/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * Copyright (C) 2014 Google Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void pch_enable_ioapic(struct device *dev) { u32 reg32; /* Assign unique bus/dev/fn for I/O APIC */ pci_write_config16(dev, LPC_IBDF, PCH_IOAPIC_PCI_BUS << 8 | PCH_IOAPIC_PCI_SLOT << 3); set_ioapic_id(VIO_APIC_VADDR, 0x02); /* affirm full set of redirection table entries ("write once") */ reg32 = io_apic_read(VIO_APIC_VADDR, 0x01); /* PCH-LP has 39 redirection entries */ reg32 &= ~0x00ff0000; reg32 |= 0x00270000; io_apic_write(VIO_APIC_VADDR, 0x01, reg32); /* * Select Boot Configuration register (0x03) and * use Processor System Bus (0x01) to deliver interrupts. */ io_apic_write(VIO_APIC_VADDR, 0x03, 0x01); } static void enable_hpet(struct device *dev) { size_t i; /* Assign unique bus/dev/fn for each HPET */ for (i = 0; i < 8; ++i) pci_write_config16(dev, LPC_HnBDF(i), PCH_HPET_PCI_BUS << 8 | PCH_HPET_PCI_SLOT << 3 | i); } /* PIRQ[n]_ROUT[3:0] - PIRQ Routing Control * 0x00 - 0000 = Reserved * 0x01 - 0001 = Reserved * 0x02 - 0010 = Reserved * 0x03 - 0011 = IRQ3 * 0x04 - 0100 = IRQ4 * 0x05 - 0101 = IRQ5 * 0x06 - 0110 = IRQ6 * 0x07 - 0111 = IRQ7 * 0x08 - 1000 = Reserved * 0x09 - 1001 = IRQ9 * 0x0A - 1010 = IRQ10 * 0x0B - 1011 = IRQ11 * 0x0C - 1100 = IRQ12 * 0x0D - 1101 = Reserved * 0x0E - 1110 = IRQ14 * 0x0F - 1111 = IRQ15 * PIRQ[n]_ROUT[7] - PIRQ Routing Control * 0x80 - The PIRQ is not routed. */ static void pch_pirq_init(struct device *dev) { struct device *irq_dev; config_t *config = config_of(dev); pci_write_config8(dev, PIRQA_ROUT, config->pirqa_routing); pci_write_config8(dev, PIRQB_ROUT, config->pirqb_routing); pci_write_config8(dev, PIRQC_ROUT, config->pirqc_routing); pci_write_config8(dev, PIRQD_ROUT, config->pirqd_routing); pci_write_config8(dev, PIRQE_ROUT, config->pirqe_routing); pci_write_config8(dev, PIRQF_ROUT, config->pirqf_routing); pci_write_config8(dev, PIRQG_ROUT, config->pirqg_routing); pci_write_config8(dev, PIRQH_ROUT, config->pirqh_routing); for (irq_dev = all_devices; irq_dev; irq_dev = irq_dev->next) { u8 int_pin = 0, int_line = 0; if (!irq_dev->enabled || irq_dev->path.type != DEVICE_PATH_PCI) continue; int_pin = pci_read_config8(irq_dev, PCI_INTERRUPT_PIN); switch (int_pin) { case 1: /* INTA# */ int_line = config->pirqa_routing; break; case 2: /* INTB# */ int_line = config->pirqb_routing; break; case 3: /* INTC# */ int_line = config->pirqc_routing; break; case 4: /* INTD# */ int_line = config->pirqd_routing; break; } if (!int_line) continue; pci_write_config8(irq_dev, PCI_INTERRUPT_LINE, int_line); } } static void pch_power_options(struct device *dev) { u16 reg16; const char *state; /* Get the chip configuration */ config_t *config = config_of(dev); int pwr_on = CONFIG_MAINBOARD_POWER_FAILURE_STATE; /* Which state do we want to goto after g3 (power restored)? * 0 == S0 Full On * 1 == S5 Soft Off * * If the option is not existent (Laptops), use Kconfig setting. */ get_option(&pwr_on, "power_on_after_fail"); reg16 = pci_read_config16(dev, GEN_PMCON_3); reg16 &= 0xfffe; switch (pwr_on) { case MAINBOARD_POWER_OFF: reg16 |= 1; state = "off"; break; case MAINBOARD_POWER_ON: reg16 &= ~1; state = "on"; break; case MAINBOARD_POWER_KEEP: reg16 &= ~1; state = "state keep"; break; default: state = "undefined"; } pci_write_config16(dev, GEN_PMCON_3, reg16); printk(BIOS_INFO, "Set power %s after power failure.\n", state); /* GPE setup based on device tree configuration */ enable_all_gpe(config->gpe0_en_1, config->gpe0_en_2, config->gpe0_en_3, config->gpe0_en_4); /* SMI setup based on device tree configuration */ enable_alt_smi(config->alt_gp_smi_en); } static void pch_rtc_init(struct device *dev) { cmos_init(rtc_failure()); } static const struct reg_script pch_misc_init_script[] = { /* Setup SLP signal assertion, SLP_S4=4s, SLP_S3=50ms */ REG_PCI_RMW16(GEN_PMCON_3, ~((3 << 4)|(1 << 10)), (1 << 3)|(1 << 11)|(1 << 12)), /* Prepare sleep mode */ REG_IO_RMW32(ACPI_BASE_ADDRESS + PM1_CNT, ~SLP_TYP, SCI_EN), /* Setup NMI on errors, disable SERR */ REG_IO_RMW8(0x61, ~0xf0, (1 << 2)), /* Disable NMI sources */ REG_IO_OR8(0x70, (1 << 7)), /* Indicate DRAM init done for MRC */ REG_PCI_OR8(GEN_PMCON_2, (1 << 7)), /* Enable BIOS updates outside of SMM */ REG_PCI_RMW8(0xdc, ~(1 << 5), 0), /* Clear status bits to prevent unexpected wake */ REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x3310, 0x0000002f), REG_MMIO_RMW32(RCBA_BASE_ADDRESS + 0x3f02, ~0x0000000f, 0), /* Enable PCIe Releaxed Order */ REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x2314, (1 << 31) | (1 << 7)), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x1114, (1 << 15) | (1 << 14)), /* Setup SERIRQ, enable continuous mode */ REG_PCI_OR8(SERIRQ_CNTL, (1 << 7) | (1 << 6)), #if !CONFIG(SERIRQ_CONTINUOUS_MODE) REG_PCI_RMW8(SERIRQ_CNTL, ~(1 << 6), 0), #endif REG_SCRIPT_END }; /* Magic register settings for power management */ static const struct reg_script pch_pm_init_script[] = { REG_PCI_WRITE8(0xa9, 0x46), REG_MMIO_RMW32(RCBA_BASE_ADDRESS + 0x232c, ~1, 0), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x1100, 0x0000c13f), REG_MMIO_RMW32(RCBA_BASE_ADDRESS + 0x2320, ~0x60, 0x10), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3314, 0x00012fff), REG_MMIO_RMW32(RCBA_BASE_ADDRESS + 0x3318, ~0x000f0330, 0x0dcf0400), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3324, 0x04000000), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3368, 0x00041400), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3388, 0x3f8ddbff), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x33ac, 0x00007001), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x33b0, 0x00181900), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x33c0, 0x00060A00), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x33d0, 0x06200840), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3a28, 0x01010101), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3a2c, 0x040c0404), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3a9c, 0x9000000a), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x2b1c, 0x03808033), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x2b34, 0x80000009), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3348, 0x022ddfff), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x334c, 0x00000001), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3358, 0x0001c000), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3380, 0x3f8ddbff), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3384, 0x0001c7e1), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x338c, 0x0001c7e1), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3398, 0x0001c000), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x33a8, 0x00181900), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x33dc, 0x00080000), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x33e0, 0x00000001), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3a20, 0x0000040c), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3a24, 0x01010101), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3a30, 0x01010101), REG_PCI_RMW32(0xac, ~0x00200000, 0), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x0410, 0x00000003), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x2618, 0x08000000), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x2300, 0x00000002), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x2600, 0x00000008), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x33b4, 0x00007001), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3350, 0x022ddfff), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3354, 0x00000001), /* Power Optimizer */ REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x33d4, 0x08000000), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x33c8, 0x00000080), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x2b10, 0x0000883c), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x2b14, 0x1e0a4616), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x2b24, 0x40000005), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x2b20, 0x0005db01), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3a80, 0x05145005), REG_MMIO_WRITE32(RCBA_BASE_ADDRESS + 0x3a84, 0x00001005), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x33d4, 0x2fff2fb1), REG_MMIO_OR32(RCBA_BASE_ADDRESS + 0x33c8, 0x00008000), REG_SCRIPT_END }; static void pch_enable_mphy(void) { u32 gpio71_native = gpio_is_native(71); u32 data_and = 0xffffffff; u32 data_or = (1 << 14) | (1 << 13) | (1 << 12); if (gpio71_native) { data_or |= (1 << 0); if (pch_is_wpt()) { data_and &= ~((1 << 7) | (1 << 6) | (1 << 3)); data_or |= (1 << 5) | (1 << 4); if (pch_is_wpt_ulx()) { /* Check if SATA and USB3 MPHY are enabled */ u32 strap19 = pch_read_soft_strap(19); strap19 &= ((1 << 31) | (1 << 30)); strap19 >>= 30; if (strap19 == 3) { data_or |= (1 << 3); printk(BIOS_DEBUG, "Enable ULX MPHY PG " "control in single domain\n"); } else if (strap19 == 0) { printk(BIOS_DEBUG, "Enable ULX MPHY PG " "control in split domains\n"); } else { printk(BIOS_DEBUG, "Invalid PCH Soft " "Strap 19 configuration\n"); } } else { data_or |= (1 << 3); } } } pch_iobp_update(0xCF000000, data_and, data_or); } static void pch_init_deep_sx(struct device *dev) { config_t *config = config_of(dev); if (config->deep_sx_enable_ac) { RCBA32_OR(DEEP_S3_POL, DEEP_S3_EN_AC); RCBA32_OR(DEEP_S5_POL, DEEP_S5_EN_AC); } if (config->deep_sx_enable_dc) { RCBA32_OR(DEEP_S3_POL, DEEP_S3_EN_DC); RCBA32_OR(DEEP_S5_POL, DEEP_S5_EN_DC); } if (config->deep_sx_enable_ac || config->deep_sx_enable_dc) RCBA32_OR(DEEP_SX_CONFIG, DEEP_SX_WAKE_PIN_EN | DEEP_SX_GP27_PIN_EN); } /* Power Management init */ static void pch_pm_init(struct device *dev) { printk(BIOS_DEBUG, "PCH PM init\n"); pch_init_deep_sx(dev); pch_enable_mphy(); reg_script_run_on_dev(dev, pch_pm_init_script); if (pch_is_wpt()) { RCBA32_OR(0x33e0, (1 << 4) | (1 << 1)); RCBA32_OR(0x2b1c, (1 << 22) | (1 << 14) | (1 << 13)); RCBA32(0x33e4) = 0x16bf0002; RCBA32_OR(0x33e4, 0x1); } pch_iobp_update(0xCA000000, ~0UL, 0x00000009); /* Set RCBA 0x2b1c[29]=1 if DSP disabled */ if (RCBA32(FD) & PCH_DISABLE_ADSPD) RCBA32_OR(0x2b1c, (1 << 29)); } static void pch_cg_init(struct device *dev) { u32 reg32; u16 reg16; struct device *igd_dev = pcidev_path_on_root(SA_DEVFN_IGD); /* DMI */ RCBA32_OR(0x2234, 0xf); reg16 = pci_read_config16(dev, GEN_PMCON_1); reg16 &= ~(1 << 10); /* Disable BIOS_PCI_EXP_EN for native PME */ if (pch_is_wpt()) reg16 &= ~(1 << 11); else reg16 |= (1 << 11); reg16 |= (1 << 5) | (1 << 6) | (1 << 7) | (1 << 12); reg16 |= (1 << 2); // PCI CLKRUN# Enable pci_write_config16(dev, GEN_PMCON_1, reg16); /* * RCBA + 0x2614[27:25,14:13,10,8] = 101,11,1,1 * RCBA + 0x2614[23:16] = 0x20 * RCBA + 0x2614[30:28] = 0x0 * RCBA + 0x2614[26] = 1 (IF 0:2.0@0x08 >= 0x0b) */ RCBA32_AND_OR(0x2614, ~0x64ff0000, 0x0a206500); /* Check for 0:2.0@0x08 >= 0x0b */ if (pch_is_wpt() || pci_read_config8(igd_dev, 0x8) >= 0x0b) RCBA32_OR(0x2614, (1 << 26)); RCBA32_OR(0x900, 0x0000031f); reg32 = RCBA32(CG); if (RCBA32(0x3454) & (1 << 4)) reg32 &= ~(1 << 29); // LPC Dynamic else reg32 |= (1 << 29); // LPC Dynamic reg32 |= (1 << 31); // LP LPC reg32 |= (1 << 30); // LP BLA if (RCBA32(0x3454) & (1 << 4)) reg32 &= ~(1 << 29); else reg32 |= (1 << 29); reg32 |= (1 << 28); // GPIO Dynamic reg32 |= (1 << 27); // HPET Dynamic reg32 |= (1 << 26); // Generic Platform Event Clock if (RCBA32(BUC) & PCH_DISABLE_GBE) reg32 |= (1 << 23); // GbE Static if (RCBA32(FD) & PCH_DISABLE_HD_AUDIO) reg32 |= (1 << 21); // HDA Static reg32 |= (1 << 22); // HDA Dynamic RCBA32(CG) = reg32; /* PCH-LP LPC */ if (pch_is_wpt()) RCBA32_AND_OR(0x3434, ~0x1f, 0x17); else RCBA32_OR(0x3434, 0x7); /* SPI */ RCBA32_OR(0x38c0, 0x3c07); pch_iobp_update(0xCE00C000, ~1UL, 0x00000000); } static void pch_set_acpi_mode(void) { if (CONFIG(HAVE_SMI_HANDLER) && !acpi_is_wakeup_s3()) { printk(BIOS_DEBUG, "Disabling ACPI via APMC:\n"); outb(APM_CNT_ACPI_DISABLE, APM_CNT); printk(BIOS_DEBUG, "done.\n"); } } static void lpc_init(struct device *dev) { /* Legacy initialization */ isa_dma_init(); pch_rtc_init(dev); reg_script_run_on_dev(dev, pch_misc_init_script); /* Interrupt configuration */ pch_enable_ioapic(dev); pch_pirq_init(dev); setup_i8259(); i8259_configure_irq_trigger(9, 1); enable_hpet(dev); /* Initialize power management */ pch_power_options(dev); pch_pm_init(dev); pch_cg_init(dev); pch_set_acpi_mode(); } static void pch_lpc_add_mmio_resources(struct device *dev) { u32 reg; struct resource *res; const u32 default_decode_base = IO_APIC_ADDR; /* * Just report all resources from IO-APIC base to 4GiB. Don't mark * them reserved as that may upset the OS if this range is marked * as reserved in the e820. */ res = new_resource(dev, OIC); res->base = default_decode_base; res->size = 0 - default_decode_base; res->flags = IORESOURCE_MEM | IORESOURCE_ASSIGNED | IORESOURCE_FIXED; /* RCBA */ if (default_decode_base > RCBA_BASE_ADDRESS) { res = new_resource(dev, RCBA); res->base = RCBA_BASE_ADDRESS; res->size = 16 * 1024; res->flags = IORESOURCE_MEM | IORESOURCE_ASSIGNED | IORESOURCE_FIXED | IORESOURCE_RESERVE; } /* Check LPC Memory Decode register. */ reg = pci_read_config32(dev, LGMR); if (reg & 1) { reg &= ~0xffff; if (reg < default_decode_base) { res = new_resource(dev, LGMR); res->base = reg; res->size = 16 * 1024; res->flags = IORESOURCE_MEM | IORESOURCE_ASSIGNED | IORESOURCE_FIXED | IORESOURCE_RESERVE; } } } /* Default IO range claimed by the LPC device. The upper bound is exclusive. */ #define LPC_DEFAULT_IO_RANGE_LOWER 0 #define LPC_DEFAULT_IO_RANGE_UPPER 0x1000 static inline int pch_io_range_in_default(int base, int size) { /* Does it start above the range? */ if (base >= LPC_DEFAULT_IO_RANGE_UPPER) return 0; /* Is it entirely contained? */ if (base >= LPC_DEFAULT_IO_RANGE_LOWER && (base + size) < LPC_DEFAULT_IO_RANGE_UPPER) return 1; /* This will return not in range for partial overlaps. */ return 0; } /* * Note: this function assumes there is no overlap with the default LPC device's * claimed range: LPC_DEFAULT_IO_RANGE_LOWER -> LPC_DEFAULT_IO_RANGE_UPPER. */ static void pch_lpc_add_io_resource(struct device *dev, u16 base, u16 size, int index) { struct resource *res; if (pch_io_range_in_default(base, size)) return; res = new_resource(dev, index); res->base = base; res->size = size; res->flags = IORESOURCE_IO | IORESOURCE_ASSIGNED | IORESOURCE_FIXED; } static void pch_lpc_add_gen_io_resources(struct device *dev, int reg_value, int index) { /* * Check if the register is enabled. If so and the base exceeds the * device's default claim range add the resource. */ if (reg_value & 1) { u16 base = reg_value & 0xfffc; u16 size = (0x3 | ((reg_value >> 16) & 0xfc)) + 1; pch_lpc_add_io_resource(dev, base, size, index); } } static void pch_lpc_add_io_resources(struct device *dev) { struct resource *res; config_t *config = config_of(dev); /* Add the default claimed IO range for the LPC device. */ res = new_resource(dev, 0); res->base = LPC_DEFAULT_IO_RANGE_LOWER; res->size = LPC_DEFAULT_IO_RANGE_UPPER - LPC_DEFAULT_IO_RANGE_LOWER; res->flags = IORESOURCE_IO | IORESOURCE_ASSIGNED | IORESOURCE_FIXED; /* GPIOBASE */ pch_lpc_add_io_resource(dev, GPIO_BASE_ADDRESS, GPIO_BASE_SIZE, GPIO_BASE); /* PMBASE */ pch_lpc_add_io_resource(dev, ACPI_BASE_ADDRESS, ACPI_BASE_SIZE, PMBASE); /* LPC Generic IO Decode range. */ pch_lpc_add_gen_io_resources(dev, config->gen1_dec, LPC_GEN1_DEC); pch_lpc_add_gen_io_resources(dev, config->gen2_dec, LPC_GEN2_DEC); pch_lpc_add_gen_io_resources(dev, config->gen3_dec, LPC_GEN3_DEC); pch_lpc_add_gen_io_resources(dev, config->gen4_dec, LPC_GEN4_DEC); } static void pch_lpc_read_resources(struct device *dev) { global_nvs_t *gnvs; /* Get the normal PCI resources of this device. */ pci_dev_read_resources(dev); /* Add non-standard MMIO resources. */ pch_lpc_add_mmio_resources(dev); /* Add IO resources. */ pch_lpc_add_io_resources(dev); /* Allocate ACPI NVS in CBMEM */ gnvs = cbmem_add(CBMEM_ID_ACPI_GNVS, sizeof(global_nvs_t)); if (!acpi_is_wakeup_s3() && gnvs) memset(gnvs, 0, sizeof(global_nvs_t)); } static void southcluster_inject_dsdt(struct device *device) { global_nvs_t *gnvs; gnvs = cbmem_find(CBMEM_ID_ACPI_GNVS); if (!gnvs) { gnvs = cbmem_add(CBMEM_ID_ACPI_GNVS, sizeof(*gnvs)); if (gnvs) memset(gnvs, 0, sizeof(*gnvs)); } if (gnvs) { acpi_create_gnvs(gnvs); /* And tell SMI about it */ smm_setup_structures(gnvs, NULL, NULL); /* Add it to DSDT. */ acpigen_write_scope("\\"); acpigen_write_name_dword("NVSA", (u32) gnvs); acpigen_pop_len(); } } static unsigned long broadwell_write_acpi_tables(struct device *device, unsigned long current, struct acpi_rsdp *rsdp) { if (CONFIG(INTEL_PCH_UART_CONSOLE)) current = acpi_write_dbg2_pci_uart(rsdp, current, (CONFIG_INTEL_PCH_UART_CONSOLE_NUMBER == 1) ? PCH_DEV_UART1 : PCH_DEV_UART0, ACPI_ACCESS_SIZE_BYTE_ACCESS); return acpi_write_hpet(device, current, rsdp); } static struct device_operations device_ops = { .read_resources = &pch_lpc_read_resources, .set_resources = &pci_dev_set_resources, .enable_resources = &pci_dev_enable_resources, .acpi_inject_dsdt_generator = southcluster_inject_dsdt, .write_acpi_tables = broadwell_write_acpi_tables, .init = &lpc_init, .scan_bus = &scan_static_bus, .ops_pci = &broadwell_pci_ops, }; static const unsigned short pci_device_ids[] = { PCH_LPT_LP_SAMPLE, PCH_LPT_LP_PREMIUM, PCH_LPT_LP_MAINSTREAM, PCH_LPT_LP_VALUE, PCH_WPT_HSW_U_SAMPLE, PCH_WPT_BDW_U_SAMPLE, PCH_WPT_BDW_U_PREMIUM, PCH_WPT_BDW_U_BASE, PCH_WPT_BDW_Y_SAMPLE, PCH_WPT_BDW_Y_PREMIUM, PCH_WPT_BDW_Y_BASE, PCH_WPT_BDW_H, 0 }; static const struct pci_driver pch_lpc __pci_driver = { .ops = &device_ops, .vendor = PCI_VENDOR_ID_INTEL, .devices = pci_device_ids, };