/* * This file is part of the coreboot project. * * Copyright (C) 2011 secunet Security Networks AG * Copyright 2015 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include "fmap_config.h" #define ERROR(x...) printk(BIOS_ERR, "CBFS: " x) #define LOG(x...) printk(BIOS_INFO, "CBFS: " x) #if IS_ENABLED(CONFIG_DEBUG_CBFS) #define DEBUG(x...) printk(BIOS_SPEW, "CBFS: " x) #else #define DEBUG(x...) #endif int cbfs_boot_locate(struct cbfsf *fh, const char *name, uint32_t *type) { struct region_device rdev; const struct region_device *boot_dev; struct cbfs_props props; if (cbfs_boot_region_properties(&props)) return -1; /* All boot CBFS operations are performed using the RO devie. */ boot_dev = boot_device_ro(); if (boot_dev == NULL) return -1; if (rdev_chain(&rdev, boot_dev, props.offset, props.size)) return -1; return cbfs_locate(fh, &rdev, name, type); } void *cbfs_boot_map_with_leak(const char *name, uint32_t type, size_t *size) { struct cbfsf fh; size_t fsize; if (cbfs_boot_locate(&fh, name, &type)) return NULL; fsize = region_device_sz(&fh.data); if (size != NULL) *size = fsize; return rdev_mmap(&fh.data, 0, fsize); } size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset, size_t in_size, void *buffer, size_t buffer_size, uint32_t compression) { size_t out_size; switch (compression) { case CBFS_COMPRESS_NONE: if (buffer_size < in_size) return 0; if (rdev_readat(rdev, buffer, offset, in_size) != in_size) return 0; return in_size; case CBFS_COMPRESS_LZ4: if ((ENV_BOOTBLOCK || ENV_VERSTAGE) && !IS_ENABLED(CONFIG_COMPRESS_PRERAM_STAGES)) return 0; /* Load the compressed image to the end of the available memory * area for in-place decompression. It is the responsibility of * the caller to ensure that buffer_size is large enough * (see compression.h, guaranteed by cbfstool for stages). */ void *compr_start = buffer + buffer_size - in_size; if (rdev_readat(rdev, compr_start, offset, in_size) != in_size) return 0; timestamp_add_now(TS_START_ULZ4F); out_size = ulz4fn(compr_start, in_size, buffer, buffer_size); timestamp_add_now(TS_END_ULZ4F); return out_size; case CBFS_COMPRESS_LZMA: if (ENV_BOOTBLOCK || ENV_VERSTAGE) return 0; if ((ENV_ROMSTAGE || ENV_POSTCAR) && !IS_ENABLED(CONFIG_COMPRESS_RAMSTAGE)) return 0; void *map = rdev_mmap(rdev, offset, in_size); if (map == NULL) return 0; /* Note: timestamp not useful for memory-mapped media (x86) */ timestamp_add_now(TS_START_ULZMA); out_size = ulzman(map, in_size, buffer, buffer_size); timestamp_add_now(TS_END_ULZMA); rdev_munmap(rdev, map); return out_size; default: return 0; } } static inline int tohex4(unsigned int c) { return (c <= 9) ? (c + '0') : (c - 10 + 'a'); } static void tohex16(unsigned int val, char* dest) { dest[0] = tohex4(val>>12); dest[1] = tohex4((val>>8) & 0xf); dest[2] = tohex4((val>>4) & 0xf); dest[3] = tohex4(val & 0xf); } void *cbfs_boot_map_optionrom(uint16_t vendor, uint16_t device) { char name[17] = "pciXXXX,XXXX.rom"; tohex16(vendor, name+3); tohex16(device, name+8); return cbfs_boot_map_with_leak(name, CBFS_TYPE_OPTIONROM, NULL); } void *cbfs_boot_load_stage_by_name(const char *name) { struct cbfsf fh; struct prog stage = PROG_INIT(PROG_UNKNOWN, name); uint32_t type = CBFS_TYPE_STAGE; if (cbfs_boot_locate(&fh, name, &type)) return NULL; /* Chain data portion in the prog. */ cbfs_file_data(prog_rdev(&stage), &fh); if (cbfs_prog_stage_load(&stage)) return NULL; return prog_entry(&stage); } size_t cbfs_boot_load_struct(const char *name, void *buf, size_t buf_size) { struct cbfsf fh; uint32_t compression_algo; size_t decompressed_size; uint32_t type = CBFS_TYPE_STRUCT; if (cbfs_boot_locate(&fh, name, &type) < 0) return 0; if (cbfsf_decompression_info(&fh, &compression_algo, &decompressed_size) < 0 || decompressed_size > buf_size) return 0; return cbfs_load_and_decompress(&fh.data, 0, region_device_sz(&fh.data), buf, buf_size, compression_algo); } size_t cbfs_prog_stage_section(struct prog *pstage, uintptr_t *base) { struct cbfs_stage stage; const struct region_device *fh = prog_rdev(pstage); if (rdev_readat(fh, &stage, 0, sizeof(stage)) != sizeof(stage)) return 0; *base = (uintptr_t)stage.load; return stage.memlen; } int cbfs_prog_stage_load(struct prog *pstage) { struct cbfs_stage stage; uint8_t *load; void *entry; size_t fsize; size_t foffset; const struct region_device *fh = prog_rdev(pstage); if (rdev_readat(fh, &stage, 0, sizeof(stage)) != sizeof(stage)) return -1; fsize = region_device_sz(fh); fsize -= sizeof(stage); foffset = 0; foffset += sizeof(stage); assert(fsize == stage.len); /* Note: cbfs_stage fields are currently in the endianness of the * running processor. */ load = (void *)(uintptr_t)stage.load; entry = (void *)(uintptr_t)stage.entry; /* Hacky way to not load programs over read only media. The stages * that would hit this path initialize themselves. */ if (ENV_VERSTAGE && !IS_ENABLED(CONFIG_NO_XIP_EARLY_STAGES) && IS_ENABLED(CONFIG_BOOT_DEVICE_MEMORY_MAPPED)) { void *mapping = rdev_mmap(fh, foffset, fsize); rdev_munmap(fh, mapping); if (mapping == load) goto out; } fsize = cbfs_load_and_decompress(fh, foffset, fsize, load, stage.memlen, stage.compression); if (!fsize) return -1; /* Clear area not covered by file. */ memset(&load[fsize], 0, stage.memlen - fsize); prog_segment_loaded((uintptr_t)load, stage.memlen, SEG_FINAL); out: prog_set_area(pstage, load, stage.memlen); prog_set_entry(pstage, entry, NULL); return 0; } /* This only supports the "COREBOOT" fmap region. */ static int cbfs_master_header_props(struct cbfs_props *props) { struct cbfs_header header; const struct region_device *bdev; int32_t rel_offset; size_t offset; bdev = boot_device_ro(); if (bdev == NULL) return -1; size_t fmap_top = ___FMAP__COREBOOT_BASE + ___FMAP__COREBOOT_SIZE; /* Find location of header using signed 32-bit offset from * end of CBFS region. */ offset = fmap_top - sizeof(int32_t); if (rdev_readat(bdev, &rel_offset, offset, sizeof(int32_t)) < 0) return -1; offset = fmap_top + rel_offset; if (rdev_readat(bdev, &header, offset, sizeof(header)) < 0) return -1; header.magic = ntohl(header.magic); header.romsize = ntohl(header.romsize); header.offset = ntohl(header.offset); if (header.magic != CBFS_HEADER_MAGIC) return -1; props->offset = header.offset; props->size = header.romsize; props->size -= props->offset; printk(BIOS_SPEW, "CBFS @ %zx size %zx\n", props->offset, props->size); return 0; } /* This struct is marked as weak to allow a particular platform to * override the master header logic. This implementation should work for most * devices. */ const struct cbfs_locator __attribute__((weak)) cbfs_master_header_locator = { .name = "Master Header Locator", .locate = cbfs_master_header_props, }; extern const struct cbfs_locator vboot_locator; static const struct cbfs_locator *locators[] = { #if CONFIG_VBOOT &vboot_locator, #endif &cbfs_master_header_locator, }; int cbfs_boot_region_properties(struct cbfs_props *props) { int i; boot_device_init(); for (i = 0; i < ARRAY_SIZE(locators); i++) { const struct cbfs_locator *ops; ops = locators[i]; if (ops->locate == NULL) continue; if (ops->locate(props)) continue; LOG("'%s' located CBFS at [%zx:%zx)\n", ops->name, props->offset, props->offset + props->size); return 0; } return -1; } void cbfs_prepare_program_locate(void) { int i; boot_device_init(); for (i = 0; i < ARRAY_SIZE(locators); i++) { if (locators[i]->prepare == NULL) continue; locators[i]->prepare(); } }