/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include enum ddr4_speed_grade { DDR4_1600, DDR4_1866, DDR4_2133, DDR4_2400, DDR4_2666, DDR4_2933, DDR4_3200 }; struct ddr4_speed_attr { uint32_t min_clock_mhz; // inclusive uint32_t max_clock_mhz; // inclusive uint32_t reported_mts; }; /** * DDR4 speed attributes derived from JEDEC 79-4C tables 169 & 170 * * min_clock_mhz = 1000/max_tCk_avg(ns) + 1 * Adding 1 to make minimum inclusive * max_clock_mhz = 1000/min_tCk_avg(ns) * reported_mts = Standard reported DDR4 speed in MT/s * May be 1 less than the actual max MT/s */ static const struct ddr4_speed_attr ddr4_speeds[] = { [DDR4_1600] = {.min_clock_mhz = 668, .max_clock_mhz = 800, .reported_mts = 1600}, [DDR4_1866] = {.min_clock_mhz = 801, .max_clock_mhz = 934, .reported_mts = 1866}, [DDR4_2133] = {.min_clock_mhz = 935, .max_clock_mhz = 1067, .reported_mts = 2133}, [DDR4_2400] = {.min_clock_mhz = 1068, .max_clock_mhz = 1200, .reported_mts = 2400}, [DDR4_2666] = {.min_clock_mhz = 1201, .max_clock_mhz = 1333, .reported_mts = 2666}, [DDR4_2933] = {.min_clock_mhz = 1334, .max_clock_mhz = 1466, .reported_mts = 2933}, [DDR4_3200] = {.min_clock_mhz = 1467, .max_clock_mhz = 1600, .reported_mts = 3200} }; typedef enum { BLOCK_0, /* Base Configuration and DRAM Parameters */ BLOCK_1, BLOCK_1_L, /* Standard Module Parameters */ BLOCK_1_H, /* Hybrid Module Parameters */ BLOCK_2, BLOCK_2_L, /* Hybrid Module Extended Function Parameters */ BLOCK_2_H, /* Manufacturing Information */ BLOCK_3 /* End user programmable */ } spd_block_type; typedef struct { spd_block_type type; uint16_t start; /* starting offset from beginning of the spd */ uint16_t len; /* size of the block */ uint16_t crc_start; /* offset from start of crc bytes, 0 if none */ } spd_block; /* 'SPD contents architecture' as per datasheet */ const spd_block spd_blocks[] = { {.type = BLOCK_0, 0, 128, 126}, {.type = BLOCK_1, 128, 128, 126}, {.type = BLOCK_1_L, 128, 64, 0}, {.type = BLOCK_1_H, 192, 64, 0}, {.type = BLOCK_2_L, 256, 64, 62}, {.type = BLOCK_2_H, 320, 64, 0}, {.type = BLOCK_3, 384, 128, 0} }; static bool verify_block(const spd_block *block, spd_raw_data spd) { uint16_t crc, spd_crc; spd_crc = (spd[block->start + block->crc_start + 1] << 8) | spd[block->start + block->crc_start]; crc = ddr_crc16(&spd[block->start], block->len - 2); return spd_crc == crc; } /* Check if given block is 'reserved' for a given module type */ static bool block_exists(spd_block_type type, u8 dimm_type) { bool is_hybrid; switch (type) { case BLOCK_0: /* fall-through */ case BLOCK_1: /* fall-through */ case BLOCK_1_L: /* fall-through */ case BLOCK_1_H: /* fall-through */ case BLOCK_2_H: /* fall-through */ case BLOCK_3: /* fall-through */ return true; case BLOCK_2_L: is_hybrid = (dimm_type >> 4) & ((1 << 3) - 1); if (is_hybrid) return true; return false; default: /* fall-through */ return false; } } /** * Converts DDR4 clock speed in MHz to the standard reported speed in MT/s */ uint16_t ddr4_speed_mhz_to_reported_mts(uint16_t speed_mhz) { for (enum ddr4_speed_grade speed = 0; speed < ARRAY_SIZE(ddr4_speeds); speed++) { const struct ddr4_speed_attr *speed_attr = &ddr4_speeds[speed]; if (speed_mhz >= speed_attr->min_clock_mhz && speed_mhz <= speed_attr->max_clock_mhz) { return speed_attr->reported_mts; } } printk(BIOS_ERR, "DDR4 speed of %d MHz is out of range\n", speed_mhz); return 0; } /** * \brief Decode the raw SPD data * * Decodes a raw SPD data from a DDR4 DIMM, and organizes it into a * @ref dimm_attr structure. The SPD data must first be read in a contiguous * array, and passed to this function. * * @param dimm pointer to @ref dimm_attr structure where the decoded data is to * be stored * @param spd array of raw data previously read from the SPD. * * @return @ref spd_status enumerator * SPD_STATUS_OK -- decoding was successful * SPD_STATUS_INVALID -- invalid SPD or not a DDR4 SPD * SPD_STATUS_CRC_ERROR -- checksum mismatch */ int spd_decode_ddr4(struct dimm_attr_ddr4_st *dimm, spd_raw_data spd) { u8 reg8; u8 bus_width, sdram_width; u16 cap_per_die_mbit; u16 spd_bytes_total, spd_bytes_used; const uint16_t spd_bytes_used_table[] = {0, 128, 256, 384, 512}; /* Make sure that the SPD dump is indeed from a DDR4 module */ if (spd[2] != SPD_MEMORY_TYPE_DDR4_SDRAM) { printk(BIOS_ERR, "Not a DDR4 SPD!\n"); dimm->dram_type = SPD_MEMORY_TYPE_UNDEFINED; return SPD_STATUS_INVALID; } spd_bytes_total = (spd[0] >> 4) & 0x7; spd_bytes_used = spd[0] & 0xf; if (!spd_bytes_total || !spd_bytes_used) { printk(BIOS_ERR, "SPD failed basic sanity checks\n"); return SPD_STATUS_INVALID; } if (spd_bytes_total >= 3) printk(BIOS_WARNING, "SPD Bytes Total value is reserved\n"); spd_bytes_total = 256 << (spd_bytes_total - 1); if (spd_bytes_used > 4) { printk(BIOS_ERR, "SPD Bytes Used value is reserved\n"); return SPD_STATUS_INVALID; } spd_bytes_used = spd_bytes_used_table[spd_bytes_used]; if (spd_bytes_used > spd_bytes_total) { printk(BIOS_ERR, "SPD Bytes Used is greater than SPD Bytes Total\n"); return SPD_STATUS_INVALID; } /* Verify CRC of blocks that have them, do not step over 'used' length */ for (int i = 0; i < ARRAY_SIZE(spd_blocks); i++) { /* this block is not checksummed */ if (spd_blocks[i].crc_start == 0) continue; /* we shouldn't have this block */ if (spd_blocks[i].start + spd_blocks[i].len > spd_bytes_used) continue; /* check if block exists in the current schema */ if (!block_exists(spd_blocks[i].type, spd[3])) continue; if (!verify_block(&spd_blocks[i], spd)) { printk(BIOS_ERR, "CRC failed for block %d\n", i); return SPD_STATUS_CRC_ERROR; } } dimm->dram_type = SPD_MEMORY_TYPE_DDR4_SDRAM; dimm->dimm_type = spd[3] & ((1 << 4) - 1); reg8 = spd[13] & ((1 << 4) - 1); dimm->bus_width = reg8; bus_width = 8 << (reg8 & ((1 << 3) - 1)); reg8 = spd[12] & ((1 << 3) - 1); dimm->sdram_width = reg8; sdram_width = 4 << reg8; reg8 = spd[4] & ((1 << 4) - 1); dimm->cap_per_die_mbit = reg8; cap_per_die_mbit = (1 << reg8) * 256; reg8 = (spd[12] >> 3) & ((1 << 3) - 1); dimm->ranks = reg8 + 1; if (!bus_width || !sdram_width) { printk(BIOS_ERR, "SPD information is invalid"); dimm->size_mb = 0; return SPD_STATUS_INVALID; } /* seems to be only one, in mV */ dimm->vdd_voltage = 1200; /* calculate size */ /* FIXME: this is wrong for 3DS devices */ dimm->size_mb = cap_per_die_mbit / 8 * bus_width / sdram_width * dimm->ranks; dimm->ecc_extension = spd[SPD_PRIMARY_SDRAM_WIDTH] & SPD_ECC_8BIT; /* make sure we have the manufacturing information block */ if (spd_bytes_used > 320) { dimm->manufacturer_id = (spd[351] << 8) | spd[350]; memcpy(dimm->part_number, &spd[329], SPD_DDR4_PART_LEN); dimm->part_number[SPD_DDR4_PART_LEN] = 0; memcpy(dimm->serial_number, &spd[325], sizeof(dimm->serial_number)); } return SPD_STATUS_OK; } enum cb_err spd_add_smbios17_ddr4(const u8 channel, const u8 slot, const u16 selected_freq, const struct dimm_attr_ddr4_st *info) { struct memory_info *mem_info; struct dimm_info *dimm; /* * Allocate CBMEM area for DIMM information used to populate SMBIOS * table 17 */ mem_info = cbmem_find(CBMEM_ID_MEMINFO); if (!mem_info) { mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info)); printk(BIOS_DEBUG, "CBMEM entry for DIMM info: %p\n", mem_info); if (!mem_info) return CB_ERR; memset(mem_info, 0, sizeof(*mem_info)); } if (mem_info->dimm_cnt >= ARRAY_SIZE(mem_info->dimm)) { printk(BIOS_WARNING, "BUG: Too many DIMM infos for %s.\n", __func__); return CB_ERR; } dimm = &mem_info->dimm[mem_info->dimm_cnt]; if (info->size_mb) { dimm->ddr_type = MEMORY_TYPE_DDR4; dimm->ddr_frequency = selected_freq; dimm->dimm_size = info->size_mb; dimm->channel_num = channel; dimm->rank_per_dimm = info->ranks; dimm->dimm_num = slot; memcpy(dimm->module_part_number, info->part_number, SPD_DDR4_PART_LEN); dimm->mod_id = info->manufacturer_id; switch (info->dimm_type) { case SPD_DDR4_DIMM_TYPE_SO_DIMM: dimm->mod_type = DDR4_SPD_SODIMM; break; case SPD_DDR4_DIMM_TYPE_72B_SO_RDIMM: dimm->mod_type = DDR4_SPD_72B_SO_RDIMM; break; case SPD_DDR4_DIMM_TYPE_UDIMM: dimm->mod_type = DDR4_SPD_UDIMM; break; case SPD_DDR4_DIMM_TYPE_RDIMM: dimm->mod_type = DDR4_SPD_RDIMM; break; default: dimm->mod_type = SPD_UNDEFINED; break; } dimm->bus_width = info->bus_width; memcpy(dimm->serial, info->serial_number, MIN(sizeof(dimm->serial), sizeof(info->serial_number))); dimm->vdd_voltage = info->vdd_voltage; mem_info->dimm_cnt++; } return CB_SUCCESS; }