/** @file Stateful and implicitly initialized fw_cfg library implementation. Copyright (C) 2013 - 2014, Red Hat, Inc. Copyright (c) 2011 - 2013, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include #include #include STATIC UINTN mFwCfgSelectorAddress; STATIC UINTN mFwCfgDataAddress; STATIC UINTN mFwCfgDmaAddress; /** Reads firmware configuration bytes into a buffer @param[in] Size Size in bytes to read @param[in] Buffer Buffer to store data into (OPTIONAL if Size is 0) **/ typedef VOID (EFIAPI READ_BYTES_FUNCTION) ( IN UINTN Size, IN VOID *Buffer OPTIONAL ); /** Writes bytes from a buffer to firmware configuration @param[in] Size Size in bytes to write @param[in] Buffer Buffer to transfer data from (OPTIONAL if Size is 0) **/ typedef VOID (EFIAPI WRITE_BYTES_FUNCTION) ( IN UINTN Size, IN VOID *Buffer OPTIONAL ); /** Skips bytes in firmware configuration @param[in] Size Size in bytes to skip **/ typedef VOID (EFIAPI SKIP_BYTES_FUNCTION) ( IN UINTN Size ); // // Forward declaration of the two implementations we have. // STATIC READ_BYTES_FUNCTION MmioReadBytes; STATIC WRITE_BYTES_FUNCTION MmioWriteBytes; STATIC SKIP_BYTES_FUNCTION MmioSkipBytes; STATIC READ_BYTES_FUNCTION DmaReadBytes; STATIC WRITE_BYTES_FUNCTION DmaWriteBytes; STATIC SKIP_BYTES_FUNCTION DmaSkipBytes; // // These correspond to the implementation we detect at runtime. // STATIC READ_BYTES_FUNCTION *InternalQemuFwCfgReadBytes = MmioReadBytes; STATIC WRITE_BYTES_FUNCTION *InternalQemuFwCfgWriteBytes = MmioWriteBytes; STATIC SKIP_BYTES_FUNCTION *InternalQemuFwCfgSkipBytes = MmioSkipBytes; /** Returns a boolean indicating if the firmware configuration interface is available or not. This function may change fw_cfg state. @retval TRUE The interface is available @retval FALSE The interface is not available **/ BOOLEAN EFIAPI QemuFwCfgIsAvailable ( VOID ) { return (BOOLEAN)(mFwCfgSelectorAddress != 0 && mFwCfgDataAddress != 0); } RETURN_STATUS EFIAPI QemuFwCfgInitialize ( VOID ) { EFI_STATUS Status; FDT_CLIENT_PROTOCOL *FdtClient; CONST UINT64 *Reg; UINT32 RegSize; UINTN AddressCells, SizeCells; UINT64 FwCfgSelectorAddress; UINT64 FwCfgSelectorSize; UINT64 FwCfgDataAddress; UINT64 FwCfgDataSize; UINT64 FwCfgDmaAddress; UINT64 FwCfgDmaSize; Status = gBS->LocateProtocol (&gFdtClientProtocolGuid, NULL, (VOID **)&FdtClient); ASSERT_EFI_ERROR (Status); Status = FdtClient->FindCompatibleNodeReg (FdtClient, "qemu,fw-cfg-mmio", (CONST VOID **)&Reg, &AddressCells, &SizeCells, &RegSize); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_WARN, "%a: No 'qemu,fw-cfg-mmio' compatible DT node found (Status == %r)\n", __FUNCTION__, Status)); return EFI_SUCCESS; } ASSERT (AddressCells == 2); ASSERT (SizeCells == 2); ASSERT (RegSize == 2 * sizeof (UINT64)); FwCfgDataAddress = SwapBytes64 (Reg[0]); FwCfgDataSize = 8; FwCfgSelectorAddress = FwCfgDataAddress + FwCfgDataSize; FwCfgSelectorSize = 2; // // The following ASSERT()s express // // Address + Size - 1 <= MAX_UINTN // // for both registers, that is, that the last byte in each MMIO range is // expressible as a MAX_UINTN. The form below is mathematically // equivalent, and it also prevents any unsigned overflow before the // comparison. // ASSERT (FwCfgSelectorAddress <= MAX_UINTN - FwCfgSelectorSize + 1); ASSERT (FwCfgDataAddress <= MAX_UINTN - FwCfgDataSize + 1); mFwCfgSelectorAddress = FwCfgSelectorAddress; mFwCfgDataAddress = FwCfgDataAddress; DEBUG ((EFI_D_INFO, "Found FwCfg @ 0x%Lx/0x%Lx\n", FwCfgSelectorAddress, FwCfgDataAddress)); if (SwapBytes64 (Reg[1]) >= 0x18) { FwCfgDmaAddress = FwCfgDataAddress + 0x10; FwCfgDmaSize = 0x08; // // See explanation above. // ASSERT (FwCfgDmaAddress <= MAX_UINTN - FwCfgDmaSize + 1); DEBUG ((EFI_D_INFO, "Found FwCfg DMA @ 0x%Lx\n", FwCfgDmaAddress)); } else { FwCfgDmaAddress = 0; } if (QemuFwCfgIsAvailable ()) { UINT32 Signature; QemuFwCfgSelectItem (QemuFwCfgItemSignature); Signature = QemuFwCfgRead32 (); if (Signature == SIGNATURE_32 ('Q', 'E', 'M', 'U')) { // // For DMA support, we require the DTB to advertise the register, and the // feature bitmap (which we read without DMA) to confirm the feature. // if (FwCfgDmaAddress != 0) { UINT32 Features; QemuFwCfgSelectItem (QemuFwCfgItemInterfaceVersion); Features = QemuFwCfgRead32 (); if ((Features & FW_CFG_F_DMA) != 0) { mFwCfgDmaAddress = FwCfgDmaAddress; InternalQemuFwCfgReadBytes = DmaReadBytes; InternalQemuFwCfgWriteBytes = DmaWriteBytes; InternalQemuFwCfgSkipBytes = DmaSkipBytes; } } } else { mFwCfgSelectorAddress = 0; mFwCfgDataAddress = 0; } } return RETURN_SUCCESS; } /** Selects a firmware configuration item for reading. Following this call, any data read from this item will start from the beginning of the configuration item's data. @param[in] QemuFwCfgItem Firmware Configuration item to read **/ VOID EFIAPI QemuFwCfgSelectItem ( IN FIRMWARE_CONFIG_ITEM QemuFwCfgItem ) { if (QemuFwCfgIsAvailable ()) { MmioWrite16 (mFwCfgSelectorAddress, SwapBytes16 ((UINT16)QemuFwCfgItem)); } } /** Slow READ_BYTES_FUNCTION. **/ STATIC VOID EFIAPI MmioReadBytes ( IN UINTN Size, IN VOID *Buffer OPTIONAL ) { UINTN Left; UINT8 *Ptr; UINT8 *End; #ifdef MDE_CPU_AARCH64 Left = Size & 7; #else Left = Size & 3; #endif Size -= Left; Ptr = Buffer; End = Ptr + Size; #ifdef MDE_CPU_AARCH64 while (Ptr < End) { *(UINT64 *)Ptr = MmioRead64 (mFwCfgDataAddress); Ptr += 8; } if (Left & 4) { *(UINT32 *)Ptr = MmioRead32 (mFwCfgDataAddress); Ptr += 4; } #else while (Ptr < End) { *(UINT32 *)Ptr = MmioRead32 (mFwCfgDataAddress); Ptr += 4; } #endif if (Left & 2) { *(UINT16 *)Ptr = MmioRead16 (mFwCfgDataAddress); Ptr += 2; } if (Left & 1) { *Ptr = MmioRead8 (mFwCfgDataAddress); } } /** Transfer an array of bytes, or skip a number of bytes, using the DMA interface. @param[in] Size Size in bytes to transfer or skip. @param[in,out] Buffer Buffer to read data into or write data from. Ignored, and may be NULL, if Size is zero, or Control is FW_CFG_DMA_CTL_SKIP. @param[in] Control One of the following: FW_CFG_DMA_CTL_WRITE - write to fw_cfg from Buffer. FW_CFG_DMA_CTL_READ - read from fw_cfg into Buffer. FW_CFG_DMA_CTL_SKIP - skip bytes in fw_cfg. **/ STATIC VOID DmaTransferBytes ( IN UINTN Size, IN OUT VOID *Buffer OPTIONAL, IN UINT32 Control ) { volatile FW_CFG_DMA_ACCESS Access; UINT32 Status; ASSERT (Control == FW_CFG_DMA_CTL_WRITE || Control == FW_CFG_DMA_CTL_READ || Control == FW_CFG_DMA_CTL_SKIP); if (Size == 0) { return; } ASSERT (Size <= MAX_UINT32); Access.Control = SwapBytes32 (Control); Access.Length = SwapBytes32 ((UINT32)Size); Access.Address = SwapBytes64 ((UINT64)(UINTN)Buffer); // // We shouldn't start the transfer before setting up Access. // MemoryFence (); // // This will fire off the transfer. // #ifdef MDE_CPU_AARCH64 MmioWrite64 (mFwCfgDmaAddress, SwapBytes64 ((UINT64)&Access)); #else MmioWrite32 ((UINT32)(mFwCfgDmaAddress + 4), SwapBytes32 ((UINT32)&Access)); #endif // // We shouldn't look at Access.Control before starting the transfer. // MemoryFence (); do { Status = SwapBytes32 (Access.Control); ASSERT ((Status & FW_CFG_DMA_CTL_ERROR) == 0); } while (Status != 0); // // The caller will want to access the transferred data. // MemoryFence (); } /** Fast READ_BYTES_FUNCTION. **/ STATIC VOID EFIAPI DmaReadBytes ( IN UINTN Size, IN VOID *Buffer OPTIONAL ) { DmaTransferBytes (Size, Buffer, FW_CFG_DMA_CTL_READ); } /** Reads firmware configuration bytes into a buffer If called multiple times, then the data read will continue at the offset of the firmware configuration item where the previous read ended. @param[in] Size Size in bytes to read @param[in] Buffer Buffer to store data into **/ VOID EFIAPI QemuFwCfgReadBytes ( IN UINTN Size, IN VOID *Buffer ) { if (QemuFwCfgIsAvailable ()) { InternalQemuFwCfgReadBytes (Size, Buffer); } else { ZeroMem (Buffer, Size); } } /** Slow WRITE_BYTES_FUNCTION. **/ STATIC VOID EFIAPI MmioWriteBytes ( IN UINTN Size, IN VOID *Buffer OPTIONAL ) { UINTN Idx; for (Idx = 0; Idx < Size; ++Idx) { MmioWrite8 (mFwCfgDataAddress, ((UINT8 *)Buffer)[Idx]); } } /** Fast WRITE_BYTES_FUNCTION. **/ STATIC VOID EFIAPI DmaWriteBytes ( IN UINTN Size, IN VOID *Buffer OPTIONAL ) { DmaTransferBytes (Size, Buffer, FW_CFG_DMA_CTL_WRITE); } /** Write firmware configuration bytes from a buffer If called multiple times, then the data written will continue at the offset of the firmware configuration item where the previous write ended. @param[in] Size Size in bytes to write @param[in] Buffer Buffer to read data from **/ VOID EFIAPI QemuFwCfgWriteBytes ( IN UINTN Size, IN VOID *Buffer ) { if (QemuFwCfgIsAvailable ()) { InternalQemuFwCfgWriteBytes (Size, Buffer); } } /** Slow SKIP_BYTES_FUNCTION. **/ STATIC VOID EFIAPI MmioSkipBytes ( IN UINTN Size ) { UINTN ChunkSize; UINT8 SkipBuffer[256]; // // Emulate the skip by reading data in chunks, and throwing it away. The // implementation below doesn't affect the static data footprint for client // modules. Large skips are not expected, therefore this fallback is not // performance critical. The size of SkipBuffer is thought not to exert a // large pressure on the stack. // while (Size > 0) { ChunkSize = MIN (Size, sizeof SkipBuffer); MmioReadBytes (ChunkSize, SkipBuffer); Size -= ChunkSize; } } /** Fast SKIP_BYTES_FUNCTION. **/ STATIC VOID EFIAPI DmaSkipBytes ( IN UINTN Size ) { DmaTransferBytes (Size, NULL, FW_CFG_DMA_CTL_SKIP); } /** Skip bytes in the firmware configuration item. Increase the offset of the firmware configuration item without transferring bytes between the item and a caller-provided buffer. Subsequent read, write or skip operations will commence at the increased offset. @param[in] Size Number of bytes to skip. **/ VOID EFIAPI QemuFwCfgSkipBytes ( IN UINTN Size ) { if (QemuFwCfgIsAvailable ()) { InternalQemuFwCfgSkipBytes (Size); } } /** Reads a UINT8 firmware configuration value @return Value of Firmware Configuration item read **/ UINT8 EFIAPI QemuFwCfgRead8 ( VOID ) { UINT8 Result; QemuFwCfgReadBytes (sizeof Result, &Result); return Result; } /** Reads a UINT16 firmware configuration value @return Value of Firmware Configuration item read **/ UINT16 EFIAPI QemuFwCfgRead16 ( VOID ) { UINT16 Result; QemuFwCfgReadBytes (sizeof Result, &Result); return Result; } /** Reads a UINT32 firmware configuration value @return Value of Firmware Configuration item read **/ UINT32 EFIAPI QemuFwCfgRead32 ( VOID ) { UINT32 Result; QemuFwCfgReadBytes (sizeof Result, &Result); return Result; } /** Reads a UINT64 firmware configuration value @return Value of Firmware Configuration item read **/ UINT64 EFIAPI QemuFwCfgRead64 ( VOID ) { UINT64 Result; QemuFwCfgReadBytes (sizeof Result, &Result); return Result; } /** Find the configuration item corresponding to the firmware configuration file. @param[in] Name Name of file to look up. @param[out] Item Configuration item corresponding to the file, to be passed to QemuFwCfgSelectItem (). @param[out] Size Number of bytes in the file. @retval RETURN_SUCCESS If file is found. @retval RETURN_NOT_FOUND If file is not found. @retval RETURN_UNSUPPORTED If firmware configuration is unavailable. **/ RETURN_STATUS EFIAPI QemuFwCfgFindFile ( IN CONST CHAR8 *Name, OUT FIRMWARE_CONFIG_ITEM *Item, OUT UINTN *Size ) { UINT32 Count; UINT32 Idx; if (!QemuFwCfgIsAvailable ()) { return RETURN_UNSUPPORTED; } QemuFwCfgSelectItem (QemuFwCfgItemFileDir); Count = SwapBytes32 (QemuFwCfgRead32 ()); for (Idx = 0; Idx < Count; ++Idx) { UINT32 FileSize; UINT16 FileSelect; CHAR8 FName[QEMU_FW_CFG_FNAME_SIZE]; FileSize = QemuFwCfgRead32 (); FileSelect = QemuFwCfgRead16 (); QemuFwCfgRead16 (); // skip the field called "reserved" InternalQemuFwCfgReadBytes (sizeof (FName), FName); if (AsciiStrCmp (Name, FName) == 0) { *Item = (FIRMWARE_CONFIG_ITEM) SwapBytes16 (FileSelect); *Size = SwapBytes32 (FileSize); return RETURN_SUCCESS; } } return RETURN_NOT_FOUND; }