/* SPDX-License-Identifier: GPL-2.0-only */ #include #include #include #include #include #include #include #include #include #include const struct i2c_spec_values standard_mode_spec = { .min_low_ns = 4700 + I2C_STANDARD_MODE_BUFFER, .min_su_sta_ns = 4700 + I2C_STANDARD_MODE_BUFFER, .max_hd_dat_ns = 3450 - I2C_STANDARD_MODE_BUFFER, .min_su_dat_ns = 250 + I2C_STANDARD_MODE_BUFFER, }; const struct i2c_spec_values fast_mode_spec = { .min_low_ns = 1300 + I2C_FAST_MODE_BUFFER, .min_su_sta_ns = 600 + I2C_FAST_MODE_BUFFER, .max_hd_dat_ns = 900 - I2C_FAST_MODE_BUFFER, .min_su_dat_ns = 100 + I2C_FAST_MODE_BUFFER, }; const struct i2c_spec_values fast_mode_plus_spec = { .min_low_ns = 500 + I2C_FAST_MODE_PLUS_BUFFER, .min_su_sta_ns = 260 + I2C_FAST_MODE_PLUS_BUFFER, .max_hd_dat_ns = 400 - I2C_FAST_MODE_PLUS_BUFFER, .min_su_dat_ns = 50 + I2C_FAST_MODE_PLUS_BUFFER, }; __weak void mtk_i2c_dump_more_info(struct mt_i2c_regs *regs) { /* do nothing */ } __weak void mtk_i2c_config_timing(struct mt_i2c_regs *regs, struct mtk_i2c *bus_ctrl) { /* do nothing */ } const struct i2c_spec_values *mtk_i2c_get_spec(uint32_t speed) { if (speed <= I2C_SPEED_STANDARD) return &standard_mode_spec; else if (speed <= I2C_SPEED_FAST) return &fast_mode_spec; else return &fast_mode_plus_spec; } static inline void i2c_hw_reset(uint8_t bus) { struct mt_i2c_regs *regs; struct mt_i2c_dma_regs *dma_regs; regs = mtk_i2c_bus_controller[bus].i2c_regs; dma_regs = mtk_i2c_bus_controller[bus].i2c_dma_regs; if (mtk_i2c_bus_controller[bus].mt_i2c_flag == I2C_APDMA_ASYNC) { write32(&dma_regs->dma_rst, I2C_DMA_WARM_RST); udelay(10); write32(&dma_regs->dma_rst, I2C_DMA_CLR_FLAG); udelay(10); write32(&dma_regs->dma_rst, I2C_DMA_HARD_RST | I2C_DMA_HANDSHAKE_RST); write32(®s->softreset, I2C_SOFT_RST | I2C_HANDSHAKE_RST); udelay(10); write32(&dma_regs->dma_rst, I2C_DMA_CLR_FLAG); write32(®s->softreset, I2C_CLR_FLAG); } else { write32(®s->softreset, I2C_SOFT_RST); write32(&dma_regs->dma_rst, I2C_DMA_WARM_RST); udelay(50); write32(&dma_regs->dma_rst, I2C_DMA_HARD_RST); udelay(50); write32(&dma_regs->dma_rst, I2C_DMA_CLR_FLAG); udelay(50); } } static inline void mtk_i2c_dump_info(struct mt_i2c_regs *regs) { printk(BIOS_DEBUG, "I2C register:\nSLAVE_ADDR %x\nINTR_MASK %x\n" "INTR_STAT %x\nCONTROL %x\nTRANSFER_LEN %x\nTRANSAC_LEN %x\n" "DELAY_LEN %x\nTIMING %x\nSTART %x\nFIFO_STAT %x\nIO_CONFIG %x\n" "HS %x\nDEBUGSTAT %x\nEXT_CONF %x\n", read32(®s->slave_addr), read32(®s->intr_mask), read32(®s->intr_stat), read32(®s->control), read32(®s->transfer_len), read32(®s->transac_len), read32(®s->delay_len), read32(®s->timing), read32(®s->start), read32(®s->fifo_stat), read32(®s->io_config), read32(®s->hs), read32(®s->debug_stat), read32(®s->ext_conf)); mtk_i2c_dump_more_info(regs); } static int mtk_i2c_transfer(uint8_t bus, struct i2c_msg *seg, enum i2c_modes mode) { int ret = I2C_OK; uint16_t status; uint16_t dma_sync = 0; uint32_t time_out_val = 0; uint8_t addr; uint32_t write_len = 0; uint32_t read_len = 0; uint8_t *write_buffer = NULL; uint8_t *read_buffer = NULL; struct mt_i2c_regs *regs; struct mt_i2c_dma_regs *dma_regs; struct stopwatch sw; regs = mtk_i2c_bus_controller[bus].i2c_regs; dma_regs = mtk_i2c_bus_controller[bus].i2c_dma_regs; addr = seg[0].slave; if (mtk_i2c_bus_controller[bus].mt_i2c_flag == I2C_APDMA_ASYNC) { dma_sync = I2C_DMA_SKIP_CONFIG | I2C_DMA_ASYNC_MODE; if (mode == I2C_WRITE_READ_MODE) dma_sync |= I2C_DMA_DIR_CHANGE; } switch (mode) { case I2C_WRITE_MODE: assert(seg[0].len > 0 && seg[0].len <= 255); write_len = seg[0].len; write_buffer = seg[0].buf; break; case I2C_READ_MODE: assert(seg[0].len > 0 && seg[0].len <= 255); read_len = seg[0].len; read_buffer = seg[0].buf; break; /* Must use special write-then-read mode for repeated starts. */ case I2C_WRITE_READ_MODE: assert(seg[0].len > 0 && seg[0].len <= 255); assert(seg[1].len > 0 && seg[1].len <= 255); write_len = seg[0].len; read_len = seg[1].len; write_buffer = seg[0].buf; read_buffer = seg[1].buf; break; } /* Clear interrupt status */ write32(®s->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR | I2C_HS_NACKERR); write32(®s->fifo_addr_clr, 0x1); /* Enable interrupt */ write32(®s->intr_mask, I2C_HS_NACKERR | I2C_ACKERR | I2C_TRANSAC_COMP); switch (mode) { case I2C_WRITE_MODE: memcpy(_dma_coherent, write_buffer, write_len); /* control registers */ write32(®s->control, ASYNC_MODE | DMAACK_EN | ACK_ERR_DET_EN | DMA_EN | CLK_EXT | REPEATED_START_FLAG); /* Set transfer and transaction len */ write32(®s->transac_len, 1); write32(®s->transfer_len, write_len); /* set i2c write slave address*/ write32(®s->slave_addr, addr << 1); /* Prepare buffer data to start transfer */ write32(&dma_regs->dma_con, I2C_DMA_CON_TX | dma_sync); write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent); write32(&dma_regs->dma_tx_len, write_len); break; case I2C_READ_MODE: /* control registers */ write32(®s->control, ASYNC_MODE | DMAACK_EN | ACK_ERR_DET_EN | DMA_EN | CLK_EXT | REPEATED_START_FLAG); /* Set transfer and transaction len */ write32(®s->transac_len, 1); write32(®s->transfer_len, read_len); /* set i2c read slave address*/ write32(®s->slave_addr, (addr << 1 | 0x1)); /* Prepare buffer data to start transfer */ write32(&dma_regs->dma_con, I2C_DMA_CON_RX | dma_sync); write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent); write32(&dma_regs->dma_rx_len, read_len); break; case I2C_WRITE_READ_MODE: memcpy(_dma_coherent, write_buffer, write_len); /* control registers */ write32(®s->control, ASYNC_MODE | DMAACK_EN | DIR_CHG | ACK_ERR_DET_EN | DMA_EN | CLK_EXT | REPEATED_START_FLAG); /* Set transfer and transaction len */ write32(®s->transfer_len, write_len); write32(®s->transfer_aux_len, read_len); write32(®s->transac_len, 2); /* set i2c write slave address*/ write32(®s->slave_addr, addr << 1); /* Prepare buffer data to start transfer */ write32(&dma_regs->dma_con, I2C_DMA_CLR_FLAG | dma_sync); write32(&dma_regs->dma_tx_mem_addr, (uintptr_t)_dma_coherent); write32(&dma_regs->dma_tx_len, write_len); write32(&dma_regs->dma_rx_mem_addr, (uintptr_t)_dma_coherent); write32(&dma_regs->dma_rx_len, read_len); break; } write32(&dma_regs->dma_int_flag, I2C_DMA_CLR_FLAG); write32(&dma_regs->dma_en, I2C_DMA_START_EN); /* start transfer transaction */ write32(®s->start, 0x1); stopwatch_init_usecs_expire(&sw, CONFIG_I2C_TRANSFER_TIMEOUT_US); /* polling mode : see if transaction complete */ while (1) { status = read32(®s->intr_stat); if (status & I2C_HS_NACKERR) { ret = I2C_TRANSFER_FAIL_HS_NACKERR; printk(BIOS_ERR, "[i2c%d] transfer NACK error\n", bus); mtk_i2c_dump_info(regs); break; } else if (status & I2C_ACKERR) { ret = I2C_TRANSFER_FAIL_ACKERR; printk(BIOS_ERR, "[i2c%d] transfer ACK error\n", bus); mtk_i2c_dump_info(regs); break; } else if (status & I2C_TRANSAC_COMP) { ret = I2C_OK; memcpy(read_buffer, _dma_coherent, read_len); break; } if (stopwatch_expired(&sw)) { ret = I2C_TRANSFER_FAIL_TIMEOUT; printk(BIOS_ERR, "[i2c%d] transfer timeout:%d\n", bus, time_out_val); mtk_i2c_dump_info(regs); break; } } write32(®s->intr_stat, I2C_TRANSAC_COMP | I2C_ACKERR | I2C_HS_NACKERR); /* clear bit mask */ write32(®s->intr_mask, I2C_HS_NACKERR | I2C_ACKERR | I2C_TRANSAC_COMP); /* reset the i2c controller for next i2c transfer. */ i2c_hw_reset(bus); return ret; } static bool mtk_i2c_should_combine(struct i2c_msg *seg, int left_count) { return (left_count >= 2 && !(seg[0].flags & I2C_M_RD) && (seg[1].flags & I2C_M_RD) && seg[0].slave == seg[1].slave); } static int mtk_i2c_max_step_cnt(uint32_t target_speed) { if (target_speed > I2C_SPEED_FAST_PLUS) return MAX_HS_STEP_CNT_DIV; else return MAX_STEP_CNT_DIV; } int platform_i2c_transfer(unsigned int bus, struct i2c_msg *segments, int seg_count) { int ret; int i; int mode; for (i = 0; i < seg_count; i++) { if (mtk_i2c_should_combine(&segments[i], seg_count - i)) { mode = I2C_WRITE_READ_MODE; } else { mode = (segments[i].flags & I2C_M_RD) ? I2C_READ_MODE : I2C_WRITE_MODE; } ret = mtk_i2c_transfer(bus, &segments[i], mode); if (ret < 0) return ret; if (mode == I2C_WRITE_READ_MODE) i++; } return 0; } /* * Check and calculate i2c ac-timing. * * Hardware design: * sample_ns = (1000000000 * (sample_cnt + 1)) / clk_src * xxx_cnt_div = spec->min_xxx_ns / sample_ns * * The calculation of sample_ns is rounded down; * otherwise xxx_cnt_div would be greater than the smallest spec. * The sda_timing is chosen as the middle value between * the largest and smallest. */ int mtk_i2c_check_ac_timing(uint8_t bus, uint32_t clk_src, uint32_t check_speed, uint32_t step_cnt, uint32_t sample_cnt) { const struct i2c_spec_values *spec; uint32_t su_sta_cnt, low_cnt, high_cnt, max_step_cnt; uint32_t sda_max, sda_min, clk_ns, max_sta_cnt = 0x100; uint32_t sample_ns = ((uint64_t)NSECS_PER_SEC * (sample_cnt + 1)) / clk_src; struct mtk_i2c_ac_timing *ac_timing; spec = mtk_i2c_get_spec(check_speed); clk_ns = NSECS_PER_SEC / clk_src; su_sta_cnt = DIV_ROUND_UP(spec->min_su_sta_ns, clk_ns); if (su_sta_cnt > max_sta_cnt) return -1; low_cnt = DIV_ROUND_UP(spec->min_low_ns, sample_ns); max_step_cnt = mtk_i2c_max_step_cnt(check_speed); if (2 * step_cnt > low_cnt && low_cnt < max_step_cnt) { if (low_cnt > step_cnt) { high_cnt = 2 * step_cnt - low_cnt; } else { high_cnt = step_cnt; low_cnt = step_cnt; } } else { return -2; } sda_max = spec->max_hd_dat_ns / sample_ns; if (sda_max > low_cnt) sda_max = 0; sda_min = DIV_ROUND_UP(spec->min_su_dat_ns, sample_ns); if (sda_min < low_cnt) sda_min = 0; if (sda_min > sda_max) return -3; ac_timing = &mtk_i2c_bus_controller[bus].ac_timing; if (check_speed > I2C_SPEED_FAST_PLUS) { ac_timing->hs = I2C_TIME_DEFAULT_VALUE | (sample_cnt << 12) | (high_cnt << 8); ac_timing->ltiming &= ~GENMASK(15, 9); ac_timing->ltiming |= (sample_cnt << 12) | (low_cnt << 9); ac_timing->ext &= ~GENMASK(7, 1); ac_timing->ext |= (su_sta_cnt << 1) | (1 << 0); } else { ac_timing->htiming = (sample_cnt << 8) | (high_cnt); ac_timing->ltiming = (sample_cnt << 6) | (low_cnt); ac_timing->ext = (su_sta_cnt << 8) | (1 << 0); } return 0; } /* * Calculate i2c port speed. * * Hardware design: * i2c_bus_freq = parent_clk / (clock_div * 2 * sample_cnt * step_cnt) * clock_div: fixed in hardware, but may be various in different SoCs * * To calculate sample_cnt and step_cnt, we pick the highest bus frequency * that is still no larger than i2c->speed_hz. */ int mtk_i2c_calculate_speed(uint8_t bus, uint32_t clk_src, uint32_t target_speed, uint32_t *timing_step_cnt, uint32_t *timing_sample_cnt) { uint32_t step_cnt; uint32_t sample_cnt; uint32_t max_step_cnt; uint32_t base_sample_cnt = MAX_SAMPLE_CNT_DIV; uint32_t base_step_cnt; uint32_t opt_div; uint32_t best_mul; uint32_t cnt_mul; uint32_t clk_div = mtk_i2c_bus_controller[bus].ac_timing.inter_clk_div; int32_t clock_div_constraint = 0; int success = 0; if (target_speed > I2C_SPEED_HIGH) target_speed = I2C_SPEED_HIGH; max_step_cnt = mtk_i2c_max_step_cnt(target_speed); base_step_cnt = max_step_cnt; /* Find the best combination */ opt_div = DIV_ROUND_UP(clk_src >> 1, target_speed); best_mul = MAX_SAMPLE_CNT_DIV * max_step_cnt; /* Search for the best pair (sample_cnt, step_cnt) with * 0 < sample_cnt < MAX_SAMPLE_CNT_DIV * 0 < step_cnt < max_step_cnt * sample_cnt * step_cnt >= opt_div * optimizing for sample_cnt * step_cnt being minimal */ for (sample_cnt = 1; sample_cnt <= MAX_SAMPLE_CNT_DIV; sample_cnt++) { if (sample_cnt == 1) { if (clk_div != 0) clock_div_constraint = 1; else clock_div_constraint = 0; } else { if (clk_div > 1) clock_div_constraint = 1; else if (clk_div == 0) clock_div_constraint = -1; else clock_div_constraint = 0; } step_cnt = DIV_ROUND_UP(opt_div + clock_div_constraint, sample_cnt); if (step_cnt > max_step_cnt) continue; cnt_mul = step_cnt * sample_cnt; if (cnt_mul >= best_mul) continue; if (mtk_i2c_check_ac_timing(bus, clk_src, target_speed, step_cnt - 1, sample_cnt - 1)) continue; success = 1; best_mul = cnt_mul; base_sample_cnt = sample_cnt; base_step_cnt = step_cnt; if (best_mul == opt_div + clock_div_constraint) break; } if (!success) return -1; sample_cnt = base_sample_cnt; step_cnt = base_step_cnt; if (clk_src / (2 * (sample_cnt * step_cnt - clock_div_constraint)) > target_speed) return -1; *timing_step_cnt = step_cnt - 1; *timing_sample_cnt = sample_cnt - 1; return 0; } void mtk_i2c_speed_init(uint8_t bus, uint32_t speed) { uint32_t max_clk_div = MAX_CLOCK_DIV; uint32_t clk_src, clk_div, step_cnt, sample_cnt; uint32_t l_step_cnt, l_sample_cnt; struct mtk_i2c *bus_ctrl; if (bus >= I2C_BUS_NUMBER) { printk(BIOS_ERR, "%s, error bus num:%d\n", __func__, bus); return; } bus_ctrl = &mtk_i2c_bus_controller[bus]; for (clk_div = 1; clk_div <= max_clk_div; clk_div++) { clk_src = I2C_CLK_HZ / clk_div; bus_ctrl->ac_timing.inter_clk_div = clk_div - 1; if (speed > I2C_SPEED_FAST_PLUS) { /* Set master code speed register */ if (mtk_i2c_calculate_speed(bus, clk_src, I2C_SPEED_FAST, &l_step_cnt, &l_sample_cnt)) continue; /* Set the high speed mode register */ if (mtk_i2c_calculate_speed(bus, clk_src, speed, &step_cnt, &sample_cnt)) continue; bus_ctrl->ac_timing.inter_clk_div = (clk_div - 1) << 8 | (clk_div - 1); } else { if (mtk_i2c_calculate_speed(bus, clk_src, speed, &l_step_cnt, &l_sample_cnt)) continue; /* Disable the high speed transaction */ bus_ctrl->ac_timing.hs = I2C_TIME_CLR_VALUE; } break; } if (clk_div > max_clk_div) { printk(BIOS_ERR, "%s, cannot support %d hz on i2c-%d\n", __func__, speed, bus); return; } /* Init i2c bus timing register. */ mtk_i2c_config_timing(bus_ctrl->i2c_regs, bus_ctrl); }