/** @file Library to abstract runtime services Copyright (c) 2006, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #ifndef __UEFI_RUNTIME_LIB__ #define __UEFI_RUNTIME_LIB__ extern const EFI_EVENT_NOTIFY _gDriverExitBootServicesEvent[]; extern const EFI_EVENT_NOTIFY _gDriverSetVirtualAddressMapEvent[]; /** Check to see if the execute context is in Runtime phase or not. @param None. @retval TRUE The driver is in SMM. @retval FALSE The driver is not in SMM. **/ BOOLEAN EFIAPI EfiAtRuntime ( VOID ); /** Check to see if the SetVirtualAddressMsp() is invoked or not. @retval TRUE SetVirtualAddressMsp() has been called. @retval FALSE SetVirtualAddressMsp() has not been called. **/ BOOLEAN EFIAPI EfiGoneVirtual ( VOID ); /** Return current time and date information, and time-keeping capabilities of hardware platform. @param Time A pointer to storage to receive a snapshot of the current time. @param Capabilities An optional pointer to a buffer to receive the real time clock device's capabilities. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiGetTime ( OUT EFI_TIME *Time, OUT EFI_TIME_CAPABILITIES *Capabilities ); /** Set current time and date information. @param Time A pointer to cache of time setting. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to execute the function. **/ EFI_STATUS EFIAPI EfiSetTime ( IN EFI_TIME *Time ); /** Return current wakeup alarm clock setting. @param Enabled Indicate if the alarm clock is enabled or disabled. @param Pending Indicate if the alarm signal is pending and requires acknowledgement. @param Time Current alarm clock setting. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiGetWakeupTime ( OUT BOOLEAN *Enabled, OUT BOOLEAN *Pending, OUT EFI_TIME *Time ); /** Set current wakeup alarm clock. @param Enable Enable or disable current alarm clock.. @param Time Point to alarm clock setting. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiSetWakeupTime ( IN BOOLEAN Enable, IN EFI_TIME *Time ); /** Return value of variable. @param VariableName the name of the vendor's variable, it's a Null-Terminated Unicode String @param VendorGuid Unify identifier for vendor. @param Attributes Point to memory location to return the attributes of variable. If the point is NULL, the parameter would be ignored. @param DataSize As input, point to the maxinum size of return Data-Buffer. As output, point to the actual size of the returned Data-Buffer. @param Data Point to return Data-Buffer. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiGetVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, OUT UINT32 *Attributes, IN OUT UINTN *DataSize, OUT VOID *Data ); /** Enumerates variable's name. @param VariableNameSize As input, point to maxinum size of variable name. As output, point to actual size of varaible name. @param VariableName As input, supplies the last VariableName that was returned by GetNextVariableName(). As output, returns the name of variable. The name string is Null-Terminated Unicode string. @param VendorGuid As input, supplies the last VendorGuid that was returned by GetNextVriableName(). As output, returns the VendorGuid of the current variable. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiGetNextVariableName ( IN OUT UINTN *VariableNameSize, IN OUT CHAR16 *VariableName, IN OUT EFI_GUID *VendorGuid ); /** Sets value of variable. @param VariableName the name of the vendor's variable, it's a Null-Terminated Unicode String @param VendorGuid Unify identifier for vendor. @param Attributes Point to memory location to return the attributes of variable. If the point is NULL, the parameter would be ignored. @param DataSize The size in bytes of Data-Buffer. @param Data Point to the content of the variable. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiSetVariable ( IN CHAR16 *VariableName, IN EFI_GUID *VendorGuid, IN UINT32 Attributes, IN UINTN DataSize, IN VOID *Data ); /** Returns the next high 32 bits of platform's monotonic counter. @param HighCount Pointer to returned value. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiGetNextHighMonotonicCount ( OUT UINT32 *HighCount ); /** Resets the entire platform. @param ResetType The type of reset to perform. @param ResetStatus The status code for reset. @param DataSize The size in bytes of reset data. @param ResetData Pointer to data buffer that includes Null-Terminated Unicode string. **/ VOID EfiResetSystem ( IN EFI_RESET_TYPE ResetType, IN EFI_STATUS ResetStatus, IN UINTN DataSize, IN CHAR16 *ResetData ); /** Determines the new virtual address that is to be used on subsequent memory accesses. @param DebugDisposition Supplies type information for the pointer being converted. @param Address The pointer to a pointer that is to be fixed to be the value needed for the new virtual address mapping being applied. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiConvertPointer ( IN UINTN DebugDisposition, IN OUT VOID **Address ); /** Change the runtime addressing mode of EFI firmware from physical to virtual. @param MemoryMapSize The size in bytes of VirtualMap. @param DescriptorSize The size in bytes of an entry in the VirtualMap. @param DescriptorVersion The version of the structure entries in VirtualMap. @param VirtualMap An array of memory descriptors which contain new virtual address mapping information for all runtime ranges. Type EFI_MEMORY_DESCRIPTOR is defined in the GetMemoryMap() function description. @retval EFI_SUCCESS The virtual address map has been applied. @retval EFI_UNSUPPORTED EFI firmware is not at runtime, or the EFI firmware is already in virtual address mapped mode. @retval EFI_INVALID_PARAMETER DescriptorSize or DescriptorVersion is invalid. @retval EFI_NO_MAPPING A virtual address was not supplied for a range in the memory map that requires a mapping. @retval EFI_NOT_FOUND A virtual address was supplied for an address that is not found in the memory map. **/ EFI_STATUS EFIAPI EfiSetVirtualAddressMap ( IN UINTN MemoryMapSize, IN UINTN DescriptorSize, IN UINT32 DescriptorVersion, IN CONST EFI_MEMORY_DESCRIPTOR *VirtualMap ); /** Convert the standard Lib double linked list to a virtual mapping. @param DebugDisposition Supplies type information for the pointer being converted. @param ListHead Head of linked list to convert. @retval EFI_SUCCESS Success to execute the function. @retval !EFI_SUCCESS Failed to e3xecute the function. **/ EFI_STATUS EFIAPI EfiConvertList ( IN UINTN DebugDisposition, IN OUT LIST_ENTRY *ListHead ); /** Passes capsules to the firmware with both virtual and physical mapping. Depending on the intended consumption, the firmware may process the capsule immediately. If the payload should persist across a system reset, the reset value returned from EFI_QueryCapsuleCapabilities must be passed into ResetSystem() and will cause the capsule to be processed by the firmware as part of the reset process. @param CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules being passed into update capsule. Each capsules is assumed to stored in contiguous virtual memory. The capsules in the CapsuleHeaderArray must be the same capsules as the ScatterGatherList. The CapsuleHeaderArray must have the capsules in the same order as the ScatterGatherList. @param CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in CaspuleHeaderArray. @param ScatterGatherList Physical pointer to a set of EFI_CAPSULE_BLOCK_DESCRIPTOR that describes the location in physical memory of a set of capsules. See Related Definitions for an explanation of how more than one capsule is passed via this interface. The capsules in the ScatterGatherList must be in the same order as the CapsuleHeaderArray. This parameter is only referenced if the capsules are defined to persist across system reset. @retval EFI_SUCCESS Valid capsule was passed. I Valid capsule was passed. If CAPSULE_FLAGS_PERSIT_ACROSS_RESET is not set, the capsule has been successfully processed by the firmware. @retval EFI_INVALID_PARAMETER CapsuleSize is NULL or ResetTye is NULL. @retval EFI_DEVICE_ERROR The capsule update was started, but failed due to a device error. **/ EFI_STATUS EFIAPI EfiUpdateCapsule ( IN EFI_CAPSULE_HEADER **CapsuleHeaderArray, IN UINTN CapsuleCount, IN EFI_PHYSICAL_ADDRESS ScatterGatherList ); /** The QueryCapsuleCapabilities() function allows a caller to test to see if a capsule or capsules can be updated via UpdateCapsule(). The Flags values in the capsule header and size of the entire capsule is checked. If the caller needs to query for generic capsule capability a fake EFI_CAPSULE_HEADER can be constructed where CapsuleImageSize is equal to HeaderSize that is equal to sizeof (EFI_CAPSULE_HEADER). To determine reset requirements, CAPSULE_FLAGS_PERSIST_ACROSS_RESET should be set in the Flags field of the EFI_CAPSULE_HEADER. The firmware must support any capsule that has the CAPSULE_FLAGS_PERSIST_ACROSS_RESET flag set in EFI_CAPSULE_HEADER. The firmware sets the policy for what capsules are supported that do not have the CAPSULE_FLAGS_PERSIST_ACROSS_RESET flag set. @param CapsuleHeaderArray Virtual pointer to an array of virtual pointers to the capsules being passed into update capsule. The capsules are assumed to stored in contiguous virtual memory. @param CapsuleCount Number of pointers to EFI_CAPSULE_HEADER in CaspuleHeaderArray. @param MaxiumCapsuleSize On output the maximum size that UpdateCapsule() can support as an argument to UpdateCapsule() via CapsuleHeaderArray and ScatterGatherList. Undefined on input. @param ResetType Returns the type of reset required for the capsule update. @retval EFI_SUCCESS Valid answer returned.. @retval EFI_INVALID_PARAMETER MaximumCapsuleSize is NULL. @retval EFI_UNSUPPORTED The capsule type is not supported on this platform, and MaximumCapsuleSize and ResetType are undefined. **/ EFI_STATUS EFIAPI EfiQueryCapsuleCapabilities ( IN EFI_CAPSULE_HEADER **CapsuleHeaderArray, IN UINTN CapsuleCount, OUT UINT64 *MaximumCapsuleSize, OUT EFI_RESET_TYPE *ResetType ); /** The QueryVariableInfo() function allows a caller to obtain the information about the maximum size of the storage space available for the EFI variables, the remaining size of the storage space available for the EFI variables and the maximum size of each individual EFI variable, associated with the attributes specified. The returned MaximumVariableStorageSize, RemainingVariableStorageSize, MaximumVariableSize information may change immediately after the call based on other runtime activities including asynchronous error events. Also, these values associated with different attributes are not additive in nature. @param Attributes Attributes bitmask to specify the type of variables on which to return information. Refer to the GetVariable() function description. @param MaximumVariableStorageSize On output the maximum size of the storage space available for the EFI variables associated with the attributes specified. @param RemainingVariableStorageSize Returns the remaining size of the storage space available for the EFI variables associated with the attributes specified.. @param MaximumVariableSize Returns the maximum size of the individual EFI variables associated with the attributes specified. @retval EFI_SUCCESS Valid answer returned. @retval EFI_INVALID_PARAMETER An invalid combination of attribute bits was supplied. @retval EFI_UNSUPPORTED EFI_UNSUPPORTED The attribute is not supported on this platform, and the MaximumVariableStorageSize, RemainingVariableStorageSize, MaximumVariableSize are undefined. **/ EFI_STATUS EFIAPI EfiQueryVariableInfo ( IN UINT32 Attrubutes, OUT UINT64 *MaximumVariableStorageSize, OUT UINT64 *RemainingVariableStorageSize, OUT UINT64 *MaximumVariableSize ); #endif