/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of * the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include #include #include #include #include #include #include #include #include "pch.h" #include "nvs.h" /* We are using PCIe accesses for now * 1. the chipset can do it * 2. we don't need to worry about how we leave 0xcf8/0xcfc behind */ #include "northbridge/intel/nehalem/nehalem.h" #include /* While we read PMBASE dynamically in case it changed, let's * initialize it with a sane value */ static u16 pmbase = DEFAULT_PMBASE; u16 smm_get_pmbase(void) { return pmbase; } static u8 smm_initialized = 0; /* GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located * by coreboot. */ static global_nvs_t *gnvs = (global_nvs_t *)0x0; global_nvs_t *smm_get_gnvs(void) { return gnvs; } #if CONFIG_SMM_TSEG static u32 tseg_base = 0; u32 smi_get_tseg_base(void) { if (!tseg_base) tseg_base = pci_read_config32(PCI_DEV(0, 0, 0), TSEG) & ~1; return tseg_base; } void tseg_relocate(void **ptr) { /* Adjust pointer with TSEG base */ if (*ptr && *ptr < (void*)smi_get_tseg_base()) *ptr = (void *)(((u8*)*ptr) + smi_get_tseg_base()); } #endif /** * @brief read and clear PM1_STS * @return PM1_STS register */ static u16 reset_pm1_status(void) { u16 reg16; reg16 = inw(pmbase + PM1_STS); /* set status bits are cleared by writing 1 to them */ outw(reg16, pmbase + PM1_STS); return reg16; } static void dump_pm1_status(u16 pm1_sts) { printk(BIOS_SPEW, "PM1_STS: "); if (pm1_sts & (1 << 15)) printk(BIOS_SPEW, "WAK "); if (pm1_sts & (1 << 14)) printk(BIOS_SPEW, "PCIEXPWAK "); if (pm1_sts & (1 << 11)) printk(BIOS_SPEW, "PRBTNOR "); if (pm1_sts & (1 << 10)) printk(BIOS_SPEW, "RTC "); if (pm1_sts & (1 << 8)) printk(BIOS_SPEW, "PWRBTN "); if (pm1_sts & (1 << 5)) printk(BIOS_SPEW, "GBL "); if (pm1_sts & (1 << 4)) printk(BIOS_SPEW, "BM "); if (pm1_sts & (1 << 0)) printk(BIOS_SPEW, "TMROF "); printk(BIOS_SPEW, "\n"); int reg16 = inw(pmbase + PM1_EN); printk(BIOS_SPEW, "PM1_EN: %x\n", reg16); } /** * @brief read and clear SMI_STS * @return SMI_STS register */ static u32 reset_smi_status(void) { u32 reg32; reg32 = inl(pmbase + SMI_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + SMI_STS); return reg32; } static void dump_smi_status(u32 smi_sts) { printk(BIOS_DEBUG, "SMI_STS: "); if (smi_sts & (1 << 26)) printk(BIOS_DEBUG, "SPI "); if (smi_sts & (1 << 21)) printk(BIOS_DEBUG, "MONITOR "); if (smi_sts & (1 << 20)) printk(BIOS_DEBUG, "PCI_EXP_SMI "); if (smi_sts & (1 << 18)) printk(BIOS_DEBUG, "INTEL_USB2 "); if (smi_sts & (1 << 17)) printk(BIOS_DEBUG, "LEGACY_USB2 "); if (smi_sts & (1 << 16)) printk(BIOS_DEBUG, "SMBUS_SMI "); if (smi_sts & (1 << 15)) printk(BIOS_DEBUG, "SERIRQ_SMI "); if (smi_sts & (1 << 14)) printk(BIOS_DEBUG, "PERIODIC "); if (smi_sts & (1 << 13)) printk(BIOS_DEBUG, "TCO "); if (smi_sts & (1 << 12)) printk(BIOS_DEBUG, "DEVMON "); if (smi_sts & (1 << 11)) printk(BIOS_DEBUG, "MCSMI "); if (smi_sts & (1 << 10)) printk(BIOS_DEBUG, "GPI "); if (smi_sts & (1 << 9)) printk(BIOS_DEBUG, "GPE0 "); if (smi_sts & (1 << 8)) printk(BIOS_DEBUG, "PM1 "); if (smi_sts & (1 << 6)) printk(BIOS_DEBUG, "SWSMI_TMR "); if (smi_sts & (1 << 5)) printk(BIOS_DEBUG, "APM "); if (smi_sts & (1 << 4)) printk(BIOS_DEBUG, "SLP_SMI "); if (smi_sts & (1 << 3)) printk(BIOS_DEBUG, "LEGACY_USB "); if (smi_sts & (1 << 2)) printk(BIOS_DEBUG, "BIOS "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear GPE0_STS * @return GPE0_STS register */ static u32 reset_gpe0_status(void) { u32 reg32; reg32 = inl(pmbase + GPE0_STS); /* set status bits are cleared by writing 1 to them */ outl(reg32, pmbase + GPE0_STS); return reg32; } static void dump_gpe0_status(u32 gpe0_sts) { int i; printk(BIOS_DEBUG, "GPE0_STS: "); for (i=31; i>= 16; i--) { if (gpe0_sts & (1 << i)) printk(BIOS_DEBUG, "GPIO%d ", (i-16)); } if (gpe0_sts & (1 << 14)) printk(BIOS_DEBUG, "USB4 "); if (gpe0_sts & (1 << 13)) printk(BIOS_DEBUG, "PME_B0 "); if (gpe0_sts & (1 << 12)) printk(BIOS_DEBUG, "USB3 "); if (gpe0_sts & (1 << 11)) printk(BIOS_DEBUG, "PME "); if (gpe0_sts & (1 << 10)) printk(BIOS_DEBUG, "BATLOW "); if (gpe0_sts & (1 << 9)) printk(BIOS_DEBUG, "PCI_EXP "); if (gpe0_sts & (1 << 8)) printk(BIOS_DEBUG, "RI "); if (gpe0_sts & (1 << 7)) printk(BIOS_DEBUG, "SMB_WAK "); if (gpe0_sts & (1 << 6)) printk(BIOS_DEBUG, "TCO_SCI "); if (gpe0_sts & (1 << 5)) printk(BIOS_DEBUG, "AC97 "); if (gpe0_sts & (1 << 4)) printk(BIOS_DEBUG, "USB2 "); if (gpe0_sts & (1 << 3)) printk(BIOS_DEBUG, "USB1 "); if (gpe0_sts & (1 << 2)) printk(BIOS_DEBUG, "SWGPE "); if (gpe0_sts & (1 << 1)) printk(BIOS_DEBUG, "HOTPLUG "); if (gpe0_sts & (1 << 0)) printk(BIOS_DEBUG, "THRM "); printk(BIOS_DEBUG, "\n"); } /** * @brief read and clear TCOx_STS * @return TCOx_STS registers */ static u32 reset_tco_status(void) { u32 tcobase = pmbase + 0x60; u32 reg32; reg32 = inl(tcobase + 0x04); /* set status bits are cleared by writing 1 to them */ outl(reg32 & ~(1<<18), tcobase + 0x04); // Don't clear BOOT_STS before SECOND_TO_STS if (reg32 & (1 << 18)) outl(reg32 & (1<<18), tcobase + 0x04); // clear BOOT_STS return reg32; } static void dump_tco_status(u32 tco_sts) { printk(BIOS_DEBUG, "TCO_STS: "); if (tco_sts & (1 << 20)) printk(BIOS_DEBUG, "SMLINK_SLV "); if (tco_sts & (1 << 18)) printk(BIOS_DEBUG, "BOOT "); if (tco_sts & (1 << 17)) printk(BIOS_DEBUG, "SECOND_TO "); if (tco_sts & (1 << 16)) printk(BIOS_DEBUG, "INTRD_DET "); if (tco_sts & (1 << 12)) printk(BIOS_DEBUG, "DMISERR "); if (tco_sts & (1 << 10)) printk(BIOS_DEBUG, "DMISMI "); if (tco_sts & (1 << 9)) printk(BIOS_DEBUG, "DMISCI "); if (tco_sts & (1 << 8)) printk(BIOS_DEBUG, "BIOSWR "); if (tco_sts & (1 << 7)) printk(BIOS_DEBUG, "NEWCENTURY "); if (tco_sts & (1 << 3)) printk(BIOS_DEBUG, "TIMEOUT "); if (tco_sts & (1 << 2)) printk(BIOS_DEBUG, "TCO_INT "); if (tco_sts & (1 << 1)) printk(BIOS_DEBUG, "SW_TCO "); if (tco_sts & (1 << 0)) printk(BIOS_DEBUG, "NMI2SMI "); printk(BIOS_DEBUG, "\n"); } int southbridge_io_trap_handler(int smif) { switch (smif) { case 0x32: printk(BIOS_DEBUG, "OS Init\n"); /* gnvs->smif: * On success, the IO Trap Handler returns 0 * On failure, the IO Trap Handler returns a value != 0 */ gnvs->smif = 0; return 1; /* IO trap handled */ } /* Not handled */ return 0; } /** * @brief Set the EOS bit */ void southbridge_smi_set_eos(void) { u8 reg8; reg8 = inb(pmbase + SMI_EN); reg8 |= EOS; outb(reg8, pmbase + SMI_EN); } static void busmaster_disable_on_bus(int bus) { int slot, func; unsigned int val; unsigned char hdr; for (slot = 0; slot < 0x20; slot++) { for (func = 0; func < 8; func++) { u32 reg32; device_t dev = PCI_DEV(bus, slot, func); val = pci_read_config32(dev, PCI_VENDOR_ID); if (val == 0xffffffff || val == 0x00000000 || val == 0x0000ffff || val == 0xffff0000) continue; /* Disable Bus Mastering for this one device */ reg32 = pci_read_config32(dev, PCI_COMMAND); reg32 &= ~PCI_COMMAND_MASTER; pci_write_config32(dev, PCI_COMMAND, reg32); /* If this is a bridge, then follow it. */ hdr = pci_read_config8(dev, PCI_HEADER_TYPE); hdr &= 0x7f; if (hdr == PCI_HEADER_TYPE_BRIDGE || hdr == PCI_HEADER_TYPE_CARDBUS) { unsigned int buses; buses = pci_read_config32(dev, PCI_PRIMARY_BUS); busmaster_disable_on_bus((buses >> 8) & 0xff); } } } } static void southbridge_gate_memory_reset_real(int offset, u16 use, u16 io, u16 lvl) { u32 reg32; /* Make sure it is set as GPIO */ reg32 = inl(use); if (!(reg32 & (1 << offset))) { reg32 |= (1 << offset); outl(reg32, use); } /* Make sure it is set as output */ reg32 = inl(io); if (reg32 & (1 << offset)) { reg32 &= ~(1 << offset); outl(reg32, io); } /* Drive the output low */ reg32 = inl(lvl); reg32 &= ~(1 << offset); outl(reg32, lvl); } /* * Drive GPIO 60 low to gate memory reset in S3. * * Intel reference designs all use GPIO 60 but it is * not a requirement and boards could use a different pin. */ static void southbridge_gate_memory_reset(void) { u16 gpiobase; gpiobase = pci_read_config16(PCI_DEV(0, 0x1f, 0), GPIOBASE) & 0xfffc; if (!gpiobase) return; if (CONFIG_DRAM_RESET_GATE_GPIO >= 32) southbridge_gate_memory_reset_real(CONFIG_DRAM_RESET_GATE_GPIO - 32, gpiobase + GPIO_USE_SEL2, gpiobase + GP_IO_SEL2, gpiobase + GP_LVL2); else southbridge_gate_memory_reset_real(CONFIG_DRAM_RESET_GATE_GPIO, gpiobase + GPIO_USE_SEL, gpiobase + GP_IO_SEL, gpiobase + GP_LVL); } static void xhci_sleep(u8 slp_typ) { u32 reg32, xhci_bar; u16 reg16; switch (slp_typ) { case SLP_TYP_S3: case SLP_TYP_S4: reg16 = pci_read_config16(PCH_XHCI_DEV, 0x74); reg16 &= ~0x03UL; pci_write_config32(PCH_XHCI_DEV, 0x74, reg16); reg32 = pci_read_config32(PCH_XHCI_DEV, PCI_COMMAND); reg32 |= (PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY); pci_write_config32(PCH_XHCI_DEV, PCI_COMMAND, reg32); xhci_bar = pci_read_config32(PCH_XHCI_DEV, PCI_BASE_ADDRESS_0) & ~0xFUL; if ((xhci_bar + 0x4C0) & 1) pch_iobp_update(0xEC000082, ~0UL, (3 << 2)); if ((xhci_bar + 0x4D0) & 1) pch_iobp_update(0xEC000182, ~0UL, (3 << 2)); if ((xhci_bar + 0x4E0) & 1) pch_iobp_update(0xEC000282, ~0UL, (3 << 2)); if ((xhci_bar + 0x4F0) & 1) pch_iobp_update(0xEC000382, ~0UL, (3 << 2)); reg32 = pci_read_config32(PCH_XHCI_DEV, PCI_COMMAND); reg32 &= ~(PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY); pci_write_config32(PCH_XHCI_DEV, PCI_COMMAND, reg32); reg16 = pci_read_config16(PCH_XHCI_DEV, 0x74); reg16 |= 0x03; pci_write_config16(PCH_XHCI_DEV, 0x74, reg16); break; case SLP_TYP_S5: reg16 = pci_read_config16(PCH_XHCI_DEV, 0x74); reg16 |= ((1 << 8) | 0x03); pci_write_config16(PCH_XHCI_DEV, 0x74, reg16); break; } } static void southbridge_smi_sleep(unsigned int node, smm_state_save_area_t *state_save) { u8 reg8; u32 reg32; u8 slp_typ; u8 s5pwr = CONFIG_MAINBOARD_POWER_ON_AFTER_POWER_FAIL; // save and recover RTC port values u8 tmp70, tmp72; tmp70 = inb(0x70); tmp72 = inb(0x72); get_option(&s5pwr, "power_on_after_fail"); outb(tmp70, 0x70); outb(tmp72, 0x72); void (*mainboard_sleep)(u8 slp_typ) = mainboard_smi_sleep; /* First, disable further SMIs */ reg8 = inb(pmbase + SMI_EN); reg8 &= ~SLP_SMI_EN; outb(reg8, pmbase + SMI_EN); /* Figure out SLP_TYP */ reg32 = inl(pmbase + PM1_CNT); printk(BIOS_SPEW, "SMI#: SLP = 0x%08x\n", reg32); slp_typ = (reg32 >> 10) & 7; if (smm_get_gnvs()->xhci) xhci_sleep(slp_typ); /* Do any mainboard sleep handling */ tseg_relocate((void **)&mainboard_sleep); if (mainboard_sleep) mainboard_sleep(slp_typ-2); #if CONFIG_ELOG_GSMI /* Log S3, S4, and S5 entry */ if (slp_typ >= 5) elog_add_event_byte(ELOG_TYPE_ACPI_ENTER, slp_typ-2); #endif /* Next, do the deed. */ switch (slp_typ) { case 0: printk(BIOS_DEBUG, "SMI#: Entering S0 (On)\n"); break; case 1: printk(BIOS_DEBUG, "SMI#: Entering S1 (Assert STPCLK#)\n"); break; case 5: printk(BIOS_DEBUG, "SMI#: Entering S3 (Suspend-To-RAM)\n"); /* Gate memory reset */ southbridge_gate_memory_reset(); /* Invalidate the cache before going to S3 */ wbinvd(); break; case 6: printk(BIOS_DEBUG, "SMI#: Entering S4 (Suspend-To-Disk)\n"); break; case 7: printk(BIOS_DEBUG, "SMI#: Entering S5 (Soft Power off)\n"); outl(0, pmbase + GPE0_EN); /* Always set the flag in case CMOS was changed on runtime. For * "KEEP", switch to "OFF" - KEEP is software emulated */ reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), GEN_PMCON_3); if (s5pwr == MAINBOARD_POWER_ON) { reg8 &= ~1; } else { reg8 |= 1; } pci_write_config8(PCI_DEV(0, 0x1f, 0), GEN_PMCON_3, reg8); /* also iterates over all bridges on bus 0 */ busmaster_disable_on_bus(0); break; default: printk(BIOS_DEBUG, "SMI#: ERROR: SLP_TYP reserved\n"); break; } /* Write back to the SLP register to cause the originally intended * event again. We need to set BIT13 (SLP_EN) though to make the * sleep happen. */ outl(reg32 | SLP_EN, pmbase + PM1_CNT); /* Make sure to stop executing code here for S3/S4/S5 */ if (slp_typ > 1) halt(); /* In most sleep states, the code flow of this function ends at * the line above. However, if we entered sleep state S1 and wake * up again, we will continue to execute code in this function. */ reg32 = inl(pmbase + PM1_CNT); if (reg32 & SCI_EN) { /* The OS is not an ACPI OS, so we set the state to S0 */ reg32 &= ~(SLP_EN | SLP_TYP); outl(reg32, pmbase + PM1_CNT); } } /* * Look for Synchronous IO SMI and use save state from that * core in case we are not running on the same core that * initiated the IO transaction. */ static em64t101_smm_state_save_area_t *smi_apmc_find_state_save(u8 cmd) { em64t101_smm_state_save_area_t *state; u32 base = smi_get_tseg_base() + SMM_EM64T101_SAVE_STATE_OFFSET; int node; /* Check all nodes looking for the one that issued the IO */ for (node = 0; node < CONFIG_MAX_CPUS; node++) { state = (em64t101_smm_state_save_area_t *) (base - (node * 0x400)); /* Check for Synchronous IO (bit0==1) */ if (!(state->io_misc_info & (1 << 0))) continue; /* Make sure it was a write (bit4==0) */ if (state->io_misc_info & (1 << 4)) continue; /* Check for APMC IO port */ if (((state->io_misc_info >> 16) & 0xff) != APM_CNT) continue; /* Check AX against the requested command */ if ((state->rax & 0xff) != cmd) continue; return state; } return NULL; } #if CONFIG_ELOG_GSMI static void southbridge_smi_gsmi(void) { u32 *ret, *param; u8 sub_command; em64t101_smm_state_save_area_t *io_smi = smi_apmc_find_state_save(ELOG_GSMI_APM_CNT); if (!io_smi) return; /* Command and return value in EAX */ ret = (u32*)&io_smi->rax; sub_command = (u8)(*ret >> 8); /* Parameter buffer in EBX */ param = (u32*)&io_smi->rbx; /* drivers/elog/gsmi.c */ *ret = gsmi_exec(sub_command, param); } #endif static void southbridge_smi_apmc(unsigned int node, smm_state_save_area_t *state_save) { u32 pmctrl; u8 reg8; int (*mainboard_apmc)(u8 apmc) = mainboard_smi_apmc; em64t101_smm_state_save_area_t *state; /* Emulate B2 register as the FADT / Linux expects it */ reg8 = inb(APM_CNT); switch (reg8) { case APM_CNT_CST_CONTROL: /* Calling this function seems to cause * some kind of race condition in Linux * and causes a kernel oops */ printk(BIOS_DEBUG, "C-state control\n"); break; case APM_CNT_PST_CONTROL: /* Calling this function seems to cause * some kind of race condition in Linux * and causes a kernel oops */ printk(BIOS_DEBUG, "P-state control\n"); break; case APM_CNT_ACPI_DISABLE: pmctrl = inl(pmbase + PM1_CNT); pmctrl &= ~SCI_EN; outl(pmctrl, pmbase + PM1_CNT); printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n"); break; case APM_CNT_ACPI_ENABLE: pmctrl = inl(pmbase + PM1_CNT); pmctrl |= SCI_EN; outl(pmctrl, pmbase + PM1_CNT); printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n"); break; case APM_CNT_GNVS_UPDATE: if (smm_initialized) { printk(BIOS_DEBUG, "SMI#: SMM structures already initialized!\n"); return; } state = smi_apmc_find_state_save(reg8); if (state) { /* EBX in the state save contains the GNVS pointer */ gnvs = (global_nvs_t *)((u32)state->rbx); smm_initialized = 1; printk(BIOS_DEBUG, "SMI#: Setting GNVS to %p\n", gnvs); } break; #if CONFIG_ELOG_GSMI case ELOG_GSMI_APM_CNT: southbridge_smi_gsmi(); break; #endif } tseg_relocate((void **)&mainboard_apmc); if (mainboard_apmc) mainboard_apmc(reg8); } static void southbridge_smi_pm1(unsigned int node, smm_state_save_area_t *state_save) { u16 pm1_sts; pm1_sts = reset_pm1_status(); dump_pm1_status(pm1_sts); /* While OSPM is not active, poweroff immediately * on a power button event. */ if (pm1_sts & PWRBTN_STS) { // power button pressed u32 reg32; reg32 = (7 << 10) | (1 << 13); #if CONFIG_ELOG_GSMI elog_add_event(ELOG_TYPE_POWER_BUTTON); #endif outl(reg32, pmbase + PM1_CNT); } } static void southbridge_smi_gpe0(unsigned int node, smm_state_save_area_t *state_save) { u32 gpe0_sts; gpe0_sts = reset_gpe0_status(); dump_gpe0_status(gpe0_sts); } static void southbridge_smi_gpi(unsigned int node, smm_state_save_area_t *state_save) { void (*mainboard_gpi)(u32 gpi_sts) = mainboard_smi_gpi; u16 reg16; reg16 = inw(pmbase + ALT_GP_SMI_STS); outw(reg16, pmbase + ALT_GP_SMI_STS); reg16 &= inw(pmbase + ALT_GP_SMI_EN); tseg_relocate((void **)&mainboard_gpi); if (mainboard_gpi) { mainboard_gpi(reg16); } else { if (reg16) printk(BIOS_DEBUG, "GPI (mask %04x)\n",reg16); } outw(reg16, pmbase + ALT_GP_SMI_STS); } static void southbridge_smi_mc(unsigned int node, smm_state_save_area_t *state_save) { u32 reg32; reg32 = inl(pmbase + SMI_EN); /* Are periodic SMIs enabled? */ if ((reg32 & MCSMI_EN) == 0) return; printk(BIOS_DEBUG, "Microcontroller SMI.\n"); } static void southbridge_smi_tco(unsigned int node, smm_state_save_area_t *state_save) { u32 tco_sts; tco_sts = reset_tco_status(); /* Any TCO event? */ if (!tco_sts) return; if (tco_sts & (1 << 8)) { // BIOSWR u8 bios_cntl; bios_cntl = pci_read_config16(PCI_DEV(0, 0x1f, 0), 0xdc); if (bios_cntl & 1) { /* BWE is RW, so the SMI was caused by a * write to BWE, not by a write to the BIOS */ /* This is the place where we notice someone * is trying to tinker with the BIOS. We are * trying to be nice and just ignore it. A more * resolute answer would be to power down the * box. */ printk(BIOS_DEBUG, "Switching back to RO\n"); pci_write_config32(PCI_DEV(0, 0x1f, 0), 0xdc, (bios_cntl & ~1)); } /* No else for now? */ } else if (tco_sts & (1 << 3)) { /* TIMEOUT */ /* Handle TCO timeout */ printk(BIOS_DEBUG, "TCO Timeout.\n"); } else if (!tco_sts) { dump_tco_status(tco_sts); } } static void southbridge_smi_periodic(unsigned int node, smm_state_save_area_t *state_save) { u32 reg32; reg32 = inl(pmbase + SMI_EN); /* Are periodic SMIs enabled? */ if ((reg32 & PERIODIC_EN) == 0) return; printk(BIOS_DEBUG, "Periodic SMI.\n"); } static void southbridge_smi_monitor(unsigned int node, smm_state_save_area_t *state_save) { #define IOTRAP(x) (trap_sts & (1 << x)) u32 trap_sts, trap_cycle; u32 data, mask = 0; int i; trap_sts = RCBA32(0x1e00); // TRSR - Trap Status Register RCBA32(0x1e00) = trap_sts; // Clear trap(s) in TRSR trap_cycle = RCBA32(0x1e10); for (i=16; i<20; i++) { if (trap_cycle & (1 << i)) mask |= (0xff << ((i - 16) << 2)); } /* IOTRAP(3) SMI function call */ if (IOTRAP(3)) { if (gnvs && gnvs->smif) io_trap_handler(gnvs->smif); // call function smif return; } /* IOTRAP(2) currently unused * IOTRAP(1) currently unused */ /* IOTRAP(0) SMIC */ if (IOTRAP(0)) { if (!(trap_cycle & (1 << 24))) { // It's a write printk(BIOS_DEBUG, "SMI1 command\n"); data = RCBA32(0x1e18); data &= mask; // if (smi1) // southbridge_smi_command(data); // return; } // Fall through to debug } printk(BIOS_DEBUG, " trapped io address = 0x%x\n", trap_cycle & 0xfffc); for (i=0; i < 4; i++) if(IOTRAP(i)) printk(BIOS_DEBUG, " TRAPĀ = %d\n", i); printk(BIOS_DEBUG, " AHBE = %x\n", (trap_cycle >> 16) & 0xf); printk(BIOS_DEBUG, " MASK = 0x%08x\n", mask); printk(BIOS_DEBUG, " read/write: %s\n", (trap_cycle & (1 << 24)) ? "read" : "write"); if (!(trap_cycle & (1 << 24))) { /* Write Cycle */ data = RCBA32(0x1e18); printk(BIOS_DEBUG, " iotrap written data = 0x%08x\n", data); } #undef IOTRAP } typedef void (*smi_handler_t)(unsigned int node, smm_state_save_area_t *state_save); static smi_handler_t southbridge_smi[32] = { NULL, // [0] reserved NULL, // [1] reserved NULL, // [2] BIOS_STS NULL, // [3] LEGACY_USB_STS southbridge_smi_sleep, // [4] SLP_SMI_STS southbridge_smi_apmc, // [5] APM_STS NULL, // [6] SWSMI_TMR_STS NULL, // [7] reserved southbridge_smi_pm1, // [8] PM1_STS southbridge_smi_gpe0, // [9] GPE0_STS southbridge_smi_gpi, // [10] GPI_STS southbridge_smi_mc, // [11] MCSMI_STS NULL, // [12] DEVMON_STS southbridge_smi_tco, // [13] TCO_STS southbridge_smi_periodic, // [14] PERIODIC_STS NULL, // [15] SERIRQ_SMI_STS NULL, // [16] SMBUS_SMI_STS NULL, // [17] LEGACY_USB2_STS NULL, // [18] INTEL_USB2_STS NULL, // [19] reserved NULL, // [20] PCI_EXP_SMI_STS southbridge_smi_monitor, // [21] MONITOR_STS NULL, // [22] reserved NULL, // [23] reserved NULL, // [24] reserved NULL, // [25] EL_SMI_STS NULL, // [26] SPI_STS NULL, // [27] reserved NULL, // [28] reserved NULL, // [29] reserved NULL, // [30] reserved NULL // [31] reserved }; /** * @brief Interrupt handler for SMI# * * @param smm_revision revision of the smm state save map */ void southbridge_smi_handler(unsigned int node, smm_state_save_area_t *state_save) { int i, dump = 0; u32 smi_sts; /* Update global variable pmbase */ pmbase = pci_read_config16(PCI_DEV(0, 0x1f, 0), 0x40) & 0xfffc; /* We need to clear the SMI status registers, or we won't see what's * happening in the following calls. */ smi_sts = reset_smi_status(); /* Call SMI sub handler for each of the status bits */ for (i = 0; i < 31; i++) { if (smi_sts & (1 << i)) { if (southbridge_smi[i]) { #if CONFIG_SMM_TSEG smi_handler_t handler = (smi_handler_t) ((u8*)southbridge_smi[i] + smi_get_tseg_base()); if (handler) handler(node, state_save); #else southbridge_smi[i](node, state_save); #endif } else { printk(BIOS_DEBUG, "SMI_STS[%d] occured, but no " "handler available.\n", i); dump = 1; } } } if(dump) { dump_smi_status(smi_sts); } }