/* * This file is part of the coreboot project. * * Copyright (C) 2015 Google Inc. * Copyright (C) 2015 Intel Corporation * Copyright (C) 2017 Advanced Micro Devices, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include static const struct soc_amd_event gpio_event_table[] = { { GPIO_1, GEVENT_19 }, { GPIO_2, GEVENT_8 }, { GPIO_3, GEVENT_2 }, { GPIO_4, GEVENT_4 }, { GPIO_5, GEVENT_7 }, { GPIO_6, GEVENT_10 }, { GPIO_7, GEVENT_11 }, { GPIO_8, GEVENT_23 }, { GPIO_9, GEVENT_22 }, { GPIO_11, GEVENT_18 }, { GPIO_13, GEVENT_21 }, { GPIO_14, GEVENT_6 }, { GPIO_15, GEVENT_20 }, { GPIO_16, GEVENT_12 }, { GPIO_17, GEVENT_13 }, { GPIO_18, GEVENT_14 }, { GPIO_21, GEVENT_5 }, { GPIO_22, GEVENT_3 }, { GPIO_23, GEVENT_16 }, { GPIO_24, GEVENT_15 }, { GPIO_65, GEVENT_0 }, { GPIO_66, GEVENT_1 }, { GPIO_68, GEVENT_9 }, { GPIO_69, GEVENT_17 }, }; static int get_gpio_gevent(uint8_t gpio) { int i; for (i = 0; i < ARRAY_SIZE(gpio_event_table); i++) { if (gpio_event_table[i].gpio == gpio) return (int)gpio_event_table[i].event; } return -1; } static void mem_read_write32(uint32_t *address, uint32_t value, uint32_t mask) { uint32_t reg32; value &= mask; reg32 = read32(address); reg32 &= ~mask; reg32 |= value; write32(address, reg32); } __weak void configure_gevent_smi(uint8_t gevent, uint8_t mode, uint8_t level) { printk(BIOS_WARNING, "Warning: SMI disabled!\n"); } static void program_smi(uint32_t flag, int gevent_num) { uint32_t trigger; trigger = flag & FLAGS_TRIGGER_MASK; /* * Only level trigger is allowed for SMI. Trigger values are 0 * through 3, with 0-1 being level trigger and 2-3 being edge * trigger. GPIO_TRIGGER_EDGE_LOW is 2, so trigger has to be * less than GPIO_TRIGGER_EDGE_LOW. */ assert(trigger < GPIO_TRIGGER_EDGE_LOW); if (trigger == GPIO_TRIGGER_LEVEL_HIGH) configure_gevent_smi(gevent_num, SMI_MODE_SMI, SMI_SCI_LVL_HIGH); if (trigger == GPIO_TRIGGER_LEVEL_LOW) configure_gevent_smi(gevent_num, SMI_MODE_SMI, SMI_SCI_LVL_LOW); } static void route_sci(uint8_t event) { smi_write8(SMI_SCI_MAP(event), event); } static void get_sci_config_bits(uint32_t flag, uint32_t *edge, uint32_t *level) { uint32_t trigger; trigger = flag & FLAGS_TRIGGER_MASK; switch (trigger) { case GPIO_TRIGGER_LEVEL_LOW: *edge = SCI_TRIGGER_LEVEL; *level = 0; break; case GPIO_TRIGGER_LEVEL_HIGH: *edge = SCI_TRIGGER_LEVEL; *level = 1; break; case GPIO_TRIGGER_EDGE_LOW: *edge = SCI_TRIGGER_EDGE; *level = 0; break; case GPIO_TRIGGER_EDGE_HIGH: *edge = SCI_TRIGGER_EDGE; *level = 1; break; default: break; } } uintptr_t gpio_get_address(gpio_t gpio_num) { uintptr_t gpio_address; if (gpio_num < 64) gpio_address = GPIO_BANK0_CONTROL(gpio_num); else if (gpio_num < 128) gpio_address = GPIO_BANK1_CONTROL(gpio_num); else gpio_address = GPIO_BANK2_CONTROL(gpio_num); return gpio_address; } int gpio_get(gpio_t gpio_num) { uint32_t reg; uintptr_t gpio_address = gpio_get_address(gpio_num); reg = read32((void *)gpio_address); return !!(reg & GPIO_PIN_STS); } void gpio_set(gpio_t gpio_num, int value) { uint32_t reg; uintptr_t gpio_address = gpio_get_address(gpio_num); reg = read32((void *)gpio_address); reg &= ~GPIO_OUTPUT_MASK; reg |= !!value << GPIO_OUTPUT_SHIFT; write32((void *)gpio_address, reg); } void gpio_input_pulldown(gpio_t gpio_num) { uint32_t reg; uintptr_t gpio_address = gpio_get_address(gpio_num); reg = read32((void *)gpio_address); reg &= ~GPIO_PULLUP_ENABLE; reg |= GPIO_PULLDOWN_ENABLE; write32((void *)gpio_address, reg); } void gpio_input_pullup(gpio_t gpio_num) { uint32_t reg; uintptr_t gpio_address = gpio_get_address(gpio_num); reg = read32((void *)gpio_address); reg &= ~GPIO_PULLDOWN_ENABLE; reg |= GPIO_PULLUP_ENABLE; write32((void *)gpio_address, reg); } void gpio_input(gpio_t gpio_num) { uint32_t reg; uintptr_t gpio_address = gpio_get_address(gpio_num); reg = read32((void *)gpio_address); reg &= ~GPIO_OUTPUT_ENABLE; write32((void *)gpio_address, reg); } void gpio_output(gpio_t gpio_num, int value) { uint32_t reg; uintptr_t gpio_address = gpio_get_address(gpio_num); reg = read32((void *)gpio_address); reg |= GPIO_OUTPUT_ENABLE; write32((void *)gpio_address, reg); gpio_set(gpio_num, value); } const char *gpio_acpi_path(gpio_t gpio) { return "\\_SB.GPIO"; } uint16_t gpio_acpi_pin(gpio_t gpio) { return gpio; } void sb_program_gpios(const struct soc_amd_gpio *gpio_list_ptr, size_t size) { uint8_t *mux_ptr; uint32_t *gpio_ptr, *inter_master; uint32_t control, control_flags, edge_level, direction; uint32_t mask, bit_edge, bit_level; uint8_t mux, index, gpio; int gevent_num; inter_master = (uint32_t *)(uintptr_t)(GPIO_CONTROL_MMIO_BASE + GPIO_MASTER_SWITCH); direction = 0; edge_level = 0; mask = 0; /* * Disable blocking wake/interrupt status generation while updating * debounce registers. Otherwise when a debounce register is updated * the whole GPIO controller will zero out all interrupt enable status * bits while the delay happens. This could cause us to drop the bits * due to the read-modify-write that happens on each register. * * Additionally disable interrupt generation so we don't get any * spurious interrupts while updating the registers. */ mem_read_write32(inter_master, 0, GPIO_MASK_STS_EN | GPIO_INTERRUPT_EN); for (index = 0; index < size; index++) { gpio = gpio_list_ptr[index].gpio; mux = gpio_list_ptr[index].function; control = gpio_list_ptr[index].control; control_flags = gpio_list_ptr[index].flags; mux_ptr = (uint8_t *)(uintptr_t)(gpio + GPIO_IOMUX_MMIO_BASE); write8(mux_ptr, mux & AMD_GPIO_MUX_MASK); read8(mux_ptr); /* Flush posted write */ /* special case if pin 2 is assigned to wake */ if ((gpio == 2) && !(mux & AMD_GPIO_MUX_MASK)) route_sci(GPIO_2_EVENT); gpio_ptr = (uint32_t *)gpio_get_address(gpio); if (control_flags & GPIO_SPECIAL_FLAG) { gevent_num = get_gpio_gevent(gpio); if (gevent_num < 0) { printk(BIOS_WARNING, "Warning: GPIO pin %d has" " no associated gevent!\n", gpio); continue; } switch (control_flags & GPIO_SPECIAL_MASK) { case GPIO_DEBOUNCE_FLAG: mem_read_write32(gpio_ptr, control, GPIO_DEBOUNCE_MASK); break; case GPIO_WAKE_FLAG: mem_read_write32(gpio_ptr, control, INT_WAKE_MASK); break; case GPIO_INT_FLAG: mem_read_write32(gpio_ptr, control, AMD_GPIO_CONTROL_MASK); break; case GPIO_SMI_FLAG: mem_read_write32(gpio_ptr, control, INT_SCI_SMI_MASK); program_smi(control_flags, gevent_num); break; case GPIO_SCI_FLAG: mem_read_write32(gpio_ptr, control, INT_SCI_SMI_MASK); get_sci_config_bits(control_flags, &bit_edge, &bit_level); edge_level |= bit_edge << gevent_num; direction |= bit_level << gevent_num; mask |= (1 << gevent_num); route_sci(gevent_num); break; default: printk(BIOS_WARNING, "Error, flags 0x%08x\n", control_flags); break; } } else { mem_read_write32(gpio_ptr, control, AMD_GPIO_CONTROL_MASK); } } /* * Re-enable interrupt status generation. * * We leave MASK_STATUS disabled because the kernel may reconfigure the * debounce registers while the drivers load. This will cause interrupts * to be missed during boot. */ mem_read_write32(inter_master, GPIO_INTERRUPT_EN, GPIO_INTERRUPT_EN); /* Set all SCI trigger direction (high/low) */ mem_read_write32((uint32_t *)(uintptr_t)(APU_SMI_BASE + SMI_SCI_TRIG), direction, mask); /* Set all SCI trigger level (edge/level) */ mem_read_write32((uint32_t *)(uintptr_t)(APU_SMI_BASE + SMI_SCI_LEVEL), edge_level, mask); } /* * I2C pins are open drain with external pull up, so in order to bit bang them * all, SCL pins must become GPIO inputs with no pull, then they need to be * toggled between input-no-pull and output-low. This table is for the initial * conversion of all SCL pins to input with no pull. */ static const struct soc_amd_gpio i2c_2_gpi[] = { PAD_GPI(I2C0_SCL_PIN, PULL_NONE), PAD_GPI(I2C1_SCL_PIN, PULL_NONE), PAD_GPI(I2C2_SCL_PIN, PULL_NONE), PAD_GPI(I2C3_SCL_PIN, PULL_NONE), }; #define saved_pins_count ARRAY_SIZE(i2c_2_gpi) /* * To program I2C pins without destroying their programming, the registers * that will be changed need to be saved first. */ static void save_i2c_pin_registers(uint8_t gpio, struct soc_amd_i2c_save *save_table) { uint32_t *gpio_ptr; uint8_t *mux_ptr; mux_ptr = (uint8_t *)(uintptr_t)(gpio + GPIO_IOMUX_MMIO_BASE); gpio_ptr = (uint32_t *)gpio_get_address(gpio); save_table->mux_value = read8(mux_ptr); save_table->control_value = read32(gpio_ptr); } static void restore_i2c_pin_registers(uint8_t gpio, struct soc_amd_i2c_save *save_table) { uint32_t *gpio_ptr; uint8_t *mux_ptr; mux_ptr = (uint8_t *)(uintptr_t)(gpio + GPIO_IOMUX_MMIO_BASE); gpio_ptr = (uint32_t *)gpio_get_address(gpio); write8(mux_ptr, save_table->mux_value); read8(mux_ptr); write32(gpio_ptr, save_table->control_value); read32(gpio_ptr); } /* Slaves to be reset are controlled by devicetree register i2c_scl_reset */ void sb_reset_i2c_slaves(void) { const struct soc_amd_stoneyridge_config *cfg; const struct device *dev = pcidev_path_on_root(GNB_DEVFN); struct soc_amd_i2c_save save_table[saved_pins_count]; uint8_t i, j, control; if (!dev || !dev->chip_info) return; cfg = dev->chip_info; control = cfg->i2c_scl_reset & GPIO_I2C_MASK; if (control == 0) return; /* Save and reprogram I2C SCL pins */ for (i = 0; i < saved_pins_count; i++) save_i2c_pin_registers(i2c_2_gpi[i].gpio, &save_table[i]); sb_program_gpios(i2c_2_gpi, saved_pins_count); /* * Toggle SCL back and forth 9 times under 100KHz. A single read is * needed after the writes to force the posted write to complete. */ for (j = 0; j < 9; j++) { if (control & GPIO_I2C0_SCL) write32((uint32_t *)GPIO_I2C0_ADDRESS, GPIO_SCL_LOW); if (control & GPIO_I2C1_SCL) write32((uint32_t *)GPIO_I2C1_ADDRESS, GPIO_SCL_LOW); if (control & GPIO_I2C2_SCL) write32((uint32_t *)GPIO_I2C2_ADDRESS, GPIO_SCL_LOW); if (control & GPIO_I2C3_SCL) write32((uint32_t *)GPIO_I2C3_ADDRESS, GPIO_SCL_LOW); read32((uint32_t *)GPIO_I2C3_ADDRESS); /* Flush posted write */ udelay(4); /* 4usec gets 85KHz for 1 pin, 70KHz for 4 pins */ if (control & GPIO_I2C0_SCL) write32((uint32_t *)GPIO_I2C0_ADDRESS, GPIO_SCL_HIGH); if (control & GPIO_I2C1_SCL) write32((uint32_t *)GPIO_I2C1_ADDRESS, GPIO_SCL_HIGH); if (control & GPIO_I2C2_SCL) write32((uint32_t *)GPIO_I2C2_ADDRESS, GPIO_SCL_HIGH); if (control & GPIO_I2C3_SCL) write32((uint32_t *)GPIO_I2C3_ADDRESS, GPIO_SCL_HIGH); read32((uint32_t *)GPIO_I2C3_ADDRESS); /* Flush posted write */ udelay(4); } /* Restore I2C pins. */ for (i = 0; i < saved_pins_count; i++) restore_i2c_pin_registers(i2c_2_gpi[i].gpio, &save_table[i]); } int gpio_interrupt_status(gpio_t gpio) { uintptr_t gpio_address = gpio_get_address(gpio); uint32_t reg = read32((void *)gpio_address); if (reg & GPIO_INT_STATUS) { /* Clear interrupt status, preserve wake status */ reg &= ~GPIO_WAKE_STATUS; write32((void *)gpio_address, reg); return 1; } return 0; }