------------------------*/ /** * \brief Checks if the DIMM is Registered based on byte[20] of the SPD * * Tells if the DIMM type is registered or not. * * @param type DIMM type. This is byte[20] of the SPD. */ int spd_dimm_is_registered_ddr2(enum spd_dimm_type_ddr2 type) { if ((type == SPD_DDR2_DIMM_TYPE_RDIMM) || (type == SPD_DDR2_DIMM_TYPE_72B_SO_RDIMM) || (type == SPD_DDR2_DIMM_TYPE_MINI_RDIMM)) return 1; return 0; } /** * \brief Calculate the checksum of a DDR2 SPD unique identifier * * @param spd pointer to raw SPD data * @param len length of data in SPD * * @return the checksum of SPD data bytes 63, or 0 when spd data is truncated. */ u8 spd_ddr2_calc_checksum(u8 *spd, int len) { int i; u8 c = 0; if (len < 63) /* Not enough bytes available to get the checksum */ return 0; for (i = 0; i < 63; i++) c += spd[i]; return c; } /** * \brief Calculate the CRC of a DDR2 SPD unique identifier * * @param spd pointer to raw SPD data * @param len length of data in SPD * * @return the CRC of SPD data bytes 64..72 and 93..98, or 0 * when spd data is truncated. */ u16 spd_ddr2_calc_unique_crc(const u8 *spd, int len) { u8 id_bytes[15]; int i, j = 0; if (len < 98) /* Not enough bytes available to get the CRC */ return 0; for (i = 64; i <= 72; i++) id_bytes[j++] = spd[i]; for (i = 93; i <= 98; i++) id_bytes[j++] = spd[i]; return ddr_crc16(id_bytes, 15); } /** * \brief Return size of SPD. * * Returns size of SPD. Usually 128 Byte. */ u32 spd_decode_spd_size_ddr2(u8 byte0) { return MIN(byte0, SPD_SIZE_MAX_DDR2); } /** * \brief Return size of eeprom. * * Returns size of eeprom. Usually 256 Byte. */ u32 spd_decode_eeprom_size_ddr2(u8 byte1) { if (!byte1) return 0; if (byte1 > 0x0e) return 0x3fff; return 1 << byte1; } /** * \brief Return index of MSB set * * Returns the index of MSB set. */ u8 spd_get_msbs(u8 c) { return log2(c); } /** * \brief Decode SPD tck cycle time * * Decodes a raw SPD data from a DDR2 DIMM. * Returns cycle time in 1/256th ns. */ static int spd_decode_tck_time(u32 *tck, u8 c) { u8 high, low; high = c >> 4; switch (c & 0xf) { case 0xa: low = 25; break; case 0xb: low = 33; break; case 0xc: low = 66; break; case 0xd: low = 75; break; case 0xe: case 0xf: printk(BIOS_WARNING, "Invalid tck setting. " "lower nibble is 0x%x\n", c & 0xf); return CB_ERR; default: low = (c & 0xf) * 10; } *tck = ((high * 100 + low) << 8) / 100; return CB_SUCCESS; } /** * \brief Decode SPD bcd style timings * * Decodes a raw SPD data from a DDR2 DIMM. * Returns cycle time in 1/256th ns. */ static int spd_decode_bcd_time(u32 *bcd, u8 c) { u8 high, low; high = c >> 4; low = c & 0xf; if (high >= 10 || low >= 10) return CB_ERR; *bcd = ((high * 10 + low) << 8) / 100; return CB_SUCCESS; } /** * \brief Decode SPD tRP, tRRP cycle time * * Decodes a raw SPD data from a DDR2 DIMM. * Returns cycle time in 1/256th ns. */ static u32 spd_decode_quarter_time(u8 c) { u8 high, low; high = c >> 2; low = 25 * (c & 0x3); return ((high * 100 + low) << 8) / 100; } /** * \brief Decode SPD tRR time * * Decodes a raw SPD data from a DDR2 DIMM. * Returns cycle time in 1/256th us. */ static int spd_decode_tRR_time(u32 *tRR, u8 c) { switch (c & ~0x80) { default: printk(BIOS_WARNING, "Invalid tRR value 0x%x\n", c); return CB_ERR; case 0x0: *tRR = 15625 << 8; break; case 0x1: *tRR = 15625 << 6; break; case 0x2: *tRR = 15625 << 7; break; case 0x3: *tRR = 15625 << 9; break; case 0x4: *tRR = 15625 << 10; break; case 0x5: *tRR = 15625 << 11; break; } return CB_SUCCESS; } /** * \brief Decode SPD tRC,tRFC time * * Decodes a raw SPD data from a DDR2 DIMM. * Returns cycle time in 1/256th us. */ static void spd_decode_tRCtRFC_time(u8 *spd_40_41_42, u32 *tRC, u32 *tRFC) { u8 b40, b41, b42; b40 = spd_40_41_42[0]; b41 = spd_40_41_42[1]; b42 = spd_40_41_42[2]; *tRC = b41 * 100; *tRFC = b42 * 100; if (b40 & 0x01) *tRFC += 256 * 100; switch ((b40 >> 1) & 0x07) { case 1: *tRFC += 25; break; case 2: *tRFC += 33; break; case 3: *tRFC += 50; break; case 4: *tRFC += 66; break; case 5: *tRFC += 75; break; default: break; } switch ((b40 >> 4) & 0x07) { case 1: *tRC += 25; break; case 2: *tRC += 33; break; case 3: *tRC += 50; break; case 4: *tRC += 66; break; case 5: *tRC += 75; break; default: break; } /* Convert to 1/256th us */ *tRC = (*tRC << 8) / 100; *tRFC = (*tRFC << 8) / 100; } /** * \brief Decode the raw SPD data * * Decodes a raw SPD data from a DDR2 DIMM, and organizes it into a * @ref dimm_attr structure. The SPD data must first be read in a contiguous * array, and passed to this function. * * @param dimm pointer to @ref dimm_attr structure where the decoded data is to * be stored * @param spd array of raw data previously read from the SPD. * * @return @ref spd_status enumerator * SPD_STATUS_OK -- decoding was successful * SPD_STATUS_INVALID -- invalid SPD or not a DDR2 SPD * SPD_STATUS_CRC_ERROR -- CRC did not verify * SPD_STATUS_INVALID_FIELD -- A field with an invalid value was * detected. */ int spd_decode_ddr2(struct dimm_attr_ddr2_st *dimm, u8 spd[SPD_SIZE_MAX_DDR2]) { u8 spd_size, cl, reg8; u16 eeprom_size; int ret = SPD_STATUS_OK; memset(dimm, 0, sizeof(*dimm)); spd_size = spd_decode_spd_size_ddr2(spd[0]); eeprom_size = spd_decode_eeprom_size_ddr2(spd[1]); printram("EEPROM with 0x%04x bytes\n", eeprom_size); printram("SPD contains 0x%02x bytes\n", spd_size); if (spd_size < 64 || eeprom_size < 64) { printk(BIOS_ERR, "SPD too small\n"); dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED; return SPD_STATUS_INVALID; } if (spd_ddr2_calc_checksum(spd, spd_size) != spd[63]) { printk(BIOS_ERR, "SPD checksum error\n"); dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED; return SPD_STATUS_CRC_ERROR; } dimm->checksum = spd[63]; reg8 = spd[62]; if ((reg8 & 0xf0) != 0x10) { printk(BIOS_ERR, "Unsupported SPD revision %01x.%01x\n", reg8 >> 4, reg8 & 0xf); dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED; return SPD_STATUS_INVALID; } dimm->rev = reg8; printram(" Revision : %01x.%01x\n", dimm->rev >> 4, dimm->rev & 0xf); reg8 = spd[2]; printram(" Type : 0x%02x\n", reg8); if (reg8 != 0x08) { printk(BIOS_ERR, "Unsupported SPD type %x\n", reg8); dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED; return SPD_STATUS_INVALID; } dimm->dram_type = SPD_MEMORY_TYPE_SDRAM_DDR2; dimm->row_bits = spd[3]; printram(" Rows : %u\n", dimm->row_bits); if ((dimm->row_bits > 31) || ((dimm->row_bits > 15) && (dimm->rev < 0x13))) { printk(BIOS_WARNING, "SPD decode: invalid number of memory rows\n"); ret = SPD_STATUS_INVALID_FIELD; } dimm->col_bits = spd[4]; printram(" Columns : %u\n", dimm->col_bits); if (dimm->col_bits > 15) { printk(BIOS_WARNING, "SPD decode: invalid number of memory columns\n"); ret = SPD_STATUS_INVALID_FIELD; } dimm->ranks = (spd[5] & 0x7) + 1; printram(" Ranks : %u\n", dimm->ranks); dimm->mod_width = spd[6]; printram(" Module data width : x%u\n", dimm->mod_width); if (!dimm->mod_width) { printk(BIOS_WARNING, "SPD decode: invalid module data width\n"); ret = SPD_STATUS_INVALID_FIELD; } dimm->width = spd[13]; printram(" SDRAM width : x%u\n", dimm->width); if (!dimm->width) { printk(BIOS_WARNING, "SPD decode: invalid SDRAM width\n"); ret = SPD_STATUS_INVALID_FIELD; } dimm->banks = spd[17]; printram(" Banks : %u\n", dimm->banks); if (!dimm->banks) { printk(BIOS_WARNING, "SPD decode: invalid module banks count\n"); ret = SPD_STATUS_INVALID_FIELD; } switch (spd[8]) { case 0: dimm->flags.operable_5_00V = 1; printram(" Voltage : 5.0V\n"); break; case 1: dimm->flags.operable_3_33V = 1; printram(" Voltage : 3.3V\n"); break; case 2: dimm->flags.operable_1_50V = 1; printram(" Voltage : 1.5V\n"); break; case 3: dimm->flags.operable_3_33V = 1; printram(" Voltage : 3.3V\n"); break; case 4: dimm->flags.operable_2_50V = 1; printram(" Voltage : 2.5V\n"); break; case 5: dimm->flags.operable_1_80V = 1; printram(" Voltage : 1.8V\n"); break; default: printk(BIOS_WARNING, "SPD decode: unknown voltage level.\n"); ret = SPD_STATUS_INVALID_FIELD; } dimm->cas_supported = spd[18]; if ((dimm->cas_supported & 0x3) || !dimm->cas_supported) { printk(BIOS_WARNING, "SPD decode: invalid CAS support advertised.\n"); ret = SPD_STATUS_INVALID_FIELD; } printram(" Supported CAS mask : 0x%x\n", dimm->cas_supported); if ((dimm->rev < 0x13) && (dimm->cas_supported & 0x80)) { printk(BIOS_WARNING, "SPD decode: invalid CAS support advertised.\n"); ret = SPD_STATUS_INVALID_FIELD; } if ((dimm->rev < 0x12) && (dimm->cas_supported & 0x40)) { printk(BIOS_WARNING, "SPD decode: invalid CAS support advertised.\n"); ret = SPD_STATUS_INVALID_FIELD; } /* CL=X */ cl = spd_get_msbs(dimm->cas_supported); /* SDRAM Cycle time at Maximum Supported CAS Latency (CL), CL=X */ if (spd_decode_tck_time(&dimm->cycle_time[cl], spd[9]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid min tCL for CAS%d\n", cl); ret = SPD_STATUS_INVALID_FIELD; } /* SDRAM Access from Clock */ if (spd_decode_bcd_time(&dimm->access_time[cl], spd[10]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid min tAC for CAS%d\n", cl); ret = SPD_STATUS_INVALID_FIELD; } if (dimm->cas_supported & (1 << (cl - 1))) { /* Minimum Clock Cycle at CLX-1 */ if (spd_decode_tck_time(&dimm->cycle_time[cl - 1], spd[23]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid min tCL for CAS%d\n", cl - 1); ret = SPD_STATUS_INVALID_FIELD; } /* Maximum Data Access Time (tAC) from Clock at CLX-1 */ if (spd_decode_bcd_time(&dimm->access_time[cl - 1], spd[24]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid min tAC for CAS%d\n", cl - 1); ret = SPD_STATUS_INVALID_FIELD; } } if (dimm->cas_supported & (1 << (cl - 2))) { /* Minimum Clock Cycle at CLX-2 */ if (spd_decode_tck_time(&dimm->cycle_time[cl - 2], spd[25]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid min tCL for CAS%d\n", cl - 2); ret = SPD_STATUS_INVALID_FIELD; } /* Maximum Data Access Time (tAC) from Clock at CLX-2 */ if (spd_decode_bcd_time(&dimm->access_time[cl - 2], spd[26]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid min tAC for CAS%d\n", cl - 2); ret = SPD_STATUS_INVALID_FIELD; } } reg8 = (spd[31] >> 5) | (spd[31] << 3); if (!reg8) { printk(BIOS_WARNING, "SPD decode: invalid rank density.\n"); ret = SPD_STATUS_INVALID_FIELD; } /* Rank density */ dimm->ranksize_mb = 128 * reg8; /* Module density */ dimm->size_mb = dimm->ranksize_mb * dimm->ranks; if (dimm->size_mb < 1024) printram(" Capacity : %u MB\n", dimm->size_mb); else printram(" Capacity : %u GB\n", dimm->size_mb >> 10); /* SDRAM Maximum Cycle Time (tCKmax) */ if (spd_decode_bcd_time(&dimm->tCK, spd[43]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid Max tCK\n"); ret = SPD_STATUS_INVALID_FIELD; } /* Minimum Write Recovery Time (tWRmin) */ dimm->tWR = spd_decode_quarter_time(spd[36]); /* Minimum RAS# to CAS# Delay Time (tRCDmin) */ dimm->tRCD = spd_decode_quarter_time(spd[29]); /* Minimum Row Active to Row Active Delay Time (tRRDmin) */ dimm->tRRD = spd_decode_quarter_time(spd[28]); /* Minimum Row Precharge Delay Time (tRPmin) */ dimm->tRP = spd_decode_quarter_time(spd[27]); /* Minimum Active to Precharge Delay Time (tRASmin) */ dimm->tRAS = spd[30] << 8; /* Minimum Active to Active/Refresh Delay Time (tRCmin) */ /* Minimum Refresh Recovery Delay Time (tRFCmin) */ spd_decode_tRCtRFC_time(&spd[40], &dimm->tRC, &dimm->tRFC); /* Minimum Internal Write to Read Command Delay Time (tWTRmin) */ dimm->tWTR = spd_decode_quarter_time(spd[37]); /* Minimum Internal Read to Precharge Command Delay Time (tRTPmin) */ dimm->tRTP = spd_decode_quarter_time(spd[38]); /* Data Input Setup Time Before Strobe */ if (spd_decode_bcd_time(&dimm->tDS, spd[34]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid tDS\n"); ret = SPD_STATUS_INVALID_FIELD; } /* Data Input Hold Time After Strobe */ if (spd_decode_bcd_time(&dimm->tDH, spd[35]) != CB_SUCCESS) { printk(BIOS_WARNING, "SPD decode: invalid tDH\n"); ret = SPD_STATUS_INVALID_FIELD; } /* SDRAM Device DQS-DQ Skew for DQS and associated DQ signals */ dimm->tDQSQ = (spd[44] << 8) / 100; /* SDRAM Device Maximum Read Data Hold Skew Factor */ dimm->tQHS = (spd[45] << 8) / 100; /* PLL Relock Time in us */ dimm->tPLL = spd[46] << 8; /* Refresh rate in us */ if (spd_decode_tRR_time(&dimm->tRR, spd[12]) != CB_SUCCESS) ret = SPD_STATUS_INVALID_FIELD; dimm->flags.self_refresh = (spd[12] >> 7) & 1; printram("The assembly supports self refresh: %s\n", dimm->flags.self_refresh ? "true" : "false"); /* Number of PLLs on DIMM */ if (dimm->rev >= 0x11) dimm->plls = (spd[21] >> 2) & 0x3; /* SDRAM Thermal and Refresh Options */ printram(" General features :"); if ((dimm->rev >= 0x12) && (spd[22] & 0x04)) { dimm->flags.pasr = 1; printram(" PASR"); } if ((dimm->rev >= 0x12) && (spd[22] & 0x02)) { dimm->flags.terminate_50ohms = 1; printram(" 50Ohm"); } if (spd[22] & 0x01) { dimm->flags.weak_driver = 1; printram(" WEAK_DRIVER"); } printram("\n"); /* SDRAM Supported Burst length */ printram(" Burst length :"); if (spd[16] & 0x08) { dimm->flags.bl8 = 1; printram(" BL8"); } if (spd[16] & 0x04) { dimm->flags.bl4 = 1; printram(" BL4"); } printram("\n"); dimm->dimm_type = spd[20] & SPD_DDR2_DIMM_TYPE_MASK; printram(" Dimm type : %x\n", dimm->dimm_type); dimm->flags.is_ecc = !!(spd[11] & 0x3); printram(" ECC support : %x\n", dimm->flags.is_ecc); dimm->flags.stacked = !!(spd[5] & 0x10); printram(" Package : %s\n", dimm->flags.stacked ? "stack" : "planar"); if (spd_size > 71) { memcpy(&dimm->manufacturer_id, &spd[64], 4); printram(" Manufacturer ID : %x\n", dimm->manufacturer_id); } if (spd_size > 90) { dimm->part_number[16] = 0; memcpy(dimm->part_number, &spd[73], 16); printram(" Part number : %s\n", dimm->part_number); } if (spd_size > 94) { dimm->year = spd[93] + 2000; dimm->weeks = spd[94]; printram(" Date : %d week %d\n", dimm->year, dimm->weeks); } if (spd_size > 98) { memcpy(&dimm->serial, &spd[95], 4); printram(" Serial number : 0x%08x\n", dimm->serial); } return ret; } /* * The information printed below has a more informational character, and is not * necessarily tied in to RAM init debugging. Hence, we stop using printram(), * and use the standard printk()'s below. */ static void print_ns(const char *msg, u32 val) { u32 mant, fp; mant = val / 256; fp = (val % 256) * 1000 / 256; printk(BIOS_INFO, "%s%3u.%.3u ns\n", msg, mant, fp); } static void print_us(const char *msg, u32 val) { u32 mant, fp; mant = val / 256; fp = (val % 256) * 1000 / 256; printk(BIOS_INFO, "%s%3u.%.3u us\n", msg, mant, fp); } /** * \brief Print the info in DIMM * * Print info about the DIMM. Useful to use when CONFIG(DEBUG_RAM_SETUP) is * selected, or for a purely informative output. * * @param dimm pointer to already decoded @ref dimm_attr structure */ void dram_print_spd_ddr2(const struct dimm_attr_ddr2_st *dimm) { char buf[32]; int i; printk(BIOS_INFO, " Row addr bits : %u\n", dimm->row_bits); printk(BIOS_INFO, " Column addr bits : %u\n", dimm->col_bits); printk(BIOS_INFO, " Number of ranks : %u\n", dimm->ranks); printk(BIOS_INFO, " DIMM Capacity : %u MB\n", dimm->size_mb); printk(BIOS_INFO, " Width : x%u\n", dimm->width); printk(BIOS_INFO, " Banks : %u\n", dimm->banks); /* CAS Latencies Supported */ printk(BIOS_INFO, " CAS latencies :"); for (i = 2; i < 8; i++) { if (dimm->cas_supported & (1 << i)) printk(BIOS_INFO, " %u", i); } printk(BIOS_INFO, "\n"); for (i = 2; i < 8; i++) { if (!(dimm->cas_supported & (1 << i))) continue; strcpy(buf, " tCK at CLx : "); /* Simple snprintf replacement */ buf[11] = '0' + i; print_ns(buf, dimm->cycle_time[i]); strcpy(buf, " tAC at CLx : "); /* Simple snprintf replacement */ buf[11] = '0' + i; print_ns(buf, dimm->access_time[i]); } print_ns(" tCKmax : ", dimm->tCK); print_ns(" tWRmin : ", dimm->tWR); print_ns(" tRCDmin : ", dimm->tRCD); print_ns(" tRRDmin : ", dimm->tRRD); print_ns(" tRPmin : ", dimm->tRP); print_ns(" tRASmin : ", dimm->tRAS); print_ns(" tRCmin : ", dimm->tRC); print_ns(" tRFCmin : ", dimm->tRFC); print_ns(" tWTRmin : ", dimm->tWTR); print_ns(" tRTPmin : ", dimm->tRTP); print_ns(" tDS : ", dimm->tDS); print_ns(" tDH : ", dimm->tDH); print_ns(" tDQSQmax : ", dimm->tDQSQ); print_ns(" tQHSmax : ", dimm->tQHS); print_us(" tPLL : ", dimm->tPLL); print_us(" tRR : ", dimm->tRR); } void normalize_tck(u32 *tclk) { if (*tclk <= TCK_800MHZ) { *tclk = TCK_800MHZ; } else if (*tclk <= TCK_666MHZ) { *tclk = TCK_666MHZ; } else if (*tclk <= TCK_533MHZ) { *tclk = TCK_533MHZ; } else if (*tclk <= TCK_400MHZ) { *tclk = TCK_400MHZ; } else if (*tclk <= TCK_333MHZ) { *tclk = TCK_333MHZ; } else if (*tclk <= TCK_266MHZ) { *tclk = TCK_266MHZ; } else if (*tclk <= TCK_200MHZ) { *tclk = TCK_200MHZ; } else { *tclk = 0; printk(BIOS_ERR, "Too slow common tCLK found\n"); } }