summaryrefslogtreecommitdiffstats
path: root/src/northbridge/amd/amdk8/raminit.c
blob: 168f7ce4378db276a835dfcf37a074e089058de2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
/*	This should be done by Eric
	2004.11 yhlu add 4 rank DIMM support
	2004.12 yhlu add D0 support
	2005.02 yhlu add E0 memory hole support
*/

#include <cpu/x86/cache.h>
#include <cpu/x86/mtrr.h>
#include <cpu/amd/mtrr.h>
#include <lib.h>
#include <stdlib.h>
#include <arch/acpi.h>
#include <reset.h>
#include "raminit.h"
#include "amdk8.h"
#if CONFIG_HAVE_OPTION_TABLE
#include "option_table.h"
#endif

#include <arch/early_variables.h>
struct sys_info sysinfo_car CAR_GLOBAL;

void setup_resource_map(const unsigned int *register_values, int max)
{
	int i;
	for (i = 0; i < max; i += 3) {
		pci_devfn_t dev;
		unsigned where;
		unsigned long reg;
		dev = register_values[i] & ~0xfff;
		where = register_values[i] & 0xfff;
		reg = pci_read_config32(dev, where);
		reg &= register_values[i+1];
		reg |= register_values[i+2];
		pci_write_config32(dev, where, reg);
	}
}

static int controller_present(const struct mem_controller *ctrl)
{
	return pci_read_config32(ctrl->f0, 0) == 0x11001022;
}

#if CONFIG_RAMINIT_SYSINFO
void sdram_set_registers(const struct mem_controller *ctrl, struct sys_info *sysinfo)
#else
void sdram_set_registers(const struct mem_controller *ctrl)
#endif
{
	static const unsigned int register_values[] = {

	/* Careful set limit registers before base registers which
	   contain the enables */
	/* DRAM Limit i Registers
	 * F1:0x44 i = 0
	 * F1:0x4C i = 1
	 * F1:0x54 i = 2
	 * F1:0x5C i = 3
	 * F1:0x64 i = 4
	 * F1:0x6C i = 5
	 * F1:0x74 i = 6
	 * F1:0x7C i = 7
	 * [ 2: 0] Destination Node ID
	 *	   000 = Node 0
	 *	   001 = Node 1
	 *	   010 = Node 2
	 *	   011 = Node 3
	 *	   100 = Node 4
	 *	   101 = Node 5
	 *	   110 = Node 6
	 *	   111 = Node 7
	 * [ 7: 3] Reserved
	 * [10: 8] Interleave select
	 *	   specifies the values of A[14:12] to use with interleave enable.
	 * [15:11] Reserved
	 * [31:16] DRAM Limit Address i Bits 39-24
	 *	   This field defines the upper address bits of a 40 bit  address
	 *	   that define the end of the DRAM region.
	 */
	PCI_ADDR(0, 0x18, 1, 0x44), 0x0000f8f8, 0x00000000,
	PCI_ADDR(0, 0x18, 1, 0x4C), 0x0000f8f8, 0x00000001,
	PCI_ADDR(0, 0x18, 1, 0x54), 0x0000f8f8, 0x00000002,
	PCI_ADDR(0, 0x18, 1, 0x5C), 0x0000f8f8, 0x00000003,
	PCI_ADDR(0, 0x18, 1, 0x64), 0x0000f8f8, 0x00000004,
	PCI_ADDR(0, 0x18, 1, 0x6C), 0x0000f8f8, 0x00000005,
	PCI_ADDR(0, 0x18, 1, 0x74), 0x0000f8f8, 0x00000006,
	PCI_ADDR(0, 0x18, 1, 0x7C), 0x0000f8f8, 0x00000007,
	/* DRAM Base i Registers
	 * F1:0x40 i = 0
	 * F1:0x48 i = 1
	 * F1:0x50 i = 2
	 * F1:0x58 i = 3
	 * F1:0x60 i = 4
	 * F1:0x68 i = 5
	 * F1:0x70 i = 6
	 * F1:0x78 i = 7
	 * [ 0: 0] Read Enable
	 *	   0 = Reads Disabled
	 *	   1 = Reads Enabled
	 * [ 1: 1] Write Enable
	 *	   0 = Writes Disabled
	 *	   1 = Writes Enabled
	 * [ 7: 2] Reserved
	 * [10: 8] Interleave Enable
	 *	   000 = No interleave
	 *	   001 = Interleave on A[12] (2 nodes)
	 *	   010 = reserved
	 *	   011 = Interleave on A[12] and A[14] (4 nodes)
	 *	   100 = reserved
	 *	   101 = reserved
	 *	   110 = reserved
	 *	   111 = Interleve on A[12] and A[13] and A[14] (8 nodes)
	 * [15:11] Reserved
	 * [13:16] DRAM Base Address i Bits 39-24
	 *	   This field defines the upper address bits of a 40-bit address
	 *	   that define the start of the DRAM region.
	 */
	PCI_ADDR(0, 0x18, 1, 0x40), 0x0000f8fc, 0x00000000,
	PCI_ADDR(0, 0x18, 1, 0x48), 0x0000f8fc, 0x00000000,
	PCI_ADDR(0, 0x18, 1, 0x50), 0x0000f8fc, 0x00000000,
	PCI_ADDR(0, 0x18, 1, 0x58), 0x0000f8fc, 0x00000000,
	PCI_ADDR(0, 0x18, 1, 0x60), 0x0000f8fc, 0x00000000,
	PCI_ADDR(0, 0x18, 1, 0x68), 0x0000f8fc, 0x00000000,
	PCI_ADDR(0, 0x18, 1, 0x70), 0x0000f8fc, 0x00000000,
	PCI_ADDR(0, 0x18, 1, 0x78), 0x0000f8fc, 0x00000000,

	/* DRAM CS Base Address i Registers
	 * F2:0x40 i = 0
	 * F2:0x44 i = 1
	 * F2:0x48 i = 2
	 * F2:0x4C i = 3
	 * F2:0x50 i = 4
	 * F2:0x54 i = 5
	 * F2:0x58 i = 6
	 * F2:0x5C i = 7
	 * [ 0: 0] Chip-Select Bank Enable
	 *	   0 = Bank Disabled
	 *	   1 = Bank Enabled
	 * [ 8: 1] Reserved
	 * [15: 9] Base Address (19-13)
	 *	   An optimization used when all DIMM are the same size...
	 * [20:16] Reserved
	 * [31:21] Base Address (35-25)
	 *	   This field defines the top 11 addresses bit of a 40-bit
	 *	   address that define the memory address space.  These
	 *	   bits decode 32-MByte blocks of memory.
	 */
	PCI_ADDR(0, 0x18, 2, 0x40), 0x001f01fe, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x44), 0x001f01fe, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x48), 0x001f01fe, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x4C), 0x001f01fe, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x50), 0x001f01fe, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x54), 0x001f01fe, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x58), 0x001f01fe, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x5C), 0x001f01fe, 0x00000000,
	/* DRAM CS Mask Address i Registers
	 * F2:0x60 i = 0
	 * F2:0x64 i = 1
	 * F2:0x68 i = 2
	 * F2:0x6C i = 3
	 * F2:0x70 i = 4
	 * F2:0x74 i = 5
	 * F2:0x78 i = 6
	 * F2:0x7C i = 7
	 * Select bits to exclude from comparison with the DRAM Base address register.
	 * [ 8: 0] Reserved
	 * [15: 9] Address Mask (19-13)
	 *	   Address to be excluded from the optimized case
	 * [20:16] Reserved
	 * [29:21] Address Mask (33-25)
	 *	   The bits with an address mask of 1 are excluded from address comparison
	 * [31:30] Reserved
	 *
	 */
	PCI_ADDR(0, 0x18, 2, 0x60), 0xC01f01ff, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x64), 0xC01f01ff, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x68), 0xC01f01ff, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x6C), 0xC01f01ff, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x70), 0xC01f01ff, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x74), 0xC01f01ff, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x78), 0xC01f01ff, 0x00000000,
	PCI_ADDR(0, 0x18, 2, 0x7C), 0xC01f01ff, 0x00000000,
	/* DRAM Bank Address Mapping Register
	 * F2:0x80
	 * Specify the memory module size
	 * [ 2: 0] CS1/0
	 * [ 6: 4] CS3/2
	 * [10: 8] CS5/4
	 * [14:12] CS7/6
	 *	   000 = 32Mbyte  (Rows = 12 & Col =  8)
	 *	   001 = 64Mbyte  (Rows = 12 & Col =  9)
	 *	   010 = 128Mbyte (Rows = 13 & Col =  9)|(Rows = 12 & Col = 10)
	 *	   011 = 256Mbyte (Rows = 13 & Col = 10)|(Rows = 12 & Col = 11)
	 *	   100 = 512Mbyte (Rows = 13 & Col = 11)|(Rows = 14 & Col = 10)
	 *	   101 = 1Gbyte	  (Rows = 14 & Col = 11)|(Rows = 13 & Col = 12)
	 *	   110 = 2Gbyte	  (Rows = 14 & Col = 12)
	 *	   111 = reserved
	 * [ 3: 3] Reserved
	 * [ 7: 7] Reserved
	 * [11:11] Reserved
	 * [31:15]
	 */
	PCI_ADDR(0, 0x18, 2, 0x80), 0xffff8888, 0x00000000,
	/* DRAM Timing Low Register
	 * F2:0x88
	 * [ 2: 0] Tcl (Cas# Latency, Cas# to read-data-valid)
	 *	   000 = reserved
	 *	   001 = CL 2
	 *	   010 = CL 3
	 *	   011 = reserved
	 *	   100 = reserved
	 *	   101 = CL 2.5
	 *	   110 = reserved
	 *	   111 = reserved
	 * [ 3: 3] Reserved
	 * [ 7: 4] Trc (Row Cycle Time, Ras#-active to Ras#-active/bank auto refresh)
	 *	   0000 =  7 bus clocks
	 *	   0001 =  8 bus clocks
	 *	   ...
	 *	   1110 = 21 bus clocks
	 *	   1111 = 22 bus clocks
	 * [11: 8] Trfc (Row refresh Cycle time, Auto-refresh-active to RAS#-active or RAS#auto-refresh)
	 *	   0000 = 9 bus clocks
	 *	   0010 = 10 bus clocks
	 *	   ....
	 *	   1110 = 23 bus clocks
	 *	   1111 = 24 bus clocks
	 * [14:12] Trcd (Ras#-active to Case#-read/write Delay)
	 *	   000 = reserved
	 *	   001 = reserved
	 *	   010 = 2 bus clocks
	 *	   011 = 3 bus clocks
	 *	   100 = 4 bus clocks
	 *	   101 = 5 bus clocks
	 *	   110 = 6 bus clocks
	 *	   111 = reserved
	 * [15:15] Reserved
	 * [18:16] Trrd (Ras# to Ras# Delay)
	 *	   000 = reserved
	 *	   001 = reserved
	 *	   010 = 2 bus clocks
	 *	   011 = 3 bus clocks
	 *	   100 = 4 bus clocks
	 *	   101 = reserved
	 *	   110 = reserved
	 *	   111 = reserved
	 * [19:19] Reserved
	 * [23:20] Tras (Minmum Ras# Active Time)
	 *	   0000 to 0100 = reserved
	 *	   0101 = 5 bus clocks
	 *	   ...
	 *	   1111 = 15 bus clocks
	 * [26:24] Trp (Row Precharge Time)
	 *	   000 = reserved
	 *	   001 = reserved
	 *	   010 = 2 bus clocks
	 *	   011 = 3 bus clocks
	 *	   100 = 4 bus clocks
	 *	   101 = 5 bus clocks
	 *	   110 = 6 bus clocks
	 *	   111 = reserved
	 * [27:27] Reserved
	 * [28:28] Twr (Write Recovery Time)
	 *	   0 = 2 bus clocks
	 *	   1 = 3 bus clocks
	 * [31:29] Reserved
	 */
	PCI_ADDR(0, 0x18, 2, 0x88), 0xe8088008, 0x02522001 /* 0x03623125 */ ,
	/* DRAM Timing High Register
	 * F2:0x8C
	 * [ 0: 0] Twtr (Write to Read Delay)
	 *	   0 = 1 bus Clocks
	 *	   1 = 2 bus Clocks
	 * [ 3: 1] Reserved
	 * [ 6: 4] Trwt (Read to Write Delay)
	 *	   000 = 1 bus clocks
	 *	   001 = 2 bus clocks
	 *	   010 = 3 bus clocks
	 *	   011 = 4 bus clocks
	 *	   100 = 5 bus clocks
	 *	   101 = 6 bus clocks
	 *	   110 = reserved
	 *	   111 = reserved
	 * [ 7: 7] Reserved
	 * [12: 8] Tref (Refresh Rate)
	 *	   00000 = 100MHz 4K rows
	 *	   00001 = 133MHz 4K rows
	 *	   00010 = 166MHz 4K rows
	 *	   00011 = 200MHz 4K rows
	 *	   01000 = 100MHz 8K/16K rows
	 *	   01001 = 133MHz 8K/16K rows
	 *	   01010 = 166MHz 8K/16K rows
	 *	   01011 = 200MHz 8K/16K rows
	 * [19:13] Reserved
	 * [22:20] Twcl (Write CAS Latency)
	 *	   000 = 1 Mem clock after CAS# (Unbuffered Dimms)
	 *	   001 = 2 Mem clocks after CAS# (Registered Dimms)
	 * [31:23] Reserved
	 */
	PCI_ADDR(0, 0x18, 2, 0x8c), 0xff8fe08e, (0 << 20)|(0 << 8)|(0 << 4)|(0 << 0),
	/* DRAM Config Low Register
	 * F2:0x90
	 * [ 0: 0] DLL Disable
	 *	   0 = Enabled
	 *	   1 = Disabled
	 * [ 1: 1] D_DRV
	 *	   0 = Normal Drive
	 *	   1 = Weak Drive
	 * [ 2: 2] QFC_EN
	 *	   0 = Disabled
	 *	   1 = Enabled
	 * [ 3: 3] Disable DQS Hystersis  (FIXME handle this one carefully)
	 *	   0 = Enable DQS input filter
	 *	   1 = Disable DQS input filtering
	 * [ 7: 4] Reserved
	 * [ 8: 8] DRAM_Init
	 *	   0 = Initialization done or not yet started.
	 *	   1 = Initiate DRAM intialization sequence
	 * [ 9: 9] SO-Dimm Enable
	 *	   0 = Do nothing
	 *	   1 = SO-Dimms present
	 * [10:10] DramEnable
	 *	   0 = DRAM not enabled
	 *	   1 = DRAM initialized and enabled
	 * [11:11] Memory Clear Status
	 *	   0 = Memory Clear function has not completed
	 *	   1 = Memory Clear function has completed
	 * [12:12] Exit Self-Refresh
	 *	   0 = Exit from self-refresh done or not yet started
	 *	   1 = DRAM exiting from self refresh
	 * [13:13] Self-Refresh Status
	 *	   0 = Normal Operation
	 *	   1 = Self-refresh mode active
	 * [15:14] Read/Write Queue Bypass Count
	 *	   00 = 2
	 *	   01 = 4
	 *	   10 = 8
	 *	   11 = 16
	 * [16:16] 128-bit/64-Bit
	 *	   0 = 64bit Interface to DRAM
	 *	   1 = 128bit Interface to DRAM
	 * [17:17] DIMM ECC Enable
	 *	   0 = Some DIMMs do not have ECC
	 *	   1 = ALL DIMMS have ECC bits
	 * [18:18] UnBuffered DIMMs
	 *	   0 = Buffered DIMMS
	 *	   1 = Unbuffered DIMMS
	 * [19:19] Enable 32-Byte Granularity
	 *	   0 = Optimize for 64byte bursts
	 *	   1 = Optimize for 32byte bursts
	 * [20:20] DIMM 0 is x4
	 * [21:21] DIMM 1 is x4
	 * [22:22] DIMM 2 is x4
	 * [23:23] DIMM 3 is x4
	 *	   0 = DIMM is not x4
	 *	   1 = x4 DIMM present
	 * [24:24] Disable DRAM Receivers
	 *	   0 = Receivers enabled
	 *	   1 = Receivers disabled
	 * [27:25] Bypass Max
	 *	   000 = Arbiters chois is always respected
	 *	   001 = Oldest entry in DCQ can be bypassed 1 time
	 *	   010 = Oldest entry in DCQ can be bypassed 2 times
	 *	   011 = Oldest entry in DCQ can be bypassed 3 times
	 *	   100 = Oldest entry in DCQ can be bypassed 4 times
	 *	   101 = Oldest entry in DCQ can be bypassed 5 times
	 *	   110 = Oldest entry in DCQ can be bypassed 6 times
	 *	   111 = Oldest entry in DCQ can be bypassed 7 times
	 * [31:28] Reserved
	 */
	PCI_ADDR(0, 0x18, 2, 0x90), 0xf0000000,
	(4 << 25)|(0 << 24)|
	(0 << 23)|(0 << 22)|(0 << 21)|(0 << 20)|
	(1 << 19)|(0 << 18)|(1 << 17)|(0 << 16)|
	(2 << 14)|(0 << 13)|(0 << 12)|
	(0 << 11)|(0 << 10)|(0 << 9)|(0 << 8)|
	(0 << 3) |(0 << 1) |(0 << 0),
	/* DRAM Config High Register
	 * F2:0x94
	 * [ 0: 3] Maximum Asynchronous Latency
	 *	   0000 = 0 ns
	 *	   ...
	 *	   1111 = 15 ns
	 * [ 7: 4] Reserved
	 * [11: 8] Read Preamble
	 *	   0000 = 2.0 ns
	 *	   0001 = 2.5 ns
	 *	   0010 = 3.0 ns
	 *	   0011 = 3.5 ns
	 *	   0100 = 4.0 ns
	 *	   0101 = 4.5 ns
	 *	   0110 = 5.0 ns
	 *	   0111 = 5.5 ns
	 *	   1000 = 6.0 ns
	 *	   1001 = 6.5 ns
	 *	   1010 = 7.0 ns
	 *	   1011 = 7.5 ns
	 *	   1100 = 8.0 ns
	 *	   1101 = 8.5 ns
	 *	   1110 = 9.0 ns
	 *	   1111 = 9.5 ns
	 * [15:12] Reserved
	 * [18:16] Idle Cycle Limit
	 *	   000 = 0 cycles
	 *	   001 = 4 cycles
	 *	   010 = 8 cycles
	 *	   011 = 16 cycles
	 *	   100 = 32 cycles
	 *	   101 = 64 cycles
	 *	   110 = 128 cycles
	 *	   111 = 256 cycles
	 * [19:19] Dynamic Idle Cycle Center Enable
	 *	   0 = Use Idle Cycle Limit
	 *	   1 = Generate a dynamic Idle cycle limit
	 * [22:20] DRAM MEMCLK Frequency
	 *	   000 = 100MHz
	 *	   001 = reserved
	 *	   010 = 133MHz
	 *	   011 = reserved
	 *	   100 = reserved
	 *	   101 = 166MHz
	 *	   110 = reserved
	 *	   111 = reserved
	 * [24:23] Reserved
	 * [25:25] Memory Clock Ratio Valid (FIXME carefully enable memclk)
	 *	   0 = Disable MemClks
	 *	   1 = Enable MemClks
	 * [26:26] Memory Clock 0 Enable
	 *	   0 = Disabled
	 *	   1 = Enabled
	 * [27:27] Memory Clock 1 Enable
	 *	   0 = Disabled
	 *	   1 = Enabled
	 * [28:28] Memory Clock 2 Enable
	 *	   0 = Disabled
	 *	   1 = Enabled
	 * [29:29] Memory Clock 3 Enable
	 *	   0 = Disabled
	 *	   1 = Enabled
	 * [31:30] Reserved
	 */
	PCI_ADDR(0, 0x18, 2, 0x94), 0xc180f0f0,
	(0 << 29)|(0 << 28)|(0 << 27)|(0 << 26)|(0 << 25)|
	(0 << 20)|(0 << 19)|(DCH_IDLE_LIMIT_16 << 16)|(0 << 8)|(0 << 0),
	/* DRAM Delay Line Register
	 * F2:0x98
	 * Adjust the skew of the input DQS strobe relative to DATA
	 * [15: 0] Reserved
	 * [23:16] Delay Line Adjust
	 *	   Adjusts the DLL derived PDL delay by one or more delay stages
	 *	   in either the faster or slower direction.
	 * [24:24} Adjust Slower
	 *	   0 = Do Nothing
	 *	   1 = Adj is used to increase the PDL delay
	 * [25:25] Adjust Faster
	 *	   0 = Do Nothing
	 *	   1 = Adj is used to decrease the PDL delay
	 * [31:26] Reserved
	 */
	PCI_ADDR(0, 0x18, 2, 0x98), 0xfc00ffff, 0x00000000,
	/* MCA NB Status Low reg */
	PCI_ADDR(0, 0x18, 3, 0x48), 0x00f00000, 0x00000000,
	/* MCA NB Status high reg */
	PCI_ADDR(0, 0x18, 3, 0x4c), 0x01801e8c, 0x00000000,
	/* MCA NB address Low reg */
	PCI_ADDR(0, 0x18, 3, 0x50), 0x00000007, 0x00000000,
	/* MCA NB address high reg */
	PCI_ADDR(0, 0x18, 3, 0x54), 0xffffff00, 0x00000000,
	/* DRAM Scrub Control Register
	 * F3:0x58
	 * [ 4: 0] DRAM Scrube Rate
	 * [ 7: 5] reserved
	 * [12: 8] L2 Scrub Rate
	 * [15:13] reserved
	 * [20:16] Dcache Scrub
	 * [31:21] reserved
	 *	   Scrub Rates
	 *	   00000 = Do not scrub
	 *	   00001 =  40.00 ns
	 *	   00010 =  80.00 ns
	 *	   00011 = 160.00 ns
	 *	   00100 = 320.00 ns
	 *	   00101 = 640.00 ns
	 *	   00110 =   1.28 us
	 *	   00111 =   2.56 us
	 *	   01000 =   5.12 us
	 *	   01001 =  10.20 us
	 *	   01011 =  41.00 us
	 *	   01100 =  81.90 us
	 *	   01101 = 163.80 us
	 *	   01110 = 327.70 us
	 *	   01111 = 655.40 us
	 *	   10000 =   1.31 ms
	 *	   10001 =   2.62 ms
	 *	   10010 =   5.24 ms
	 *	   10011 =  10.49 ms
	 *	   10100 =  20.97 ms
	 *	   10101 =  42.00 ms
	 *	   10110 =  84.00 ms
	 *	   All Others = Reserved
	 */
	PCI_ADDR(0, 0x18, 3, 0x58), 0xffe0e0e0, 0x00000000,
	/* DRAM Scrub Address Low Register
	 * F3:0x5C
	 * [ 0: 0] DRAM Scrubber Redirect Enable
	 *	   0 = Do nothing
	 *	   1 = Scrubber Corrects errors found in normal operation
	 * [ 5: 1] Reserved
	 * [31: 6] DRAM Scrub Address 31-6
	 */
	PCI_ADDR(0, 0x18, 3, 0x5C), 0x0000003e, 0x00000000,
	/* DRAM Scrub Address High Register
	 * F3:0x60
	 * [ 7: 0] DRAM Scrubb Address 39-32
	 * [31: 8] Reserved
	 */
	PCI_ADDR(0, 0x18, 3, 0x60), 0xffffff00, 0x00000000,
	};
	int i;
	int max;

	if (!controller_present(ctrl)) {
		return;
	}
	printk(BIOS_SPEW, "setting up CPU%02x northbridge registers\n", ctrl->node_id);
	max = ARRAY_SIZE(register_values);
	for (i = 0; i < max; i += 3) {
		pci_devfn_t dev;
		unsigned where;
		unsigned long reg;
		dev = (register_values[i] & ~0xfff) - PCI_DEV(0, 0x18, 0) + ctrl->f0;
		where = register_values[i] & 0xfff;
		reg = pci_read_config32(dev, where);
		reg &= register_values[i+1];
		reg |= register_values[i+2];
		pci_write_config32(dev, where, reg);
	}
	printk(BIOS_SPEW, "done.\n");
}

static void hw_enable_ecc(const struct mem_controller *ctrl)
{
	uint32_t dcl, nbcap;
	nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP);
	dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
	dcl &= ~DCL_DimmEccEn;
	if (nbcap & NBCAP_ECC) {
		dcl |= DCL_DimmEccEn;
	}
	if (read_option(ECC_memory, 1) == 0) {
		dcl &= ~DCL_DimmEccEn;
	}
	pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
}

static int is_dual_channel(const struct mem_controller *ctrl)
{
	uint32_t dcl;
	dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
	return dcl & DCL_128BitEn;
}

static int is_opteron(const struct mem_controller *ctrl)
{
	/* Test to see if I am an Opteron.  Socket 939 based Athlon64
	 * have dual channel capability, too, so we need a better test
	 * for Opterons.
	 * However, all code uses is_opteron() to find out whether to
	 * use dual channel, so if we really check for opteron here, we
	 * need to fix up all code using this function, too.
	 */
	uint32_t nbcap;
	nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP);
	return !!(nbcap & NBCAP_128Bit);
}

static int is_registered(const struct mem_controller *ctrl)
{
	/* Test to see if we are dealing with registered SDRAM.
	 * If we are not registered we are unbuffered.
	 * This function must be called after spd_handle_unbuffered_dimms.
	 */
	uint32_t dcl;
	dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
	return !(dcl & DCL_UnBuffDimm);
}

struct dimm_size {
	unsigned long side1;
	unsigned long side2;
	unsigned long rows;
	unsigned long col;
#if CONFIG_QRANK_DIMM_SUPPORT
	unsigned long rank;
#endif
};

static struct dimm_size spd_get_dimm_size(unsigned device)
{
	/* Calculate the log base 2 size of a DIMM in bits */
	struct dimm_size sz;
	int value, low;
	sz.side1 = 0;
	sz.side2 = 0;
	sz.rows = 0;
	sz.col = 0;
#if CONFIG_QRANK_DIMM_SUPPORT
	sz.rank = 0;
#endif

	/* Note it might be easier to use byte 31 here, it has the DIMM size as
	 * a multiple of 4MB.  The way we do it now we can size both
	 * sides of an assymetric dimm.
	 */
	value = spd_read_byte(device, 3);	/* rows */
	if (value < 0) goto hw_err;
	if ((value & 0xf) == 0) goto val_err;
	sz.side1 += value & 0xf;
	sz.rows = value & 0xf;

	value = spd_read_byte(device, 4);	/* columns */
	if (value < 0) goto hw_err;
	if ((value & 0xf) == 0) goto val_err;
	sz.side1 += value & 0xf;
	sz.col = value & 0xf;

	value = spd_read_byte(device, 17);	/* banks */
	if (value < 0) goto hw_err;
	if ((value & 0xff) == 0) goto val_err;
	sz.side1 += log2(value & 0xff);

	/* Get the module data width and convert it to a power of two */
	value = spd_read_byte(device, 7);	/* (high byte) */
	if (value < 0) goto hw_err;
	value &= 0xff;
	value <<= 8;

	low = spd_read_byte(device, 6);	/* (low byte) */
	if (low < 0) goto hw_err;
	value = value | (low & 0xff);
	if ((value != 72) && (value != 64)) goto val_err;
	sz.side1 += log2(value);

	/* side 2 */
	value = spd_read_byte(device, 5);	/* number of physical banks */
	if (value < 0) goto hw_err;
	if (value == 1) goto out;
	if ((value != 2) && (value != 4)) {
		goto val_err;
	}
#if CONFIG_QRANK_DIMM_SUPPORT
	sz.rank = value;
#endif

	/* Start with the symmetrical case */
	sz.side2 = sz.side1;

	value = spd_read_byte(device, 3);	/* rows */
	if (value < 0) goto hw_err;
	if ((value & 0xf0) == 0) goto out;	/* If symmetrical we are done */
	sz.side2 -= (value & 0x0f);		/* Subtract out rows on side 1 */
	sz.side2 += ((value >> 4) & 0x0f);	/* Add in rows on side 2 */

	value = spd_read_byte(device, 4);	/* columns */
	if (value < 0) goto hw_err;
	if ((value & 0xff) == 0) goto val_err;
	sz.side2 -= (value & 0x0f);		/* Subtract out columns on side 1 */
	sz.side2 += ((value >> 4) & 0x0f);	/* Add in columsn on side 2 */

	goto out;

 val_err:
	die("Bad SPD value\n");
	/* If an hw_error occurs report that I have no memory */
hw_err:
	sz.side1 = 0;
	sz.side2 = 0;
	sz.rows = 0;
	sz.col = 0;
#if CONFIG_QRANK_DIMM_SUPPORT
	sz.rank = 0;
#endif
out:
	return sz;
}


static void set_dimm_size(const struct mem_controller *ctrl, struct dimm_size sz, unsigned index)
{
	uint32_t base0, base1;
	uint32_t dch;

	if (sz.side1 != sz.side2) {
		sz.side2 = 0;
	}

	/* For each base register.
	 * Place the dimm size in 32 MB quantities in the bits 31 - 21.
	 * The initialize dimm size is in bits.
	 * Set the base enable bit0.
	 */

	base0 = base1 = 0;

	/* Make certain side1 of the dimm is at least 32MB */
	if (sz.side1 >= (25 +3)) {
		base0 = (1 << ((sz.side1 - (25 + 3)) + 21)) | 1;
	}

	/* Make certain side2 of the dimm is at least 32MB */
	if (sz.side2 >= (25 + 3)) {
		base1 = (1 << ((sz.side2 - (25 + 3)) + 21)) | 1;
	}

	/* Double the size if we are using dual channel memory */
	if (is_dual_channel(ctrl)) {
		base0 = (base0 << 1) | (base0 & 1);
		base1 = (base1 << 1) | (base1 & 1);
	}

	/* Clear the reserved bits */
	base0 &= ~0x001ffffe;
	base1 &= ~0x001ffffe;

	/* Set the appropriate DIMM base address register */
	pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+0)<<2), base0);
	pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+1)<<2), base1);
#if CONFIG_QRANK_DIMM_SUPPORT
	if (sz.rank == 4) {
		pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+4)<<2), base0);
		pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+5)<<2), base1);
	}
#endif

	/* Enable the memory clocks for this DIMM */
	if (base0) {
		dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
		dch |= DCH_MEMCLK_EN0 << index;
#if CONFIG_QRANK_DIMM_SUPPORT
		if (sz.rank == 4) {
			dch |= DCH_MEMCLK_EN0 << (index + 2);
		}
#endif
		pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
	}
}

static void set_dimm_map(const struct mem_controller *ctrl, struct dimm_size sz, unsigned index)
{
	static const unsigned cs_map_aa[] = {
		/* (row=12, col=8)(14, 12) ---> (0, 0) (2, 4) */
		0, 1, 3, 6, 0,
		0, 2, 4, 7, 9,
		0, 0, 5, 8,10,
	};

	uint32_t map;

	map = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP);
	map &= ~(0xf << (index * 4));
#if CONFIG_QRANK_DIMM_SUPPORT
	if (sz.rank == 4) {
		map &= ~(0xf << ((index + 2) * 4));
	}
#endif


	/* Make certain side1 of the dimm is at least 32MB */
	if (sz.side1 >= (25 +3)) {
		if (is_cpu_pre_d0()) {
			map |= (sz.side1 - (25 + 3)) << (index *4);
#if CONFIG_QRANK_DIMM_SUPPORT
			if (sz.rank == 4) {
				map |= (sz.side1 - (25 + 3)) << ((index + 2) * 4);
			}
#endif
		}
		else {
			map |= cs_map_aa[(sz.rows - 12) * 5 + (sz.col - 8) ] << (index*4);
#if CONFIG_QRANK_DIMM_SUPPORT
			if (sz.rank == 4) {
				map |=  cs_map_aa[(sz.rows - 12) * 5 + (sz.col - 8) ] << ((index + 2) * 4);
			}
#endif
		}
	}

	pci_write_config32(ctrl->f2, DRAM_BANK_ADDR_MAP, map);

}

static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
{
	int i;

	for (i = 0; i < DIMM_SOCKETS; i++) {
		struct dimm_size sz;
		if (!(dimm_mask & (1 << i))) {
			continue;
		}
		sz = spd_get_dimm_size(ctrl->channel0[i]);
		if (sz.side1 == 0) {
			return -1; /* Report SPD error */
		}
		set_dimm_size(ctrl, sz, i);
		set_dimm_map (ctrl, sz, i);
	}
	return dimm_mask;
}

static void route_dram_accesses(const struct mem_controller *ctrl,
	unsigned long base_k, unsigned long limit_k)
{
	/* Route the addresses to the controller node */
	unsigned node_id;
	unsigned limit;
	unsigned base;
	unsigned index;
	unsigned limit_reg, base_reg;
	pci_devfn_t device;

	node_id = ctrl->node_id;
	index = (node_id << 3);
	limit = (limit_k << 2);
	limit &= 0xffff0000;
	limit -= 0x00010000;
	limit |= (0 << 8) | (node_id << 0);
	base = (base_k << 2);
	base &= 0xffff0000;
	base |= (0 << 8) | (1<<1) | (1<<0);

	limit_reg = 0x44 + index;
	base_reg = 0x40 + index;
	for (device = PCI_DEV(0, 0x18, 1); device <= PCI_DEV(0, 0x1f, 1); device += PCI_DEV(0, 1, 0)) {
		pci_write_config32(device, limit_reg, limit);
		pci_write_config32(device, base_reg, base);
	}
}

static void set_top_mem(unsigned tom_k, unsigned hole_startk)
{
	/* Error if I don't have memory */
	if (!tom_k) {
		die("No memory?");
	}

	/* Report the amount of memory. */
	printk(BIOS_DEBUG, "RAM end at 0x%08x kB\n", tom_k);

	/* Now set top of memory */
	msr_t msr;
	if (tom_k > (4*1024*1024)) {
		printk(BIOS_SPEW, "Handling memory mapped above 4 GB\n");
		printk(BIOS_SPEW, "Upper RAM end at 0x%08x kB\n", tom_k);
		msr.lo = (tom_k & 0x003fffff) << 10;
		msr.hi = (tom_k & 0xffc00000) >> 22;
		wrmsr(TOP_MEM2, msr);
		printk(BIOS_SPEW, "Correcting memory amount mapped below 4 GB\n");
	}

	/* Leave a 64M hole between TOP_MEM and TOP_MEM2
	 * so I can see my ROM chip and other I/O devices.
	 */
	if (tom_k >= 0x003f0000) {
#if CONFIG_HW_MEM_HOLE_SIZEK != 0
		if (hole_startk != 0) {
			tom_k = hole_startk;
		} else
#endif
		tom_k = 0x3f0000;
		printk(BIOS_SPEW, "Adjusting lower RAM end\n");
	}
	printk(BIOS_SPEW, "Lower RAM end at 0x%08x kB\n", tom_k);
	msr.lo = (tom_k & 0x003fffff) << 10;
	msr.hi = (tom_k & 0xffc00000) >> 22;
	wrmsr(TOP_MEM, msr);
}

static unsigned long interleave_chip_selects(const struct mem_controller *ctrl)
{
	/* 35 - 25 */
	static const uint8_t csbase_low_shift[] = {
	/* 32MB */	(13 - 4),
	/* 64MB */	(14 - 4),
	/* 128MB */	(14 - 4),
	/* 256MB */	(15 - 4),
	/* 512MB */	(15 - 4),
	/* 1GB */	(16 - 4),
	/* 2GB */	(16 - 4),
	};

	static const uint8_t csbase_low_d0_shift[] = {
	/* 32MB */      (13 - 4),
	/* 64MB */      (14 - 4),
	/* 128MB */     (14 - 4),
	/* 128MB */     (15 - 4),
	/* 256MB */     (15 - 4),
	/* 512MB */     (15 - 4),
	/* 256MB */     (16 - 4),
	/* 512MB */     (16 - 4),
	/* 1GB */       (16 - 4),
	/* 1GB */       (17 - 4),
	/* 2GB */       (17 - 4),
	};

	/* cs_base_high is not changed */

	uint32_t csbase_inc;
	int chip_selects, index;
	int bits;
	unsigned common_size;
	unsigned common_cs_mode;
	uint32_t csbase, csmask;

	/* See if all of the memory chip selects are the same size
	 * and if so count them.
	 */
	chip_selects = 0;
	common_size = 0;
	common_cs_mode = 0;
	for (index = 0; index < 8; index++) {
		unsigned size;
		unsigned cs_mode;
		uint32_t value;

		value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2));

		/* Is it enabled? */
		if (!(value & 1)) {
			continue;
		}
		chip_selects++;
		size = value >> 21;
		if (common_size == 0) {
			common_size = size;
		}
		/* The size differed fail */
		if (common_size != size) {
			return 0;
		}

		value = pci_read_config32(ctrl->f2, DRAM_BANK_ADDR_MAP);
		cs_mode =(value >> ((index>>1)*4)) & 0xf;
		if (cs_mode == 0) continue;
		if (common_cs_mode == 0) {
			common_cs_mode = cs_mode;
		}
		/* The cs_mode differed fail */
		if (common_cs_mode != cs_mode) {
			return 0;
		}
	}

	/* Chip selects can only be interleaved when there is
	 * more than one and their is a power of two of them.
	 */
	bits = log2(chip_selects);
	if (((1 << bits) != chip_selects) || (bits < 1) || (bits > 3)) {
		return 0;
	}

	/* Find the bits of csbase that we need to interleave on */
	if (is_cpu_pre_d0()) {
		csbase_inc = 1 << csbase_low_shift[common_cs_mode];
		if (is_dual_channel(ctrl)) {
		/* Also we run out of address mask bits if we try and interleave 8 4GB dimms */
			if ((bits == 3) && (common_size == (1 << (32 - 3)))) {
				return 0;
			}
			csbase_inc <<=1;
		}
	}
	else {
		csbase_inc = 1 << csbase_low_d0_shift[common_cs_mode];
		if (is_dual_channel(ctrl)) {
			if ((bits == 3) && (common_cs_mode > 8)) {
				return 0;
			}
			csbase_inc <<=1;
		}
	}

	/* Compute the initial values for csbase and csbask.
	 * In csbase just set the enable bit and the base to zero.
	 * In csmask set the mask bits for the size and page level interleave.
	 */
	csbase = 0 | 1;
	csmask = (((common_size  << bits) - 1) << 21);
	csmask |= 0xfe00 & ~((csbase_inc << bits) - csbase_inc);
	for (index = 0; index < 8; index++) {
		uint32_t value;

		value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2));
		/* Is it enabled? */
		if (!(value & 1)) {
			continue;
		}
		pci_write_config32(ctrl->f2, DRAM_CSBASE + (index << 2), csbase);
		pci_write_config32(ctrl->f2, DRAM_CSMASK + (index << 2), csmask);
		csbase += csbase_inc;
	}

	printk(BIOS_SPEW, "Interleaved\n");

	/* Return the memory size in K */
	return common_size << (15 + bits);
}

static unsigned long order_chip_selects(const struct mem_controller *ctrl)
{
	unsigned long tom;

	/* Remember which registers we have used in the high 8 bits of tom */
	tom = 0;
	for (;;) {
		/* Find the largest remaining candidate */
		unsigned index, candidate;
		uint32_t csbase, csmask;
		unsigned size;
		csbase = 0;
		candidate = 0;
		for (index = 0; index < 8; index++) {
			uint32_t value;
			value = pci_read_config32(ctrl->f2, DRAM_CSBASE + (index << 2));

			/* Is it enabled? */
			if (!(value & 1)) {
				continue;
			}

			/* Is it greater? */
			if (value <= csbase) {
				continue;
			}

			/* Has it already been selected */
			if (tom & (1 << (index + 24))) {
				continue;
			}
			/* I have a new candidate */
			csbase = value;
			candidate = index;
		}

		/* See if I have found a new candidate */
		if (csbase == 0) {
			break;
		}

		/* Remember the dimm size */
		size = csbase >> 21;

		/* Remember I have used this register */
		tom |= (1 << (candidate + 24));

		/* Recompute the cs base register value */
		csbase = (tom << 21) | 1;

		/* Increment the top of memory */
		tom += size;

		/* Compute the memory mask */
		csmask = ((size -1) << 21);
		csmask |= 0xfe00;		/* For now don't optimize */

		/* Write the new base register */
		pci_write_config32(ctrl->f2, DRAM_CSBASE + (candidate << 2), csbase);
		/* Write the new mask register */
		pci_write_config32(ctrl->f2, DRAM_CSMASK + (candidate << 2), csmask);

	}
	/* Return the memory size in K */
	return (tom & ~0xff000000) << 15;
}

static unsigned long memory_end_k(const struct mem_controller *ctrl, int max_node_id)
{
	unsigned node_id;
	unsigned end_k;
	/* Find the last memory address used */
	end_k = 0;
	for (node_id = 0; node_id < max_node_id; node_id++) {
		uint32_t limit, base;
		unsigned index;
		index = node_id << 3;
		base = pci_read_config32(ctrl->f1, 0x40 + index);
		/* Only look at the limit if the base is enabled */
		if ((base & 3) == 3) {
			limit = pci_read_config32(ctrl->f1, 0x44 + index);
			end_k = ((limit + 0x00010000) & 0xffff0000) >> 2;
		}
	}
	return end_k;
}

static void order_dimms(const struct mem_controller *ctrl)
{
	unsigned long tom_k, base_k;

	if (read_option(interleave_chip_selects, 1) != 0) {
		tom_k = interleave_chip_selects(ctrl);
	} else {
		printk(BIOS_DEBUG, "Interleaving disabled\n");
		tom_k = 0;
	}

	if (!tom_k) {
		tom_k = order_chip_selects(ctrl);
	}

	/* Compute the memory base address */
	base_k = memory_end_k(ctrl, ctrl->node_id);
	tom_k += base_k;
	route_dram_accesses(ctrl, base_k, tom_k);
	set_top_mem(tom_k, 0);
}

static long disable_dimm(const struct mem_controller *ctrl, unsigned index, long dimm_mask)
{
	printk(BIOS_DEBUG, "disabling dimm %02x\n", index);
	pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+0)<<2), 0);
	pci_write_config32(ctrl->f2, DRAM_CSBASE + (((index << 1)+1)<<2), 0);
	dimm_mask &= ~(1 << index);
	return dimm_mask;
}

static long spd_handle_unbuffered_dimms(const struct mem_controller *ctrl,
					long dimm_mask)
{
	int i;
	int registered;
	int unbuffered;
	int has_dualch = is_opteron(ctrl);
	uint32_t dcl;
	unbuffered = 0;
	registered = 0;
	for (i = 0; (i < DIMM_SOCKETS); i++) {
		int value;
		if (!(dimm_mask & (1 << i))) {
			continue;
		}
		value = spd_read_byte(ctrl->channel0[i], 21);
		if (value < 0) {
			return -1;
		}

		/* Registered dimm ? */
		if (value & (1 << 1)) {
			registered = 1;
		}
		/* Otherwise it must be an unbuffered dimm */
		else {
			unbuffered = 1;
		}
	}
	if (unbuffered && registered) {
		die("Mixed buffered and registered dimms not supported");
	}

	dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
	dcl &= ~DCL_UnBuffDimm;
	if (unbuffered) {
		if ((has_dualch) && (!is_cpu_pre_d0())) {
			dcl |= DCL_UnBuffDimm;
#if CONFIG_CPU_AMD_SOCKET_939
			if ((cpuid_eax(1) & 0x30) == 0x30) {
				/* CS[7:4] is copy of CS[3:0], should be set for 939 socket */
				dcl |= DCL_UpperCSMap;
			}
#endif
		} else {
			dcl |= DCL_UnBuffDimm;
		}
	}
	pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);

	if (is_registered(ctrl)) {
		printk(BIOS_SPEW, "Registered\n");
	} else {
		printk(BIOS_SPEW, "Unbuffered\n");
	}

	return dimm_mask;
}

static unsigned int spd_detect_dimms(const struct mem_controller *ctrl)
{
	unsigned dimm_mask;
	int i;
	dimm_mask = 0;
	for (i = 0; i < DIMM_SOCKETS; i++) {
		int byte;
		unsigned device;
		device = ctrl->channel0[i];
		if (device) {
			byte = spd_read_byte(ctrl->channel0[i], 2);  /* Type */
			if (byte == 7) {
				dimm_mask |= (1 << i);
			}
		}
		device = ctrl->channel1[i];
		if (device) {
			byte = spd_read_byte(ctrl->channel1[i], 2);
			if (byte == 7) {
				dimm_mask |= (1 << (i + DIMM_SOCKETS));
			}
		}
	}
	return dimm_mask;
}

static long spd_enable_2channels(const struct mem_controller *ctrl, long dimm_mask)
{
	int i;
	uint32_t nbcap;
	/* SPD addresses to verify are identical */
	static const uint8_t addresses[] = {
		2,	/* Type should be DDR SDRAM */
		3,	/* *Row addresses */
		4,	/* *Column addresses */
		5,	/* *Physical Banks */
		6,	/* *Module Data Width low */
		7,	/* *Module Data Width high */
		9,	/* *Cycle time at highest CAS Latency CL = X */
		11,	/* *SDRAM Type */
		13,	/* *SDRAM Width */
		17,	/* *Logical Banks */
		18,	/* *Supported CAS Latencies */
		21,	/* *SDRAM Module Attributes */
		23,	/* *Cycle time at CAS Latency (CLX - 0.5) */
		25,	/* *Cycle time at CAS Latency (CLX - 1.0) */
		27,	/* *tRP Row precharge time */
		28,	/* *Minimum Row Active to Row Active Delay (tRRD) */
		29,	/* *tRCD RAS to CAS */
		30,	/* *tRAS Activate to Precharge */
		41,	/* *Minimum Active to Active/Auto Refresh Time(Trc) */
		42,	/* *Minimum Auto Refresh Command Time(Trfc) */
	};
	/* If the dimms are not in pairs do not do dual channels */
	if ((dimm_mask & ((1 << DIMM_SOCKETS) - 1)) !=
		((dimm_mask >> DIMM_SOCKETS) & ((1 << DIMM_SOCKETS) - 1))) {
		goto single_channel;
	}
	/* If the CPU is not capable of doing dual channels don't do dual channels */
	nbcap = pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP);
	if (!(nbcap & NBCAP_128Bit)) {
		goto single_channel;
	}
	for (i = 0; (i < 4) && (ctrl->channel0[i]); i++) {
		unsigned device0, device1;
		int value0, value1;
		int j;
		/* If I don't have a dimm skip this one */
		if (!(dimm_mask & (1 << i))) {
			continue;
		}
		device0 = ctrl->channel0[i];
		device1 = ctrl->channel1[i];
		for (j = 0; j < ARRAY_SIZE(addresses); j++) {
			unsigned addr;
			addr = addresses[j];
			value0 = spd_read_byte(device0, addr);
			if (value0 < 0) {
				return -1;
			}
			value1 = spd_read_byte(device1, addr);
			if (value1 < 0) {
				return -1;
			}
			if (value0 != value1) {
				goto single_channel;
			}
		}
	}
	printk(BIOS_SPEW, "Enabling dual channel memory\n");
	uint32_t dcl;
	dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
	dcl &= ~DCL_32ByteEn;
	dcl |= DCL_128BitEn;
	pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
	return dimm_mask;
 single_channel:
	dimm_mask &= ~((1 << (DIMM_SOCKETS *2)) - (1 << DIMM_SOCKETS));
	return dimm_mask;
}

struct mem_param {
	uint8_t cycle_time;
	uint8_t divisor; /* In 1/2 ns increments */
	uint8_t tRC;
	uint8_t tRFC;
	uint32_t dch_memclk;
	uint16_t dch_tref4k, dch_tref8k;
	uint8_t	 dtl_twr;
	uint8_t	 dtl_twtr;
	uint8_t  dtl_trwt[3][3]; /* first index is CAS_LAT 2/2.5/3 and 128/registered64/64 */
 	uint8_t	 rdpreamble[4]; /* 0 is for registered, 1 for 1-2 DIMMS, 2 and 3 for 3 or 4 unreg dimm slots */
	char name[9];
};

static const struct mem_param *get_mem_param(int freq)
{
	static const struct mem_param speed[] = {
		[NBCAP_MEMCLK_100MHZ] = {
			.name	    = "100MHz",
			.cycle_time = 0xa0,
			.divisor    = (10 <<1),
			.tRC	    = 0x46,
			.tRFC	    = 0x50,
			.dch_memclk = DCH_MEMCLK_100MHZ << DCH_MEMCLK_SHIFT,
			.dch_tref4k = DTH_TREF_100MHZ_4K,
			.dch_tref8k = DTH_TREF_100MHZ_8K,
			.dtl_twr    = 2,
			.dtl_twtr   = 1,
			.dtl_trwt   = { { 2, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }},
			.rdpreamble = { ((9 << 1) + 0), ((9 << 1) + 0), ((9 << 1) + 0), ((9 << 1) + 0) }
		},
		[NBCAP_MEMCLK_133MHZ] = {
			.name	    = "133MHz",
			.cycle_time = 0x75,
			.divisor    = (7<<1)+1,
			.tRC	    = 0x41,
			.tRFC	    = 0x4B,
			.dch_memclk = DCH_MEMCLK_133MHZ << DCH_MEMCLK_SHIFT,
			.dch_tref4k = DTH_TREF_133MHZ_4K,
			.dch_tref8k = DTH_TREF_133MHZ_8K,
			.dtl_twr    = 2,
			.dtl_twtr   = 1,
			.dtl_trwt   = { { 2, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }},
			.rdpreamble = { ((8 << 1) + 0), ((7 << 1) + 0), ((7 << 1) + 1), ((7 << 1) + 0) }
		},
		[NBCAP_MEMCLK_166MHZ] = {
			.name	    = "166MHz",
			.cycle_time = 0x60,
			.divisor    = (6<<1),
			.tRC	    = 0x3C,
			.tRFC	    = 0x48,
			.dch_memclk = DCH_MEMCLK_166MHZ << DCH_MEMCLK_SHIFT,
			.dch_tref4k = DTH_TREF_166MHZ_4K,
			.dch_tref8k = DTH_TREF_166MHZ_8K,
			.dtl_twr    = 3,
			.dtl_twtr   = 1,
			.dtl_trwt   = { { 3, 2, 3 }, { 3, 3, 4 }, { 4, 3, 4 }},
			.rdpreamble = { ((7 << 1) + 1), ((6 << 1) + 0), ((6 << 1) + 1), ((6 << 1) + 0) }
		},
		[NBCAP_MEMCLK_200MHZ] = {
			.name	    = "200MHz",
			.cycle_time = 0x50,
			.divisor    = (5<<1),
			.tRC	    = 0x37,
			.tRFC	    = 0x46,
			.dch_memclk = DCH_MEMCLK_200MHZ << DCH_MEMCLK_SHIFT,
			.dch_tref4k = DTH_TREF_200MHZ_4K,
			.dch_tref8k = DTH_TREF_200MHZ_8K,
			.dtl_twr    = 3,
			.dtl_twtr   = 2,
			.dtl_trwt   = { { 0, 2, 3 }, { 3, 3, 4 }, { 3, 3, 4 }},
			.rdpreamble = { ((7 << 1) + 0), ((5 << 1) + 0), ((5 << 1) + 1), ((5 << 1) + 1) }
		}
	};
	const struct mem_param *param;

	param = speed + freq;
	printk(BIOS_SPEW, "%s\n", param->name);
	return param;
}

struct spd_set_memclk_result {
	const struct mem_param *param;
	long dimm_mask;
};

static int spd_dimm_loading_socket(const struct mem_controller *ctrl, long dimm_mask, int *freq_1t)
{

#if CONFIG_CPU_AMD_SOCKET_939

/* + 1 raise so we detect 0 as bad field */
#define DDR200 (NBCAP_MEMCLK_100MHZ + 1)
#define DDR333 (NBCAP_MEMCLK_166MHZ + 1)
#define DDR400 (NBCAP_MEMCLK_200MHZ + 1)
#define DDR_2T 0x80
#define DDR_MASK 0x7

#define DDR200_2T (DDR_2T | DDR200)
#define DDR333_2T (DDR_2T | DDR333)
#define DDR400_2T (DDR_2T | DDR400)

/*
	Following table comes directly from BKDG (unbuffered DIMM support)
	[Y][X] Y = ch0_0, ch1_0, ch0_1, ch1_1 1 = present 0 = empty
	  X uses same layout but 1 means double rank 0 is single rank/empty

	Following tables come from BKDG the ch{0_0,1_0,0_1,1_1} maps to
	MEMCS_{1L,1H,2L,2H} in i the PDF. PreE is table 45, and revE table 46.
*/

	static const unsigned char dimm_loading_config_preE[16][16] = {
		[0x8] = {[0x0] = DDR400,[0x8] = DDR400},
		[0x2] = {[0x0] = DDR333,[0x2] = DDR400},
		[0xa] = {[0x0] = DDR400_2T,[0x2] = DDR400_2T,
			 [0x8] = DDR400_2T,[0xa] = DDR333_2T},
		[0xc] = {[0x0] = DDR400,[0xc] = DDR400},
		[0x3] = {[0x0] = DDR333,[0x3] = DDR400},
		[0xf] = {[0x0] = DDR400_2T,[0x3] = DDR400_2T,
			 [0xc] = DDR400_2T,[0xf] = DDR333_2T},
	};

	static const unsigned char dimm_loading_config_revE[16][16] = {
		[0x8] = {[0x0] = DDR400, [0x8] = DDR400},
		[0x2] = {[0x0] = DDR333, [0x2] = DDR400},
		[0x4] = {[0x0] = DDR400, [0x4] = DDR400},
		[0x1] = {[0x0] = DDR333, [0x1] = DDR400},
		[0xa] = {[0x0] = DDR400_2T, [0x2] = DDR400_2T,
			 [0x8] = DDR400_2T, [0xa] = DDR333_2T},
		[0x5] = {[0x0] = DDR400_2T, [0x1] = DDR400_2T,
			 [0x4] = DDR400_2T, [0x5] = DDR333_2T},
		[0xc] = {[0x0] = DDR400, [0xc] = DDR400, [0x4] = DDR400, [0x8] = DDR400},
		[0x3] = {[0x0] = DDR333, [0x1] = DDR333, [0x2] = DDR333, [0x3] = DDR400},
		[0xe] = {[0x0] = DDR400_2T, [0x4] = DDR400_2T, [0x2] = DDR400_2T,
			 [0x6] = DDR400_2T, [0x8] = DDR400_2T, [0xc] = DDR400_2T,
			 [0xa] = DDR333_2T, [0xe] = DDR333_2T},
		[0xb] = {[0x0] = DDR333, [0x1] = DDR400_2T, [0x2] = DDR333_2T,
			 [0x3] = DDR400_2T, [0x8] = DDR333_2T, [0x9] = DDR400_2T,
			 [0xa] = DDR333_2T, [0xb] = DDR333_2T},
		[0xd] = {[0x0] = DDR400_2T, [0x8] = DDR400_2T, [0x1] = DDR400_2T,
			 [0x9] = DDR333_2T, [0x4] = DDR400_2T, [0xc] = DDR400_2T,
			 [0x5] = DDR333_2T, [0xd] = DDR333_2T},
		[0x7] = {[0x0] = DDR333,    [0x2] = DDR400_2T, [0x1] = DDR333_2T,
			 [0x3] = DDR400_2T, [0x4] = DDR333_2T, [0x6] = DDR400_2T,
			 [0x5] = DDR333_2T, [0x7] = DDR333_2T},
		[0xf] = {[0x0] = DDR400_2T, [0x1] = DDR400_2T, [0x4] = DDR400_2T,
			 [0x5] = DDR333_2T, [0x2] = DDR400_2T, [0x3] = DDR400_2T,
			 [0x6] = DDR400_2T, [0x7] = DDR333_2T, [0x8] = DDR400_2T,
			 [0x9] = DDR400_2T, [0xc] = DDR400_2T, [0xd] = DDR333_2T,
			 [0xa] = DDR333_2T, [0xb] = DDR333_2T, [0xe] = DDR333_2T,
			 [0xf] = DDR333_2T},
	};
	/*The dpos matches channel positions defined in BKDG and above arrays
	  The rpos is bitmask of dual rank dimms in same order as dpos */
	unsigned int dloading = 0, i, rpos = 0, dpos = 0;
	const unsigned char (*dimm_loading_config)[16] = dimm_loading_config_revE;
	int rank;
	uint32_t dcl;

	if (is_cpu_pre_e0()) {
		dimm_loading_config = dimm_loading_config_preE;
	}

	/* only DIMMS two per channel */
	for (i = 0; i < 2; i++) {
		if ((dimm_mask & (1 << i))) {
			/* read rank channel 0 */
			rank = spd_read_byte(ctrl->channel0[i], 5);
			if (rank < 0) goto hw_error;
			rpos |= (rank == 2) ? (1 << (3 - (i * 2))) : 0;
			dpos |= (1 << (3 - (i * 2)));
		}

		if ((dimm_mask & (1 << (i+DIMM_SOCKETS)))) {
			/* read rank channel 1*/
			rank = spd_read_byte(ctrl->channel1[i], 5);
			if (rank < 0) goto hw_error;
			rpos |= (rank == 2) ? (1 << (2 - (i * 2))) : 0;
			dpos |= (1 << (2 - (i * 2)));
		}
	}
	/* now the lookup, decode the max speed DDR400_2T etc */
	dloading = dimm_loading_config[dpos][rpos] & DDR_MASK;

hw_error:
	if (dloading != 0) {
		/* we have valid combination check the restrictions */
		dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
		dcl |= ((dimm_loading_config[dpos][rpos] & DDR_2T) || CONFIG_K8_FORCE_2T_DRAM_TIMING) ? (DCL_En2T) : 0;
		/* Set DuallDimm is second channel is completely empty (revD+) */
		if (((cpuid_eax(1) & 0xfff0f) >= 0x10f00) && ((dpos & 0x5) == 0)) {
			printk(BIOS_DEBUG, "Setting DualDIMMen\n");
			dcl |= DCL_DualDIMMen;
		}
		pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
		return dloading - 1;
	} else {
		/* if we don't find it we se it to DDR400 */
		printk(BIOS_WARNING, "Detected strange DIMM configuration, may not work! (or bug)\n");
		return NBCAP_MEMCLK_200MHZ;
	}

#elif CONFIG_CPU_AMD_SOCKET_754

#define CFGIDX(DIMM1,DIMM2,DIMM3) ((DIMM3)*9+(DIMM2)*3+(DIMM1))

#define EMPTY 0
#define X8S_X16 1
#define X8D 2

#define DDR200 NBCAP_MEMCLK_100MHZ
#define DDR333 NBCAP_MEMCLK_166MHZ
#define DDR400 NBCAP_MEMCLK_200MHZ

	/* this is table 42 from the BKDG, ignoring footnote 4,
	 * with the EMPTY, EMPTY, EMPTY row added */
	static const unsigned char cfgtable[][2] = {
		[CFGIDX(EMPTY,		EMPTY,		EMPTY	)] = { DDR400, DDR400 },
		[CFGIDX(X8S_X16,	EMPTY,		EMPTY	)] = { DDR400, DDR400 },
		[CFGIDX(EMPTY,		X8S_X16,	EMPTY	)] = { DDR400, DDR400 },
		[CFGIDX(EMPTY,		EMPTY,		X8S_X16	)] = { DDR400, DDR400 },
		[CFGIDX(X8D,		EMPTY,		EMPTY	)] = { DDR400, DDR400 },
		[CFGIDX(EMPTY,		X8D,		EMPTY	)] = { DDR400, DDR400 },
		[CFGIDX(EMPTY,		EMPTY,		X8D	)] = { DDR400, DDR400 },
		[CFGIDX(X8S_X16,	X8S_X16,	EMPTY	)] = { DDR400, DDR400 },
		[CFGIDX(X8S_X16,	X8D,		EMPTY	)] = { DDR400, DDR400 },
		[CFGIDX(X8S_X16,	EMPTY,		X8S_X16	)] = { DDR400, DDR400 },
		[CFGIDX(X8S_X16,	EMPTY,		X8D	)] = { DDR400, DDR400 },
		[CFGIDX(X8D,		X8S_X16,	EMPTY	)] = { DDR400, DDR400 },
		[CFGIDX(X8D,		X8D,		EMPTY	)] = { DDR333, DDR333 },
		[CFGIDX(X8D,		EMPTY,		X8S_X16	)] = { DDR400, DDR400 },
		[CFGIDX(X8D,		EMPTY,		X8D	)] = { DDR333, DDR333 },
		[CFGIDX(EMPTY,		X8S_X16,	X8S_X16	)] = { DDR333, DDR400 },
		[CFGIDX(EMPTY,		X8S_X16,	X8D	)] = { DDR200, DDR400 },
		[CFGIDX(EMPTY,		X8D,		X8S_X16	)] = { DDR200, DDR400 },
		[CFGIDX(EMPTY,		X8D,		X8D	)] = { DDR200, DDR333 },
		[CFGIDX(X8S_X16,	X8S_X16,	X8S_X16	)] = { DDR333, DDR400 },
		[CFGIDX(X8S_X16,	X8S_X16,	X8D	)] = { DDR200, DDR333 },
		[CFGIDX(X8S_X16,	X8D,		X8S_X16	)] = { DDR200, DDR333 },
		[CFGIDX(X8S_X16,	X8D,		X8D	)] = { DDR200, DDR333 },
		[CFGIDX(X8D,		X8S_X16,	X8S_X16	)] = { DDR333, DDR333 },
		[CFGIDX(X8D,		X8S_X16,	X8D	)] = { DDR200, DDR333 },
		[CFGIDX(X8D,		X8D,		X8S_X16	)] = { DDR200, DDR333 },
		[CFGIDX(X8D,		X8D,		X8D	)] = { DDR200, DDR333 }
	};

	int i, rank, width, dimmtypes[3];
	const unsigned char *cfg;

	for (i = 0; i < 3; i++) {
		if (dimm_mask & (1 << i)) {
			rank = spd_read_byte(ctrl->channel0[i], 5);
			width = spd_read_byte(ctrl->channel0[i], 13);
			if (rank < 0 || width < 0) die("failed to read SPD");
			width &= 0x7f;
			/* this is my guess as to how the criteria in the table
			 * are to be understood:
			 */
			dimmtypes[i] = width >= (rank == 1 ? 8 : 16) ? X8S_X16 : X8D;
		} else {
			dimmtypes[i] = EMPTY;
		}
	}
	cfg = cfgtable[CFGIDX(dimmtypes[0], dimmtypes[1], dimmtypes[2])];
	*freq_1t = cfg[0];
	return is_cpu_c0() ? cfg[0] : cfg[1];

#else /* CONFIG_CPU_AMD_SOCKET_* */

/* well, there are socket 940 boards supported which obviously fail to
 * compile with this */
//	#error load dependent memory clock limiting is not implemented for this socket

	/* see BKDG 4.1.3--if you just want to test a setup that doesn't
	 * require limiting, you may use the following code */

	*freq_1t = NBCAP_MEMCLK_200MHZ;
	return NBCAP_MEMCLK_200MHZ;

#endif /* CONFIG_CPU_AMD_SOCKET_* */

}

static struct spd_set_memclk_result spd_set_memclk(const struct mem_controller *ctrl, long dimm_mask)
{
	struct spd_set_memclk_result result;
	unsigned char cl_at_freq[NBCAP_MEMCLK_MASK + 1];
	int dimm, freq, max_freq_bios, max_freq_dloading, max_freq_1t;
	uint32_t value;

	static const uint8_t spd_min_cycle_time_indices[] = { 9, 23, 25 };
	static const unsigned char cycle_time_at_freq[] = {
		[NBCAP_MEMCLK_200MHZ] = 0x50, /* 5ns */
		[NBCAP_MEMCLK_166MHZ] = 0x60, /* 6ns */
		[NBCAP_MEMCLK_133MHZ] = 0x75, /* 7.5ns */
		[NBCAP_MEMCLK_100MHZ] = 0xa0, /* 10ns */
	};

	/* BEWARE that the constants for frequencies order in reverse of what
	 * would be intuitive. 200 MHz has the lowest constant, 100 MHz the
	 * highest. Thus, all comparisons and traversal directions having to
	 * do with frequencies are/have to be the opposite of what would be
	 * intuitive.
	 */

	/* the CLs supported by the controller: */
	memset(cl_at_freq, 0x1c, sizeof(cl_at_freq));
	memset(cl_at_freq, 0x00,
		(pci_read_config32(ctrl->f3, NORTHBRIDGE_CAP) >>
		 NBCAP_MEMCLK_SHIFT) & NBCAP_MEMCLK_MASK);
	max_freq_bios = read_option(max_mem_clock, 0);
	if (max_freq_bios <= NBCAP_MEMCLK_100MHZ)
		memset(cl_at_freq, 0x00, max_freq_bios);
	for (dimm = 0; dimm < DIMM_SOCKETS; dimm++) {
		int x,i,spd_cls,cl,spd_min_cycle_time;
		unsigned char cl_at_freq_mask[sizeof(cl_at_freq)];

		if (!(dimm_mask & (1 << dimm)))
			continue;
		/* Byte 18 for DDR SDRAM is interpreted:
		 * bit 0 == CAS Latency = 1.0
		 * bit 1 == CAS Latency = 1.5
		 * bit 2 == CAS Latency = 2.0
		 * bit 3 == CAS Latency = 2.5
		 * bit 4 == CAS Latency = 3.0
		 * bit 5 == CAS Latency = 3.5
		 * bit 6 == CAS Latency = 4.0
		 * bit 7 == TBD
		 */
		spd_cls = spd_read_byte(ctrl->channel0[dimm], 18);
		if (spd_cls <= 0)
			goto hw_error;
		memset(cl_at_freq_mask, 0x00, sizeof(cl_at_freq_mask));
		for (cl = 1 << log2(spd_cls), i = 0; i < 3; cl >>= 1, i++) {
			if (!(spd_cls & cl))
				continue;
			spd_min_cycle_time = spd_read_byte(ctrl->channel0[dimm],
					spd_min_cycle_time_indices[i]);
			if (spd_min_cycle_time < 0)
				goto hw_error;
			if ((!spd_min_cycle_time) || (spd_min_cycle_time & 0x0f) > 9)
				continue;
			for (x = 0; x < sizeof(cl_at_freq_mask); x++)
				if (cycle_time_at_freq[x] >= spd_min_cycle_time)
					cl_at_freq_mask[x] |= cl;
		}
		for (x = 0; x < sizeof(cl_at_freq_mask); x++)
			cl_at_freq[x] &= cl_at_freq_mask[x];
	}

	freq = NBCAP_MEMCLK_200MHZ;
	while (freq < sizeof(cl_at_freq) && !cl_at_freq[freq])
		freq++;

	max_freq_dloading = spd_dimm_loading_socket(ctrl, dimm_mask, &max_freq_1t);
	if (max_freq_dloading > freq) {
		printk(BIOS_WARNING, "Memory speed reduced due to signal loading conditions\n");
		freq = max_freq_dloading;
		while (freq < sizeof(cl_at_freq) && !cl_at_freq[freq])
			freq++;
	}

	/* if the next lower frequency gives a CL at least one whole cycle
	 * shorter, select that (see end of BKDG 4.1.1.1) */
	if (freq < sizeof(cl_at_freq)-1 && cl_at_freq[freq+1] &&
		__ffs(cl_at_freq[freq]) - __ffs(cl_at_freq[freq+1]) >= 2)
			freq++;

	if (freq == sizeof(cl_at_freq))
		goto hw_error;

#if CONFIG_CPU_AMD_SOCKET_754
	if (freq < max_freq_1t || CONFIG_K8_FORCE_2T_DRAM_TIMING) {
		pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW,
			pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW) | DCL_En2T);
	}
#endif

	result.param = get_mem_param(freq);

	/* Update DRAM Config High with our selected memory speed */
	value = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
	value &= ~(DCH_MEMCLK_MASK << DCH_MEMCLK_SHIFT);

	value |= result.param->dch_memclk;
	pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, value);

	static const unsigned latencies[] = { DTL_CL_2, DTL_CL_2_5, DTL_CL_3 };

	/* Update DRAM Timing Low with our selected cas latency */
	value = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	value &= ~(DTL_TCL_MASK << DTL_TCL_SHIFT);
	value |= latencies[__ffs(cl_at_freq[freq]) - 2] << DTL_TCL_SHIFT;
	pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, value);

	result.dimm_mask = dimm_mask;
	return result;
 hw_error:
	result.param = (const struct mem_param *)0;
	result.dimm_mask = -1;
	return result;
}


static int update_dimm_Trc(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	unsigned clocks, old_clocks;
	uint32_t dtl;
	int value;
	value = spd_read_byte(ctrl->channel0[i], 41);
	if (value < 0) return -1;
	if ((value == 0) || (value == 0xff)) {
		value = param->tRC;
	}
	clocks = CEIL_DIV((value << 1), param->divisor);
	if (clocks < DTL_TRC_MIN) {
		clocks = DTL_TRC_MIN;
	}
	if (clocks > DTL_TRC_MAX) {
		return 0;
	}

	dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	old_clocks = ((dtl >> DTL_TRC_SHIFT) & DTL_TRC_MASK) + DTL_TRC_BASE;
	if (old_clocks > clocks) {
		clocks = old_clocks;
	}
	dtl &= ~(DTL_TRC_MASK << DTL_TRC_SHIFT);
	dtl |=	((clocks - DTL_TRC_BASE) << DTL_TRC_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
	return 1;
}

static int update_dimm_Trfc(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	unsigned clocks, old_clocks;
	uint32_t dtl;
	int value;
	value = spd_read_byte(ctrl->channel0[i], 42);
	if (value < 0) return -1;
	if ((value == 0) || (value == 0xff)) {
		value = param->tRFC;
	}
	clocks = CEIL_DIV((value << 1), param->divisor);
	if (clocks < DTL_TRFC_MIN) {
		clocks = DTL_TRFC_MIN;
	}
	if (clocks > DTL_TRFC_MAX) {
		return 0;
	}
	dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	old_clocks = ((dtl >> DTL_TRFC_SHIFT) & DTL_TRFC_MASK) + DTL_TRFC_BASE;
	if (old_clocks > clocks) {
		clocks = old_clocks;
	}
	dtl &= ~(DTL_TRFC_MASK << DTL_TRFC_SHIFT);
	dtl |= ((clocks - DTL_TRFC_BASE) << DTL_TRFC_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
	return 1;
}


static int update_dimm_Trcd(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	unsigned clocks, old_clocks;
	uint32_t dtl;
	int value;
	value = spd_read_byte(ctrl->channel0[i], 29);
	if (value < 0) return -1;
	clocks = CEIL_DIV(value, (param->divisor << 1));
	if (clocks < DTL_TRCD_MIN) {
		clocks = DTL_TRCD_MIN;
	}
	if (clocks > DTL_TRCD_MAX) {
		return 0;
	}
	dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	old_clocks = ((dtl >> DTL_TRCD_SHIFT) & DTL_TRCD_MASK) + DTL_TRCD_BASE;
	if (old_clocks > clocks) {
		clocks = old_clocks;
	}
	dtl &= ~(DTL_TRCD_MASK << DTL_TRCD_SHIFT);
	dtl |= ((clocks - DTL_TRCD_BASE) << DTL_TRCD_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
	return 1;
}

static int update_dimm_Trrd(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	unsigned clocks, old_clocks;
	uint32_t dtl;
	int value;
	value = spd_read_byte(ctrl->channel0[i], 28);
	if (value < 0) return -1;
	clocks = CEIL_DIV(value, (param->divisor << 1));
	if (clocks < DTL_TRRD_MIN) {
		clocks = DTL_TRRD_MIN;
	}
	if (clocks > DTL_TRRD_MAX) {
		return 0;
	}
	dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	old_clocks = ((dtl >> DTL_TRRD_SHIFT) & DTL_TRRD_MASK) + DTL_TRRD_BASE;
	if (old_clocks > clocks) {
		clocks = old_clocks;
	}
	dtl &= ~(DTL_TRRD_MASK << DTL_TRRD_SHIFT);
	dtl |= ((clocks - DTL_TRRD_BASE) << DTL_TRRD_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
	return 1;
}

static int update_dimm_Tras(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	unsigned clocks, old_clocks;
	uint32_t dtl;
	int value;
	value = spd_read_byte(ctrl->channel0[i], 30);
	if (value < 0) return -1;
	clocks = CEIL_DIV((value << 1), param->divisor);
	if (clocks < DTL_TRAS_MIN) {
		clocks = DTL_TRAS_MIN;
	}
	if (clocks > DTL_TRAS_MAX) {
		return 0;
	}
	dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	old_clocks = ((dtl >> DTL_TRAS_SHIFT) & DTL_TRAS_MASK) + DTL_TRAS_BASE;
	if (old_clocks > clocks) {
		clocks = old_clocks;
	}
	dtl &= ~(DTL_TRAS_MASK << DTL_TRAS_SHIFT);
	dtl |= ((clocks - DTL_TRAS_BASE) << DTL_TRAS_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
	return 1;
}

static int update_dimm_Trp(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	unsigned clocks, old_clocks;
	uint32_t dtl;
	int value;
	value = spd_read_byte(ctrl->channel0[i], 27);
	if (value < 0) return -1;
	clocks = CEIL_DIV(value, (param->divisor << 1));
	if (clocks < DTL_TRP_MIN) {
		clocks = DTL_TRP_MIN;
	}
	if (clocks > DTL_TRP_MAX) {
		return 0;
	}
	dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	old_clocks = ((dtl >> DTL_TRP_SHIFT) & DTL_TRP_MASK) + DTL_TRP_BASE;
	if (old_clocks > clocks) {
		clocks = old_clocks;
	}
	dtl &= ~(DTL_TRP_MASK << DTL_TRP_SHIFT);
	dtl |= ((clocks - DTL_TRP_BASE) << DTL_TRP_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
	return 1;
}

static void set_Twr(const struct mem_controller *ctrl, const struct mem_param *param)
{
	uint32_t dtl;
	dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	dtl &= ~(DTL_TWR_MASK << DTL_TWR_SHIFT);
	dtl |= (param->dtl_twr - DTL_TWR_BASE) << DTL_TWR_SHIFT;
	pci_write_config32(ctrl->f2, DRAM_TIMING_LOW, dtl);
}


static void init_Tref(const struct mem_controller *ctrl, const struct mem_param *param)
{
	uint32_t dth;
	dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
	dth &= ~(DTH_TREF_MASK << DTH_TREF_SHIFT);
	dth |= (param->dch_tref4k << DTH_TREF_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
}

static int update_dimm_Tref(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	uint32_t dth;
	int value;
	unsigned tref, old_tref;
	value = spd_read_byte(ctrl->channel0[i], 3);
	if (value < 0) return -1;
	value &= 0xf;

	tref = param->dch_tref8k;
	if (value == 12) {
		tref = param->dch_tref4k;
	}

	dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
	old_tref = (dth >> DTH_TREF_SHIFT) & DTH_TREF_MASK;
	if ((value == 12) && (old_tref == param->dch_tref4k)) {
		tref = param->dch_tref4k;
	} else {
		tref = param->dch_tref8k;
	}
	dth &= ~(DTH_TREF_MASK << DTH_TREF_SHIFT);
	dth |= (tref << DTH_TREF_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
	return 1;
}


static int update_dimm_x4(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	uint32_t dcl;
	int value;
#if CONFIG_QRANK_DIMM_SUPPORT
	int rank;
#endif
	int dimm;
	value = spd_read_byte(ctrl->channel0[i], 13);
	if (value < 0) {
		return -1;
	}

#if CONFIG_QRANK_DIMM_SUPPORT
	rank = spd_read_byte(ctrl->channel0[i], 5);	/* number of physical banks */
	if (rank < 0) {
		return -1;
	}
#endif

	dimm = 1<<(DCL_x4DIMM_SHIFT+i);
#if CONFIG_QRANK_DIMM_SUPPORT
	if (rank == 4) {
		dimm |= 1<<(DCL_x4DIMM_SHIFT+i+2);
	}
#endif
	dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
	dcl &= ~dimm;
	if (value == 4) {
		dcl |= dimm;
	}
	pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
	return 1;
}

static int update_dimm_ecc(const struct mem_controller *ctrl, const struct mem_param *param, int i)
{
	uint32_t dcl;
	int value;
	value = spd_read_byte(ctrl->channel0[i], 11);
	if (value < 0) {
		return -1;
	}
	if (value != 2) {
		dcl = pci_read_config32(ctrl->f2, DRAM_CONFIG_LOW);
		dcl &= ~DCL_DimmEccEn;
		pci_write_config32(ctrl->f2, DRAM_CONFIG_LOW, dcl);
	}
	return 1;
}

static int count_dimms(const struct mem_controller *ctrl)
{
	int dimms;
	unsigned index;
	dimms = 0;
	for (index = 0; index < 8; index += 2) {
		uint32_t csbase;
		csbase = pci_read_config32(ctrl->f2, (DRAM_CSBASE + (index << 2)));
		if (csbase & 1) {
			dimms += 1;
		}
	}
	return dimms;
}

static void set_Twtr(const struct mem_controller *ctrl, const struct mem_param *param)
{
	uint32_t dth;

	dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
	dth &= ~(DTH_TWTR_MASK << DTH_TWTR_SHIFT);
	dth |= ((param->dtl_twtr - DTH_TWTR_BASE) << DTH_TWTR_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
}

static void set_Trwt(const struct mem_controller *ctrl, const struct mem_param *param)
{
	uint32_t dth, dtl;
	unsigned latency;
	unsigned clocks;
	int lat, mtype;

	clocks = 0;
	dtl = pci_read_config32(ctrl->f2, DRAM_TIMING_LOW);
	latency = (dtl >> DTL_TCL_SHIFT) & DTL_TCL_MASK;

	if (is_opteron(ctrl)) {
		mtype = 0; /* dual channel */
	} else if (is_registered(ctrl)) {
		mtype = 1; /* registered 64bit interface */
	} else {
		mtype = 2; /* unbuffered 64bit interface */
	}

	switch (latency) {
		case DTL_CL_2:
			lat = 0;
			break;
		case DTL_CL_2_5:
			lat = 1;
			break;
		case DTL_CL_3:
			lat = 2;
			break;
		default:
			die("Unknown LAT for Trwt");
	}

	clocks = param->dtl_trwt[lat][mtype];
	if ((clocks < DTH_TRWT_MIN) || (clocks > DTH_TRWT_MAX)) {
		die("Unknown Trwt\n");
	}

	dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
	dth &= ~(DTH_TRWT_MASK << DTH_TRWT_SHIFT);
	dth |= ((clocks - DTH_TRWT_BASE) << DTH_TRWT_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
	return;
}

static void set_Twcl(const struct mem_controller *ctrl, const struct mem_param *param)
{
	/* Memory Clocks after CAS# */
	uint32_t dth;
	unsigned clocks;
	if (is_registered(ctrl)) {
		clocks = 2;
	} else {
		clocks = 1;
	}
	dth = pci_read_config32(ctrl->f2, DRAM_TIMING_HIGH);
	dth &= ~(DTH_TWCL_MASK << DTH_TWCL_SHIFT);
	dth |= ((clocks - DTH_TWCL_BASE) << DTH_TWCL_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_TIMING_HIGH, dth);
}


static void set_read_preamble(const struct mem_controller *ctrl, const struct mem_param *param)
{
	uint32_t dch;
	unsigned rdpreamble;
	int slots, i;

	slots = 0;

	for (i = 0; i < 4; i++) {
		if (ctrl->channel0[i]) {
			slots += 1;
		}
	}

	/* map to index to param.rdpreamble array */
	if (is_registered(ctrl)) {
		i = 0;
	} else if (slots < 3) {
		i = 1;
	} else if (slots == 3) {
		i = 2;
	} else if (slots == 4) {
		i = 3;
	} else {
		die("Unknown rdpreamble for this nr of slots");
	}

	dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
	dch &= ~(DCH_RDPREAMBLE_MASK << DCH_RDPREAMBLE_SHIFT);
	rdpreamble = param->rdpreamble[i];

	if ((rdpreamble < DCH_RDPREAMBLE_MIN) || (rdpreamble > DCH_RDPREAMBLE_MAX)) {
		die("Unknown rdpreamble");
	}

	dch |= (rdpreamble - DCH_RDPREAMBLE_BASE) << DCH_RDPREAMBLE_SHIFT;
	pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
}

static void set_max_async_latency(const struct mem_controller *ctrl, const struct mem_param *param)
{
	uint32_t dch;
	unsigned async_lat;
	int dimms;

	dimms = count_dimms(ctrl);

	dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
	dch &= ~(DCH_ASYNC_LAT_MASK << DCH_ASYNC_LAT_SHIFT);
	async_lat = 0;
	if (is_registered(ctrl)) {
		if (dimms == 4) {
			/* 9ns */
			async_lat = 9;
		}
		else {
			/* 8ns */
			async_lat = 8;
		}
	}
	else {
		if (dimms > 3) {
			die("Too many unbuffered dimms");
		}
		else if (dimms == 3) {
			/* 7ns */
			async_lat = 7;
		}
		else {
			/* 6ns */
			async_lat = 6;
		}
	}
	dch |= ((async_lat - DCH_ASYNC_LAT_BASE) << DCH_ASYNC_LAT_SHIFT);
	pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
}

static void set_idle_cycle_limit(const struct mem_controller *ctrl, const struct mem_param *param)
{
	uint32_t dch;
	/* AMD says to Hardcode this */
	dch = pci_read_config32(ctrl->f2, DRAM_CONFIG_HIGH);
	dch &= ~(DCH_IDLE_LIMIT_MASK << DCH_IDLE_LIMIT_SHIFT);
	dch |= DCH_IDLE_LIMIT_16 << DCH_IDLE_LIMIT_SHIFT;
	dch |= DCH_DYN_IDLE_CTR_EN;
	pci_write_config32(ctrl->f2, DRAM_CONFIG_HIGH, dch);
}

static long spd_set_dram_timing(const struct mem_controller *ctrl, const struct mem_param *param, long dimm_mask)
{
	int i;

	init_Tref(ctrl, param);
	for (i = 0; i < DIMM_SOCKETS; i++) {
		int rc;
		if (!(dimm_mask & (1 << i))) {
			continue;
		}
		/* DRAM Timing Low Register */
		if ((rc = update_dimm_Trc (ctrl, param, i)) <= 0) goto dimm_err;
		if ((rc = update_dimm_Trfc(ctrl, param, i)) <= 0) goto dimm_err;
		if ((rc = update_dimm_Trcd(ctrl, param, i)) <= 0) goto dimm_err;
		if ((rc = update_dimm_Trrd(ctrl, param, i)) <= 0) goto dimm_err;
		if ((rc = update_dimm_Tras(ctrl, param, i)) <= 0) goto dimm_err;
		if ((rc = update_dimm_Trp (ctrl, param, i)) <= 0) goto dimm_err;

		/* DRAM Timing High Register */
		if ((rc = update_dimm_Tref(ctrl, param, i)) <= 0) goto dimm_err;


		/* DRAM Config Low */
		if ((rc = update_dimm_x4 (ctrl, param, i)) <= 0) goto dimm_err;
		if ((rc = update_dimm_ecc(ctrl, param, i)) <= 0) goto dimm_err;
		continue;
	dimm_err:
		if (rc < 0) {
			return -1;
		}
		dimm_mask = disable_dimm(ctrl, i, dimm_mask);
	}
	/* DRAM Timing Low Register */
	set_Twr(ctrl, param);

	/* DRAM Timing High Register */
	set_Twtr(ctrl, param);
	set_Trwt(ctrl, param);
	set_Twcl(ctrl, param);

	/* DRAM Config High */
	set_read_preamble(ctrl, param);
	set_max_async_latency(ctrl, param);
	set_idle_cycle_limit(ctrl, param);
	return dimm_mask;
}

#if CONFIG_RAMINIT_SYSINFO
void sdram_set_spd_registers(const struct mem_controller *ctrl, struct sys_info *sysinfo)
#else
void sdram_set_spd_registers(const struct mem_controller *ctrl)
#endif
{
	struct spd_set_memclk_result result;
	const struct mem_param *param;
	long dimm_mask;
#if 1
	if (!controller_present(ctrl)) {
		return;
	}
#endif
	hw_enable_ecc(ctrl);
	activate_spd_rom(ctrl);
	dimm_mask = spd_detect_dimms(ctrl);
	if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
		printk(BIOS_DEBUG, "No memory for this cpu\n");
		return;
	}
	dimm_mask = spd_enable_2channels(ctrl, dimm_mask);
	if (dimm_mask < 0)
		goto hw_spd_err;
	dimm_mask = spd_set_ram_size(ctrl , dimm_mask);
	if (dimm_mask < 0)
		goto hw_spd_err;
	dimm_mask = spd_handle_unbuffered_dimms(ctrl, dimm_mask);
	if (dimm_mask < 0)
		goto hw_spd_err;
	result = spd_set_memclk(ctrl, dimm_mask);
	param     = result.param;
	dimm_mask = result.dimm_mask;
	if (dimm_mask < 0)
		goto hw_spd_err;
	dimm_mask = spd_set_dram_timing(ctrl, param , dimm_mask);
	if (dimm_mask < 0)
		goto hw_spd_err;
	order_dimms(ctrl);
	return;
 hw_spd_err:
	/* Unrecoverable error reading SPD data */
	printk(BIOS_ERR, "SPD error - reset\n");
	hard_reset();
	return;
}

#if CONFIG_HW_MEM_HOLE_SIZEK != 0
static uint32_t hoist_memory(int controllers, const struct mem_controller *ctrl,unsigned hole_startk, int i)
{
	int ii;
	uint32_t carry_over;
	pci_devfn_t dev;
	uint32_t base, limit;
	uint32_t basek;
	uint32_t hoist;
	int j;

	carry_over = (4*1024*1024) - hole_startk;

	for (ii = controllers - 1; ii > i; ii--) {
		base  = pci_read_config32(ctrl[0].f1, 0x40 + (ii << 3));
		if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) {
			continue;
		}
		limit = pci_read_config32(ctrl[0].f1, 0x44 + (ii << 3));
		for (j = 0; j < controllers; j++) {
			pci_write_config32(ctrl[j].f1, 0x44 + (ii << 3), limit + (carry_over << 2));
			pci_write_config32(ctrl[j].f1, 0x40 + (ii << 3), base + (carry_over << 2));
		}
	}
	limit = pci_read_config32(ctrl[0].f1, 0x44 + (i << 3));
	for (j = 0; j < controllers; j++) {
		pci_write_config32(ctrl[j].f1, 0x44 + (i << 3), limit + (carry_over << 2));
	}
	dev = ctrl[i].f1;
	base  = pci_read_config32(dev, 0x40 + (i << 3));
	basek  = (base & 0xffff0000) >> 2;
	if (basek == hole_startk) {
		//don't need set memhole here, because hole off set will be 0, overflow
		//so need to change base reg instead, new basek will be 4*1024*1024
		base &= 0x0000ffff;
		base |= (4*1024*1024)<<2;
		for (j = 0; j < controllers; j++) {
			pci_write_config32(ctrl[j].f1, 0x40 + (i<<3), base);
		}
	}
	else {
		hoist = /* hole start address */
			((hole_startk << 10) & 0xff000000) +
			/* hole address to memory controller address */
			(((basek + carry_over) >> 6) & 0x0000ff00) +
			/* enable */
			1;
		pci_write_config32(dev, 0xf0, hoist);
	}

	return carry_over;
}

void set_hw_mem_hole(int controllers, const struct mem_controller *ctrl)
{

	uint32_t hole_startk;
	int i;

	hole_startk = 4*1024*1024 - CONFIG_HW_MEM_HOLE_SIZEK;

	printk(BIOS_SPEW, "Handling memory hole at 0x%08x (default)\n", hole_startk);
#if CONFIG_HW_MEM_HOLE_SIZE_AUTO_INC
	/* We need to double check if hole_startk is valid.
	 * If it is equal to the dram base address in K (base_k),
	 * we need to decrease it.
	 */
	uint32_t basek_pri;
	for (i = 0; i < controllers; i++) {
			uint32_t base;
			unsigned base_k;
			base  = pci_read_config32(ctrl[0].f1, 0x40 + (i << 3));
			if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) {
				continue;
			}
			base_k = (base & 0xffff0000) >> 2;
			if (base_k == hole_startk) {
				/* decrease memory hole startk to make sure it is
				 * in the middle of the previous node
				 */
				hole_startk -= (base_k - basek_pri)>>1;
				break; /* only one hole */
			}
			basek_pri = base_k;
	}

	printk(BIOS_SPEW, "Handling memory hole at 0x%08x (adjusted)\n", hole_startk);
#endif
	/* Find node number that needs the memory hole configured */
	for (i = 0; i < controllers; i++) {
			uint32_t base, limit;
			unsigned base_k, limit_k;
			base  = pci_read_config32(ctrl[0].f1, 0x40 + (i << 3));
			if ((base & ((1<<1)|(1<<0))) != ((1<<1)|(1<<0))) {
				continue;
			}
			limit = pci_read_config32(ctrl[0].f1, 0x44 + (i << 3));
			base_k = (base & 0xffff0000) >> 2;
			limit_k = ((limit + 0x00010000) & 0xffff0000) >> 2;
			if ((base_k <= hole_startk) && (limit_k > hole_startk)) {
				unsigned end_k;
				hoist_memory(controllers, ctrl, hole_startk, i);
				end_k = memory_end_k(ctrl, controllers);
				set_top_mem(end_k, hole_startk);
				break; /* only one hole */
			}
	}

}

#endif

#if CONFIG_RAMINIT_SYSINFO
void sdram_enable(int controllers, const struct mem_controller *ctrl, struct sys_info *sysinfo)
#else
void sdram_enable(int controllers, const struct mem_controller *ctrl)
#endif
{
	int i;
	u32 whatWait = 0;
	int suspend = acpi_is_wakeup_s3();

	/* Error if I don't have memory */
	if (memory_end_k(ctrl, controllers) == 0) {
		die("No memory\n");
	}

	/* Before enabling memory start the memory clocks */
	for (i = 0; i < controllers; i++) {
		uint32_t dch;
		if (!controller_present(ctrl + i))
			continue;
		dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH);
		if (dch & (DCH_MEMCLK_EN0|DCH_MEMCLK_EN1|DCH_MEMCLK_EN2|DCH_MEMCLK_EN3)) {
			dch |= DCH_MEMCLK_VALID;
			pci_write_config32(ctrl[i].f2, DRAM_CONFIG_HIGH, dch);
		}
		else {
			/* Disable dram receivers */
			uint32_t dcl;
			dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
			dcl |= DCL_DisInRcvrs;
			pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
		}
	}

	/* We need to wait a minimum of 20 MEMCLKS to enable the InitDram */
	/* And if necessary toggle the the reset on the dimms by hand */
	memreset(controllers, ctrl);

	for (i = 0; i < controllers; i++) {
		uint32_t dcl, dch;
		if (!controller_present(ctrl + i))
			continue;
		/* Skip everything if I don't have any memory on this controller */
		dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH);
		if (!(dch & DCH_MEMCLK_VALID)) {
			continue;
		}

		/* Toggle DisDqsHys to get it working */
		dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
		if (dcl & DCL_DimmEccEn) {
			uint32_t mnc;
			printk(BIOS_SPEW, "ECC enabled\n");
			mnc = pci_read_config32(ctrl[i].f3, MCA_NB_CONFIG);
			mnc |= MNC_ECC_EN;
			if (dcl & DCL_128BitEn) {
				mnc |= MNC_CHIPKILL_EN;
			}
			pci_write_config32(ctrl[i].f3, MCA_NB_CONFIG, mnc);
		}

		if (!suspend) {
			dcl |= DCL_DisDqsHys;
			pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
		}
		dcl &= ~DCL_DisDqsHys;
		dcl &= ~DCL_DLL_Disable;
		dcl &= ~DCL_D_DRV;
		dcl &= ~DCL_QFC_EN;

		if (suspend) {
			enable_lapic();
			init_timer();
			dcl |= (DCL_ESR | DCL_SRS);
			/* Handle errata 85 Insufficient Delay Between MEMCLK Startup
			   and CKE Assertion During Resume From S3 */
			udelay(10); /* for unregistered */
			if (is_registered(&ctrl[i])) {
				udelay(100); /* 110us for registered (we wait 10us already) */
			}
			whatWait = DCL_ESR;
		} else {
			dcl |= DCL_DramInit;
			whatWait = DCL_DramInit;
		}
		pci_write_config32(ctrl[i].f2, DRAM_CONFIG_LOW, dcl);
	}

	for (i = 0; i < controllers; i++) {
		uint32_t dcl, dch;
		if (!controller_present(ctrl + i))
			continue;
		/* Skip everything if I don't have any memory on this controller */
		dch = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_HIGH);
		if (!(dch & DCH_MEMCLK_VALID)) {
			continue;
		}

		printk(BIOS_DEBUG, "Initializing memory: ");
		int loops = 0;
		do {
			dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
			loops++;
			if ((loops & 1023) == 0) {
				printk(BIOS_DEBUG, ".");
			}
		} while (((dcl & whatWait) != 0) && (loops < TIMEOUT_LOOPS));
		if (loops >= TIMEOUT_LOOPS) {
			printk(BIOS_DEBUG, " failed\n");
			continue;
		}

		if (!is_cpu_pre_c0()) {
			/* Wait until it is safe to touch memory */
			do {
				dcl = pci_read_config32(ctrl[i].f2, DRAM_CONFIG_LOW);
			} while (((dcl & DCL_MemClrStatus) == 0) || ((dcl & DCL_DramEnable) == 0) ||
					((dcl & DCL_SRS)));
		}

		printk(BIOS_DEBUG, " done\n");
	}

#if CONFIG_HW_MEM_HOLE_SIZEK != 0
	 // init hw mem hole here
	/* DramHoleValid bit only can be set after MemClrStatus is set by Hardware */
	if (!is_cpu_pre_e0())
		set_hw_mem_hole(controllers, ctrl);
#endif

	//FIXME add enable node interleaving here -- yhlu
	/*needed?
		1. check how many nodes we have , if not all has RAM installed get out
		2. check cs_base lo is 0, node 0 f2 0x40,,,,, if any one is not using lo is CS_BASE, get out
		3. check if other node is the same as node 0 about f2 0x40,,,,, otherwise get out
		4. if all ready enable node_interleaving in f1 0x40..... of every node
		5. for node interleaving we need to set mem hole to every node (need recalcute hole offset in f0 for every node)
	*/

}

void set_sysinfo_in_ram(unsigned val)
{
}

void fill_mem_ctrl(int controllers, struct mem_controller *ctrl_a,
			  const uint16_t *spd_addr)
{
	int i;
	int j;
	struct mem_controller *ctrl;
	for (i = 0; i < controllers; i++) {
		ctrl = &ctrl_a[i];
		ctrl->node_id = i;
		ctrl->f0 = PCI_DEV(0, 0x18+i, 0);
		ctrl->f1 = PCI_DEV(0, 0x18+i, 1);
		ctrl->f2 = PCI_DEV(0, 0x18+i, 2);
		ctrl->f3 = PCI_DEV(0, 0x18+i, 3);

		if (spd_addr == (void *)0) continue;

		for (j = 0; j < DIMM_SOCKETS; j++) {
			ctrl->channel0[j] = spd_addr[(i*2+0)*DIMM_SOCKETS + j];
			ctrl->channel1[j] = spd_addr[(i*2+1)*DIMM_SOCKETS + j];
		}
	}
}