/** @file The implementation of EFI IPv6 Configuration Protocol. Copyright (c) 2009 - 2018, Intel Corporation. All rights reserved.
Copyright (c) Microsoft Corporation.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "Ip6Impl.h" LIST_ENTRY mIp6ConfigInstanceList = {&mIp6ConfigInstanceList, &mIp6ConfigInstanceList}; /** The event process routine when the DHCPv6 service binding protocol is installed in the system. @param[in] Event Not used. @param[in] Context Pointer to the IP6 config instance data. **/ VOID EFIAPI Ip6ConfigOnDhcp6SbInstalled ( IN EFI_EVENT Event, IN VOID *Context ); /** Update the current policy to NewPolicy. During the transition period, the default router list, on-link prefix list, autonomous prefix list and address list in all interfaces will be released. @param[in] IpSb The IP6 service binding instance. @param[in] NewPolicy The new policy to be updated to. **/ VOID Ip6ConfigOnPolicyChanged ( IN IP6_SERVICE *IpSb, IN EFI_IP6_CONFIG_POLICY NewPolicy ) { LIST_ENTRY *Entry; LIST_ENTRY *Entry2; LIST_ENTRY *Next; IP6_INTERFACE *IpIf; IP6_DAD_ENTRY *DadEntry; IP6_DELAY_JOIN_LIST *DelayNode; IP6_ADDRESS_INFO *AddrInfo; IP6_PROTOCOL *Instance; BOOLEAN Recovery; Recovery = FALSE; // // Currently there are only two policies: Manual and Automatic. Regardless of // what transition is going on, i.e., Manual -> Automatic and Automatic -> // Manual, we have to free default router list, on-link prefix list, autonomous // prefix list, address list in all the interfaces and destroy any IPv6 child // instance whose local IP is neither 0 nor the link-local address. // Ip6CleanDefaultRouterList (IpSb); Ip6CleanPrefixListTable (IpSb, &IpSb->OnlinkPrefix); Ip6CleanPrefixListTable (IpSb, &IpSb->AutonomousPrefix); // // It's tricky... If the LinkLocal address is O.K., add back the link-local // prefix to the on-link prefix table. // if (IpSb->LinkLocalOk) { Ip6CreatePrefixListEntry ( IpSb, TRUE, (UINT32) IP6_INFINIT_LIFETIME, (UINT32) IP6_INFINIT_LIFETIME, IP6_LINK_LOCAL_PREFIX_LENGTH, &IpSb->LinkLocalAddr ); } if (!IsListEmpty (&IpSb->DefaultInterface->AddressList) && IpSb->DefaultInterface->AddressCount > 0) { // // If any IPv6 children (Instance) in configured state and use global unicast address, it will be // destroyed in Ip6RemoveAddr() function later. Then, the upper layer driver's Stop() function will be // called, which may break the upper layer network stacks. So, the driver should take the responsibility // for the recovery by using ConnectController() after Ip6RemoveAddr(). // Here, just check whether need to recover the upper layer network stacks later. // NET_LIST_FOR_EACH (Entry, &IpSb->DefaultInterface->AddressList) { AddrInfo = NET_LIST_USER_STRUCT_S (Entry, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE); if (!IsListEmpty (&IpSb->Children)) { NET_LIST_FOR_EACH (Entry2, &IpSb->Children) { Instance = NET_LIST_USER_STRUCT_S (Entry2, IP6_PROTOCOL, Link, IP6_PROTOCOL_SIGNATURE); if ((Instance->State == IP6_STATE_CONFIGED) && EFI_IP6_EQUAL (&Instance->ConfigData.StationAddress, &AddrInfo->Address)) { Recovery = TRUE; break; } } } } // // All IPv6 children that use global unicast address as its source address // should be destroyed now. The survivers are those use the link-local address // or the unspecified address as the source address. // TODO: Conduct a check here. Ip6RemoveAddr ( IpSb, &IpSb->DefaultInterface->AddressList, &IpSb->DefaultInterface->AddressCount, NULL, 0 ); if (IpSb->Controller != NULL && Recovery) { // // ConnectController() to recover the upper layer network stacks. // gBS->ConnectController (IpSb->Controller, NULL, NULL, TRUE); } } NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) { // // remove all pending delay node and DAD entries for the global addresses. // IpIf = NET_LIST_USER_STRUCT_S (Entry, IP6_INTERFACE, Link, IP6_INTERFACE_SIGNATURE); NET_LIST_FOR_EACH_SAFE (Entry2, Next, &IpIf->DelayJoinList) { DelayNode = NET_LIST_USER_STRUCT (Entry2, IP6_DELAY_JOIN_LIST, Link); if (!NetIp6IsLinkLocalAddr (&DelayNode->AddressInfo->Address)) { RemoveEntryList (&DelayNode->Link); FreePool (DelayNode); } } NET_LIST_FOR_EACH_SAFE (Entry2, Next, &IpIf->DupAddrDetectList) { DadEntry = NET_LIST_USER_STRUCT_S (Entry2, IP6_DAD_ENTRY, Link, IP6_DAD_ENTRY_SIGNATURE); if (!NetIp6IsLinkLocalAddr (&DadEntry->AddressInfo->Address)) { // // Fail this DAD entry if the address is not link-local. // Ip6OnDADFinished (FALSE, IpIf, DadEntry); } } } if (NewPolicy == Ip6ConfigPolicyAutomatic) { // // Set parameters to trigger router solicitation sending in timer handler. // IpSb->RouterAdvertiseReceived = FALSE; IpSb->SolicitTimer = IP6_MAX_RTR_SOLICITATIONS; // // delay 1 second // IpSb->Ticks = (UINT32) IP6_GET_TICKS (IP6_ONE_SECOND_IN_MS); } } /** The work function to trigger the DHCPv6 process to perform a stateful autoconfiguration. @param[in] Instance Pointer to the IP6 config instance data. @param[in] OtherInfoOnly If FALSE, get stateful address and other information via DHCPv6. Otherwise, only get the other information. @retval EFI_SUCCESS The operation finished successfully. @retval EFI_UNSUPPORTED The DHCP6 driver is not available. **/ EFI_STATUS Ip6ConfigStartStatefulAutoConfig ( IN IP6_CONFIG_INSTANCE *Instance, IN BOOLEAN OtherInfoOnly ) { EFI_STATUS Status; IP6_SERVICE *IpSb; EFI_DHCP6_CONFIG_DATA Dhcp6CfgData; EFI_DHCP6_PROTOCOL *Dhcp6; EFI_DHCP6_PACKET_OPTION *OptList[1]; UINT16 OptBuf[4]; EFI_DHCP6_PACKET_OPTION *Oro; EFI_DHCP6_RETRANSMISSION InfoReqReXmit; // // A host must not invoke stateful address configuration if it is already // participating in the statuful protocol as a result of an earlier advertisement. // if (Instance->Dhcp6Handle != NULL) { return EFI_SUCCESS; } IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); Instance->OtherInfoOnly = OtherInfoOnly; Status = NetLibCreateServiceChild ( IpSb->Controller, IpSb->Image, &gEfiDhcp6ServiceBindingProtocolGuid, &Instance->Dhcp6Handle ); if (Status == EFI_UNSUPPORTED) { // // No DHCPv6 Service Binding protocol, register a notify. // if (Instance->Dhcp6SbNotifyEvent == NULL) { Instance->Dhcp6SbNotifyEvent = EfiCreateProtocolNotifyEvent ( &gEfiDhcp6ServiceBindingProtocolGuid, TPL_CALLBACK, Ip6ConfigOnDhcp6SbInstalled, (VOID *) Instance, &Instance->Registration ); } } if (EFI_ERROR (Status)) { return Status; } if (Instance->Dhcp6SbNotifyEvent != NULL) { gBS->CloseEvent (Instance->Dhcp6SbNotifyEvent); } Status = gBS->OpenProtocol ( Instance->Dhcp6Handle, &gEfiDhcp6ProtocolGuid, (VOID **) &Instance->Dhcp6, IpSb->Image, IpSb->Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); ASSERT_EFI_ERROR (Status); Dhcp6 = Instance->Dhcp6; Dhcp6->Configure (Dhcp6, NULL); // // Set the exta options to send. Here we only want the option request option // with DNS SERVERS. // Oro = (EFI_DHCP6_PACKET_OPTION *) OptBuf; Oro->OpCode = HTONS (DHCP6_OPT_ORO); Oro->OpLen = HTONS (2); *((UINT16 *) &Oro->Data[0]) = HTONS (DHCP6_OPT_DNS_SERVERS); OptList[0] = Oro; Status = EFI_SUCCESS; if (!OtherInfoOnly) { // // Get stateful address and other information via DHCPv6. // Dhcp6CfgData.Dhcp6Callback = NULL; Dhcp6CfgData.CallbackContext = NULL; Dhcp6CfgData.OptionCount = 1; Dhcp6CfgData.OptionList = &OptList[0]; Dhcp6CfgData.IaDescriptor.Type = EFI_DHCP6_IA_TYPE_NA; Dhcp6CfgData.IaDescriptor.IaId = Instance->IaId; Dhcp6CfgData.IaInfoEvent = Instance->Dhcp6Event; Dhcp6CfgData.ReconfigureAccept = FALSE; Dhcp6CfgData.RapidCommit = FALSE; Dhcp6CfgData.SolicitRetransmission = NULL; Status = Dhcp6->Configure (Dhcp6, &Dhcp6CfgData); if (!EFI_ERROR (Status)) { if (IpSb->LinkLocalOk) { Status = Dhcp6->Start (Dhcp6); } else { IpSb->Dhcp6NeedStart = TRUE; } } } else { // // Only get other information via DHCPv6, this doesn't require a config // action. // InfoReqReXmit.Irt = 4; InfoReqReXmit.Mrc = 64; InfoReqReXmit.Mrt = 60; InfoReqReXmit.Mrd = 0; if (IpSb->LinkLocalOk) { Status = Dhcp6->InfoRequest ( Dhcp6, TRUE, Oro, 0, NULL, &InfoReqReXmit, Instance->Dhcp6Event, Ip6ConfigOnDhcp6Reply, Instance ); } else { IpSb->Dhcp6NeedInfoRequest = TRUE; } } return Status; } /** Signal the registered event. It is the callback routine for NetMapIterate. @param[in] Map Points to the list of registered event. @param[in] Item The registered event. @param[in] Arg Not used. **/ EFI_STATUS EFIAPI Ip6ConfigSignalEvent ( IN NET_MAP *Map, IN NET_MAP_ITEM *Item, IN VOID *Arg ) { gBS->SignalEvent ((EFI_EVENT) Item->Key); return EFI_SUCCESS; } /** Read the configuration data from variable storage according to the VarName and gEfiIp6ConfigProtocolGuid. It checks the integrity of variable data. If the data is corrupted, it clears the variable data to ZERO. Otherwise, it outputs the configuration data to IP6_CONFIG_INSTANCE. @param[in] VarName The pointer to the variable name @param[in, out] Instance The pointer to the IP6 config instance data. @retval EFI_NOT_FOUND The variable can not be found or already corrupted. @retval EFI_OUT_OF_RESOURCES Fail to allocate resource to complete the operation. @retval EFI_SUCCESS The configuration data was retrieved successfully. **/ EFI_STATUS Ip6ConfigReadConfigData ( IN CHAR16 *VarName, IN OUT IP6_CONFIG_INSTANCE *Instance ) { EFI_STATUS Status; UINTN VarSize; IP6_CONFIG_VARIABLE *Variable; IP6_CONFIG_DATA_ITEM *DataItem; UINTN Index; IP6_CONFIG_DATA_RECORD DataRecord; CHAR8 *Data; // // Try to read the configuration variable. // VarSize = 0; Status = gRT->GetVariable ( VarName, &gEfiIp6ConfigProtocolGuid, NULL, &VarSize, NULL ); if (Status == EFI_BUFFER_TOO_SMALL) { // // Allocate buffer and read the config variable. // Variable = AllocatePool (VarSize); if (Variable == NULL) { return EFI_OUT_OF_RESOURCES; } Status = gRT->GetVariable ( VarName, &gEfiIp6ConfigProtocolGuid, NULL, &VarSize, Variable ); if (EFI_ERROR (Status) || (UINT16) (~NetblockChecksum ((UINT8 *) Variable, (UINT32) VarSize)) != 0) { // // GetVariable error or the variable is corrupted. // goto Error; } // // Get the IAID we use. // Instance->IaId = Variable->IaId; for (Index = 0; Index < Variable->DataRecordCount; Index++) { CopyMem (&DataRecord, &Variable->DataRecord[Index], sizeof (DataRecord)); DataItem = &Instance->DataItem[DataRecord.DataType]; if (DATA_ATTRIB_SET (DataItem->Attribute, DATA_ATTRIB_SIZE_FIXED) && (DataItem->DataSize != DataRecord.DataSize) ) { // // Perhaps a corrupted data record... // continue; } if (!DATA_ATTRIB_SET (DataItem->Attribute, DATA_ATTRIB_SIZE_FIXED)) { // // This data item has variable length data. // Check that the length is contained within the variable before allocating. // if (DataRecord.DataSize > VarSize - DataRecord.Offset) { goto Error; } DataItem->Data.Ptr = AllocatePool (DataRecord.DataSize); if (DataItem->Data.Ptr == NULL) { // // no memory resource // continue; } } Data = (CHAR8 *) Variable + DataRecord.Offset; CopyMem (DataItem->Data.Ptr, Data, DataRecord.DataSize); DataItem->DataSize = DataRecord.DataSize; DataItem->Status = EFI_SUCCESS; } FreePool (Variable); return EFI_SUCCESS; } return Status; Error: // // Fall back to the default value. // if (Variable != NULL) { FreePool (Variable); } // // Remove the problematic variable and return EFI_NOT_FOUND, a new // variable will be set again. // gRT->SetVariable ( VarName, &gEfiIp6ConfigProtocolGuid, IP6_CONFIG_VARIABLE_ATTRIBUTE, 0, NULL ); return EFI_NOT_FOUND; } /** Write the configuration data from IP6_CONFIG_INSTANCE to variable storage. @param[in] VarName The pointer to the variable name. @param[in] Instance The pointer to the IP6 configuration instance data. @retval EFI_OUT_OF_RESOURCES Fail to allocate resource to complete the operation. @retval EFI_SUCCESS The configuration data is written successfully. **/ EFI_STATUS Ip6ConfigWriteConfigData ( IN CHAR16 *VarName, IN IP6_CONFIG_INSTANCE *Instance ) { UINTN Index; UINTN VarSize; IP6_CONFIG_DATA_ITEM *DataItem; IP6_CONFIG_VARIABLE *Variable; IP6_CONFIG_DATA_RECORD *DataRecord; CHAR8 *Heap; EFI_STATUS Status; VarSize = sizeof (IP6_CONFIG_VARIABLE) - sizeof (IP6_CONFIG_DATA_RECORD); for (Index = 0; Index < Ip6ConfigDataTypeMaximum; Index++) { DataItem = &Instance->DataItem[Index]; if (!DATA_ATTRIB_SET (DataItem->Attribute, DATA_ATTRIB_VOLATILE) && !EFI_ERROR (DataItem->Status)) { VarSize += sizeof (IP6_CONFIG_DATA_RECORD) + DataItem->DataSize; } } Variable = AllocatePool (VarSize); if (Variable == NULL) { return EFI_OUT_OF_RESOURCES; } Variable->IaId = Instance->IaId; Heap = (CHAR8 *) Variable + VarSize; Variable->DataRecordCount = 0; for (Index = 0; Index < Ip6ConfigDataTypeMaximum; Index++) { DataItem = &Instance->DataItem[Index]; if (!DATA_ATTRIB_SET (DataItem->Attribute, DATA_ATTRIB_VOLATILE) && !EFI_ERROR (DataItem->Status)) { Heap -= DataItem->DataSize; CopyMem (Heap, DataItem->Data.Ptr, DataItem->DataSize); DataRecord = &Variable->DataRecord[Variable->DataRecordCount]; DataRecord->DataType = (EFI_IP6_CONFIG_DATA_TYPE) Index; DataRecord->DataSize = (UINT32) DataItem->DataSize; DataRecord->Offset = (UINT16) (Heap - (CHAR8 *) Variable); Variable->DataRecordCount++; } } Variable->Checksum = 0; Variable->Checksum = (UINT16) ~NetblockChecksum ((UINT8 *) Variable, (UINT32) VarSize); Status = gRT->SetVariable ( VarName, &gEfiIp6ConfigProtocolGuid, IP6_CONFIG_VARIABLE_ATTRIBUTE, VarSize, Variable ); FreePool (Variable); return Status; } /** The work function for EfiIp6ConfigGetData() to get the interface information of the communication device this IP6Config instance manages. @param[in] Instance Pointer to the IP6 config instance data. @param[in, out] DataSize On input, in bytes, the size of Data. On output, in bytes, the size of buffer required to store the specified configuration data. @param[in] Data The data buffer in which the configuration data is returned. Ignored if DataSize is ZERO. @retval EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified configuration data, and the required size is returned in DataSize. @retval EFI_SUCCESS The specified configuration data was obtained. **/ EFI_STATUS Ip6ConfigGetIfInfo ( IN IP6_CONFIG_INSTANCE *Instance, IN OUT UINTN *DataSize, IN VOID *Data OPTIONAL ) { IP6_SERVICE *IpSb; UINTN Length; IP6_CONFIG_DATA_ITEM *Item; EFI_IP6_CONFIG_INTERFACE_INFO *IfInfo; UINT32 AddressCount; UINT32 RouteCount; IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); Length = sizeof (EFI_IP6_CONFIG_INTERFACE_INFO); // // Calculate the required length, add the buffer size for AddressInfo and // RouteTable // Ip6BuildEfiAddressList (IpSb, &AddressCount, NULL); Ip6BuildEfiRouteTable (IpSb->RouteTable, &RouteCount, NULL); Length += AddressCount * sizeof (EFI_IP6_ADDRESS_INFO) + RouteCount * sizeof (EFI_IP6_ROUTE_TABLE); if (*DataSize < Length) { *DataSize = Length; return EFI_BUFFER_TOO_SMALL; } // // Copy the fixed size part of the interface info. // Item = &Instance->DataItem[Ip6ConfigDataTypeInterfaceInfo]; IfInfo = (EFI_IP6_CONFIG_INTERFACE_INFO *) Data; CopyMem (IfInfo, Item->Data.Ptr, sizeof (EFI_IP6_CONFIG_INTERFACE_INFO)); // // AddressInfo // IfInfo->AddressInfo = (EFI_IP6_ADDRESS_INFO *) (IfInfo + 1); Ip6BuildEfiAddressList (IpSb, &IfInfo->AddressInfoCount, &IfInfo->AddressInfo); // // RouteTable // IfInfo->RouteTable = (EFI_IP6_ROUTE_TABLE *) (IfInfo->AddressInfo + IfInfo->AddressInfoCount); Ip6BuildEfiRouteTable (IpSb->RouteTable, &IfInfo->RouteCount, &IfInfo->RouteTable); if (IfInfo->AddressInfoCount == 0) { IfInfo->AddressInfo = NULL; } if (IfInfo->RouteCount == 0) { IfInfo->RouteTable = NULL; } return EFI_SUCCESS; } /** The work function for EfiIp6ConfigSetData() to set the alternative interface ID for the communication device managed by this IP6Config instance, if the link local IPv6 addresses generated from the interface ID based on the default source the EFI IPv6 Protocol uses is a duplicate address. @param[in] Instance Pointer to the IP6 configuration instance data. @param[in] DataSize Size of the buffer pointed to by Data in bytes. @param[in] Data The data buffer to set. @retval EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type, 8 bytes. @retval EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack was set. **/ EFI_STATUS Ip6ConfigSetAltIfId ( IN IP6_CONFIG_INSTANCE *Instance, IN UINTN DataSize, IN VOID *Data ) { EFI_IP6_CONFIG_INTERFACE_ID *OldIfId; EFI_IP6_CONFIG_INTERFACE_ID *NewIfId; IP6_CONFIG_DATA_ITEM *DataItem; if (DataSize != sizeof (EFI_IP6_CONFIG_INTERFACE_ID)) { return EFI_BAD_BUFFER_SIZE; } DataItem = &Instance->DataItem[Ip6ConfigDataTypeAltInterfaceId]; OldIfId = DataItem->Data.AltIfId; NewIfId = (EFI_IP6_CONFIG_INTERFACE_ID *) Data; CopyMem (OldIfId, NewIfId, DataSize); DataItem->Status = EFI_SUCCESS; return EFI_SUCCESS; } /** The work function for EfiIp6ConfigSetData() to set the general configuration policy for the EFI IPv6 network stack that is running on the communication device managed by this IP6Config instance. The policy will affect other configuration settings. @param[in] Instance Pointer to the IP6 config instance data. @param[in] DataSize Size of the buffer pointed to by Data in bytes. @param[in] Data The data buffer to set. @retval EFI_INVALID_PARAMETER The to be set policy is invalid. @retval EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type. @retval EFI_ABORTED The new policy equals the current policy. @retval EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack was set. **/ EFI_STATUS Ip6ConfigSetPolicy ( IN IP6_CONFIG_INSTANCE *Instance, IN UINTN DataSize, IN VOID *Data ) { EFI_IP6_CONFIG_POLICY NewPolicy; IP6_CONFIG_DATA_ITEM *DataItem; IP6_SERVICE *IpSb; if (DataSize != sizeof (EFI_IP6_CONFIG_POLICY)) { return EFI_BAD_BUFFER_SIZE; } NewPolicy = *((EFI_IP6_CONFIG_POLICY *) Data); if (NewPolicy > Ip6ConfigPolicyAutomatic) { return EFI_INVALID_PARAMETER; } if (NewPolicy == Instance->Policy) { return EFI_ABORTED; } else { // // Clean the ManualAddress, Gateway and DnsServers, shrink the variable // data size, and fire up all the related events. // DataItem = &Instance->DataItem[Ip6ConfigDataTypeManualAddress]; if (DataItem->Data.Ptr != NULL) { FreePool (DataItem->Data.Ptr); } DataItem->Data.Ptr = NULL; DataItem->DataSize = 0; DataItem->Status = EFI_NOT_FOUND; NetMapIterate (&DataItem->EventMap, Ip6ConfigSignalEvent, NULL); DataItem = &Instance->DataItem[Ip6ConfigDataTypeGateway]; if (DataItem->Data.Ptr != NULL) { FreePool (DataItem->Data.Ptr); } DataItem->Data.Ptr = NULL; DataItem->DataSize = 0; DataItem->Status = EFI_NOT_FOUND; NetMapIterate (&DataItem->EventMap, Ip6ConfigSignalEvent, NULL); DataItem = &Instance->DataItem[Ip6ConfigDataTypeDnsServer]; DataItem->Data.Ptr = NULL; DataItem->DataSize = 0; DataItem->Status = EFI_NOT_FOUND; NetMapIterate (&DataItem->EventMap, Ip6ConfigSignalEvent, NULL); if (NewPolicy == Ip6ConfigPolicyManual) { // // The policy is changed from automatic to manual. Stop the DHCPv6 process // and destroy the DHCPv6 child. // if (Instance->Dhcp6Handle != NULL) { Ip6ConfigDestroyDhcp6 (Instance); } } IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); Ip6ConfigOnPolicyChanged (IpSb, NewPolicy); Instance->Policy = NewPolicy; return EFI_SUCCESS; } } /** The work function for EfiIp6ConfigSetData() to set the number of consecutive Neighbor Solicitation messages sent while performing Duplicate Address Detection on a tentative address. A value of ZERO indicates that Duplicate Address Detection will not be performed on a tentative address. @param[in] Instance The Instance Pointer to the IP6 config instance data. @param[in] DataSize Size of the buffer pointed to by Data in bytes. @param[in] Data The data buffer to set. @retval EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type. @retval EFI_ABORTED The new transmit count equals the current configuration. @retval EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack was set. **/ EFI_STATUS Ip6ConfigSetDadXmits ( IN IP6_CONFIG_INSTANCE *Instance, IN UINTN DataSize, IN VOID *Data ) { EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS *OldDadXmits; if (DataSize != sizeof (EFI_IP6_CONFIG_DUP_ADDR_DETECT_TRANSMITS)) { return EFI_BAD_BUFFER_SIZE; } OldDadXmits = Instance->DataItem[Ip6ConfigDataTypeDupAddrDetectTransmits].Data.DadXmits; if ((*(UINT32 *) Data) == OldDadXmits->DupAddrDetectTransmits) { return EFI_ABORTED; } else { OldDadXmits->DupAddrDetectTransmits = *((UINT32 *) Data); return EFI_SUCCESS; } } /** The callback function for Ip6SetAddr. The prototype is defined as IP6_DAD_CALLBACK. It is called after Duplicate Address Detection is performed for the manual address set by Ip6ConfigSetManualAddress. @param[in] IsDadPassed If TRUE, Duplicate Address Detection passed. @param[in] TargetAddress The tentative IPv6 address to be checked. @param[in] Context Pointer to the IP6 configuration instance data. **/ VOID Ip6ManualAddrDadCallback ( IN BOOLEAN IsDadPassed, IN EFI_IPv6_ADDRESS *TargetAddress, IN VOID *Context ) { IP6_CONFIG_INSTANCE *Instance; UINTN Index; IP6_CONFIG_DATA_ITEM *Item; EFI_IP6_CONFIG_MANUAL_ADDRESS *ManualAddr; EFI_IP6_CONFIG_MANUAL_ADDRESS *PassedAddr; UINTN DadPassCount; UINTN DadFailCount; IP6_SERVICE *IpSb; Instance = (IP6_CONFIG_INSTANCE *) Context; NET_CHECK_SIGNATURE (Instance, IP6_CONFIG_INSTANCE_SIGNATURE); Item = &Instance->DataItem[Ip6ConfigDataTypeManualAddress]; ManualAddr = NULL; if (Item->DataSize == 0) { return; } for (Index = 0; Index < Item->DataSize / sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS); Index++) { // // Find the original tag used to place into the NET_MAP. // ManualAddr = Item->Data.ManualAddress + Index; if (EFI_IP6_EQUAL (TargetAddress, &ManualAddr->Address)) { break; } } ASSERT (Index != Item->DataSize / sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS)); if (IsDadPassed) { NetMapInsertTail (&Instance->DadPassedMap, ManualAddr, NULL); } else { NetMapInsertTail (&Instance->DadFailedMap, ManualAddr, NULL); } DadPassCount = NetMapGetCount (&Instance->DadPassedMap); DadFailCount = NetMapGetCount (&Instance->DadFailedMap); if ((DadPassCount + DadFailCount) == (Item->DataSize / sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS))) { // // All addresses have finished the configuration process. // if (DadFailCount != 0) { // // There is at least one duplicate address. // FreePool (Item->Data.Ptr); Item->DataSize = DadPassCount * sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS); if (Item->DataSize == 0) { // // All failed, bad luck. // Item->Data.Ptr = NULL; Item->Status = EFI_NOT_FOUND; } else { // // Part of addresses are detected to be duplicates, so update the // data with those passed. // PassedAddr = (EFI_IP6_CONFIG_MANUAL_ADDRESS *) AllocatePool (Item->DataSize); ASSERT (PassedAddr != NULL); Item->Data.Ptr = PassedAddr; Item->Status = EFI_SUCCESS; while (!NetMapIsEmpty (&Instance->DadPassedMap)) { ManualAddr = (EFI_IP6_CONFIG_MANUAL_ADDRESS *) NetMapRemoveHead (&Instance->DadPassedMap, NULL); CopyMem (PassedAddr, ManualAddr, sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS)); PassedAddr++; } ASSERT ((UINTN) PassedAddr - (UINTN) Item->Data.Ptr == Item->DataSize); } } else { // // All addresses are valid. // Item->Status = EFI_SUCCESS; } // // Remove the tags we put in the NET_MAPs. // while (!NetMapIsEmpty (&Instance->DadFailedMap)) { NetMapRemoveHead (&Instance->DadFailedMap, NULL); } while (!NetMapIsEmpty (&Instance->DadPassedMap)) { NetMapRemoveHead (&Instance->DadPassedMap, NULL); } // // Signal the waiting events. // NetMapIterate (&Item->EventMap, Ip6ConfigSignalEvent, NULL); IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); Ip6ConfigWriteConfigData (IpSb->MacString, Instance); } } /** The work function for EfiIp6ConfigSetData() to set the station addresses manually for the EFI IPv6 network stack. It is only configurable when the policy is Ip6ConfigPolicyManual. @param[in] Instance Pointer to the IP6 configuration instance data. @param[in] DataSize Size of the buffer pointed to by Data in bytes. @param[in] Data The data buffer to set. @retval EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type. @retval EFI_WRITE_PROTECTED The specified configuration data cannot be set under the current policy. @retval EFI_INVALID_PARAMETER One or more fields in Data is invalid. @retval EFI_OUT_OF_RESOURCES Fail to allocate resource to complete the operation. @retval EFI_NOT_READY An asynchronous process is invoked to set the specified configuration data, and the process is not finished. @retval EFI_ABORTED The manual addresses to be set equal current configuration. @retval EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack was set. **/ EFI_STATUS Ip6ConfigSetManualAddress ( IN IP6_CONFIG_INSTANCE *Instance, IN UINTN DataSize, IN VOID *Data ) { EFI_IP6_CONFIG_MANUAL_ADDRESS *NewAddress; EFI_IP6_CONFIG_MANUAL_ADDRESS *TmpAddress; IP6_CONFIG_DATA_ITEM *DataItem; UINTN NewAddressCount; UINTN Index1; UINTN Index2; IP6_SERVICE *IpSb; IP6_ADDRESS_INFO *CurrentAddrInfo; IP6_ADDRESS_INFO *Copy; LIST_ENTRY CurrentSourceList; UINT32 CurrentSourceCount; LIST_ENTRY *Entry; LIST_ENTRY *Entry2; IP6_INTERFACE *IpIf; IP6_PREFIX_LIST_ENTRY *PrefixEntry; EFI_STATUS Status; BOOLEAN IsUpdated; LIST_ENTRY *Next; IP6_DAD_ENTRY *DadEntry; IP6_DELAY_JOIN_LIST *DelayNode; NewAddress = NULL; TmpAddress = NULL; CurrentAddrInfo = NULL; Copy = NULL; Entry = NULL; Entry2 = NULL; IpIf = NULL; PrefixEntry = NULL; Next = NULL; DadEntry = NULL; DelayNode = NULL; Status = EFI_SUCCESS; ASSERT (Instance->DataItem[Ip6ConfigDataTypeManualAddress].Status != EFI_NOT_READY); if ((DataSize != 0) && ((DataSize % sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS)) != 0)) { return EFI_BAD_BUFFER_SIZE; } if (Instance->Policy != Ip6ConfigPolicyManual) { return EFI_WRITE_PROTECTED; } IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); DataItem = &Instance->DataItem[Ip6ConfigDataTypeManualAddress]; if (Data != NULL && DataSize != 0) { NewAddressCount = DataSize / sizeof (EFI_IP6_CONFIG_MANUAL_ADDRESS); NewAddress = (EFI_IP6_CONFIG_MANUAL_ADDRESS *) Data; for (Index1 = 0; Index1 < NewAddressCount; Index1++, NewAddress++) { if (NetIp6IsLinkLocalAddr (&NewAddress->Address) || !NetIp6IsValidUnicast (&NewAddress->Address) || (NewAddress->PrefixLength > 128) ) { // // make sure the IPv6 address is unicast and not link-local address && // the prefix length is valid. // return EFI_INVALID_PARAMETER; } TmpAddress = NewAddress + 1; for (Index2 = Index1 + 1; Index2 < NewAddressCount; Index2++, TmpAddress++) { // // Any two addresses in the array can't be equal. // if (EFI_IP6_EQUAL (&TmpAddress->Address, &NewAddress->Address)) { return EFI_INVALID_PARAMETER; } } } // // Build the current source address list. // InitializeListHead (&CurrentSourceList); CurrentSourceCount = 0; NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) { IpIf = NET_LIST_USER_STRUCT_S (Entry, IP6_INTERFACE, Link, IP6_INTERFACE_SIGNATURE); NET_LIST_FOR_EACH (Entry2, &IpIf->AddressList) { CurrentAddrInfo = NET_LIST_USER_STRUCT_S (Entry2, IP6_ADDRESS_INFO, Link, IP6_ADDR_INFO_SIGNATURE); Copy = AllocateCopyPool (sizeof (IP6_ADDRESS_INFO), CurrentAddrInfo); if (Copy == NULL) { break; } InsertTailList (&CurrentSourceList, &Copy->Link); CurrentSourceCount++; } } // // Update the value... a long journey starts // NewAddress = AllocateCopyPool (DataSize, Data); if (NewAddress == NULL) { Ip6RemoveAddr (NULL, &CurrentSourceList, &CurrentSourceCount, NULL, 0); return EFI_OUT_OF_RESOURCES; } // // Store the new data, and init the DataItem status to EFI_NOT_READY because // we may have an asynchronous configuration process. // if (DataItem->Data.Ptr != NULL) { FreePool (DataItem->Data.Ptr); } DataItem->Data.Ptr = NewAddress; DataItem->DataSize = DataSize; DataItem->Status = EFI_NOT_READY; // // Trigger DAD, it's an asynchronous process. // IsUpdated = FALSE; for (Index1 = 0; Index1 < NewAddressCount; Index1++, NewAddress++) { if (Ip6IsOneOfSetAddress (IpSb, &NewAddress->Address, NULL, &CurrentAddrInfo)) { ASSERT (CurrentAddrInfo != NULL); // // Remove this already existing source address from the CurrentSourceList // built before. // Ip6RemoveAddr ( NULL, &CurrentSourceList, &CurrentSourceCount, &CurrentAddrInfo->Address, 128 ); // // If the new address's prefix length is not specified, just use the previous configured // prefix length for this address. // if (NewAddress->PrefixLength == 0) { NewAddress->PrefixLength = CurrentAddrInfo->PrefixLength; } // // This manual address is already in use, see whether prefix length is changed. // if (NewAddress->PrefixLength != CurrentAddrInfo->PrefixLength) { // // Remove the on-link prefix table, the route entry will be removed // implicitly. // PrefixEntry = Ip6FindPrefixListEntry ( IpSb, TRUE, CurrentAddrInfo->PrefixLength, &CurrentAddrInfo->Address ); if (PrefixEntry != NULL) { Ip6DestroyPrefixListEntry (IpSb, PrefixEntry, TRUE, FALSE); } // // Save the prefix length. // CurrentAddrInfo->PrefixLength = NewAddress->PrefixLength; IsUpdated = TRUE; } // // create a new on-link prefix entry. // PrefixEntry = Ip6FindPrefixListEntry ( IpSb, TRUE, NewAddress->PrefixLength, &NewAddress->Address ); if (PrefixEntry == NULL) { Ip6CreatePrefixListEntry ( IpSb, TRUE, (UINT32) IP6_INFINIT_LIFETIME, (UINT32) IP6_INFINIT_LIFETIME, NewAddress->PrefixLength, &NewAddress->Address ); } CurrentAddrInfo->IsAnycast = NewAddress->IsAnycast; // // Artificially mark this address passed DAD be'coz it is already in use. // Ip6ManualAddrDadCallback (TRUE, &NewAddress->Address, Instance); } else { // // A new address. // IsUpdated = TRUE; // // Set the new address, this will trigger DAD and activate the address if // DAD succeeds. // Ip6SetAddress ( IpSb->DefaultInterface, &NewAddress->Address, NewAddress->IsAnycast, NewAddress->PrefixLength, (UINT32) IP6_INFINIT_LIFETIME, (UINT32) IP6_INFINIT_LIFETIME, Ip6ManualAddrDadCallback, Instance ); } } // // Check the CurrentSourceList, it now contains those addresses currently in // use and will be removed. // IpIf = IpSb->DefaultInterface; while (!IsListEmpty (&CurrentSourceList)) { IsUpdated = TRUE; CurrentAddrInfo = NET_LIST_HEAD (&CurrentSourceList, IP6_ADDRESS_INFO, Link); // // This local address is going to be removed, the IP instances that are // currently using it will be destroyed. // Ip6RemoveAddr ( IpSb, &IpIf->AddressList, &IpIf->AddressCount, &CurrentAddrInfo->Address, 128 ); // // Remove the on-link prefix table, the route entry will be removed // implicitly. // PrefixEntry = Ip6FindPrefixListEntry ( IpSb, TRUE, CurrentAddrInfo->PrefixLength, &CurrentAddrInfo->Address ); if (PrefixEntry != NULL) { Ip6DestroyPrefixListEntry (IpSb, PrefixEntry, TRUE, FALSE); } RemoveEntryList (&CurrentAddrInfo->Link); FreePool (CurrentAddrInfo); } if (IsUpdated) { if (DataItem->Status == EFI_NOT_READY) { // // If DAD is disabled on this interface, the configuration process is // actually synchronous, and the data item's status will be changed to // the final status before we reach here, just check it. // Status = EFI_NOT_READY; } else { Status = EFI_SUCCESS; } } else { // // No update is taken, reset the status to success and return EFI_ABORTED. // DataItem->Status = EFI_SUCCESS; Status = EFI_ABORTED; } } else { // // DataSize is 0 and Data is NULL, clean up the manual address. // if (DataItem->Data.Ptr != NULL) { FreePool (DataItem->Data.Ptr); } DataItem->Data.Ptr = NULL; DataItem->DataSize = 0; DataItem->Status = EFI_NOT_FOUND; Ip6CleanDefaultRouterList (IpSb); Ip6CleanPrefixListTable (IpSb, &IpSb->OnlinkPrefix); Ip6CleanPrefixListTable (IpSb, &IpSb->AutonomousPrefix); Ip6CleanAssembleTable (&IpSb->Assemble); if (IpSb->LinkLocalOk) { Ip6CreatePrefixListEntry ( IpSb, TRUE, (UINT32) IP6_INFINIT_LIFETIME, (UINT32) IP6_INFINIT_LIFETIME, IP6_LINK_LOCAL_PREFIX_LENGTH, &IpSb->LinkLocalAddr ); } Ip6RemoveAddr ( IpSb, &IpSb->DefaultInterface->AddressList, &IpSb->DefaultInterface->AddressCount, NULL, 0 ); NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) { // // Remove all pending delay node and DAD entries for the global addresses. // IpIf = NET_LIST_USER_STRUCT_S (Entry, IP6_INTERFACE, Link, IP6_INTERFACE_SIGNATURE); NET_LIST_FOR_EACH_SAFE (Entry2, Next, &IpIf->DelayJoinList) { DelayNode = NET_LIST_USER_STRUCT (Entry2, IP6_DELAY_JOIN_LIST, Link); if (!NetIp6IsLinkLocalAddr (&DelayNode->AddressInfo->Address)) { RemoveEntryList (&DelayNode->Link); FreePool (DelayNode); } } NET_LIST_FOR_EACH_SAFE (Entry2, Next, &IpIf->DupAddrDetectList) { DadEntry = NET_LIST_USER_STRUCT_S (Entry2, IP6_DAD_ENTRY, Link, IP6_DAD_ENTRY_SIGNATURE); if (!NetIp6IsLinkLocalAddr (&DadEntry->AddressInfo->Address)) { // // Fail this DAD entry if the address is not link-local. // Ip6OnDADFinished (FALSE, IpIf, DadEntry); } } } } return Status; } /** The work function for EfiIp6ConfigSetData() to set the gateway addresses manually for the EFI IPv6 network stack that is running on the communication device that this EFI IPv6 Configuration Protocol manages. It is not configurable when the policy is Ip6ConfigPolicyAutomatic. The gateway addresses must be unicast IPv6 addresses. @param[in] Instance The pointer to the IP6 config instance data. @param[in] DataSize The size of the buffer pointed to by Data in bytes. @param[in] Data The data buffer to set. This points to an array of EFI_IPv6_ADDRESS instances. @retval EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type. @retval EFI_WRITE_PROTECTED The specified configuration data cannot be set under the current policy. @retval EFI_INVALID_PARAMETER One or more fields in Data is invalid. @retval EFI_OUT_OF_RESOURCES Failed to allocate resource to complete the operation. @retval EFI_ABORTED The manual gateway addresses to be set equal the current configuration. @retval EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack was set. **/ EFI_STATUS Ip6ConfigSetGateway ( IN IP6_CONFIG_INSTANCE *Instance, IN UINTN DataSize, IN VOID *Data ) { UINTN Index1; UINTN Index2; EFI_IPv6_ADDRESS *OldGateway; EFI_IPv6_ADDRESS *NewGateway; UINTN OldGatewayCount; UINTN NewGatewayCount; IP6_CONFIG_DATA_ITEM *Item; BOOLEAN OneRemoved; BOOLEAN OneAdded; IP6_SERVICE *IpSb; IP6_DEFAULT_ROUTER *DefaultRouter; VOID *Tmp; OldGateway = NULL; NewGateway = NULL; Item = NULL; DefaultRouter = NULL; Tmp = NULL; OneRemoved = FALSE; OneAdded = FALSE; if ((DataSize != 0) && (DataSize % sizeof (EFI_IPv6_ADDRESS) != 0)) { return EFI_BAD_BUFFER_SIZE; } if (Instance->Policy != Ip6ConfigPolicyManual) { return EFI_WRITE_PROTECTED; } IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); Item = &Instance->DataItem[Ip6ConfigDataTypeGateway]; OldGateway = Item->Data.Gateway; OldGatewayCount = Item->DataSize / sizeof (EFI_IPv6_ADDRESS); for (Index1 = 0; Index1 < OldGatewayCount; Index1++) { // // Remove this default router. // DefaultRouter = Ip6FindDefaultRouter (IpSb, OldGateway + Index1); if (DefaultRouter != NULL) { Ip6DestroyDefaultRouter (IpSb, DefaultRouter); OneRemoved = TRUE; } } if (Data != NULL && DataSize != 0) { NewGateway = (EFI_IPv6_ADDRESS *) Data; NewGatewayCount = DataSize / sizeof (EFI_IPv6_ADDRESS); for (Index1 = 0; Index1 < NewGatewayCount; Index1++) { if (!NetIp6IsValidUnicast (NewGateway + Index1)) { return EFI_INVALID_PARAMETER; } for (Index2 = Index1 + 1; Index2 < NewGatewayCount; Index2++) { if (EFI_IP6_EQUAL (NewGateway + Index1, NewGateway + Index2)) { return EFI_INVALID_PARAMETER; } } } if (NewGatewayCount != OldGatewayCount) { Tmp = AllocatePool (DataSize); if (Tmp == NULL) { return EFI_OUT_OF_RESOURCES; } } else { Tmp = NULL; } for (Index1 = 0; Index1 < NewGatewayCount; Index1++) { DefaultRouter = Ip6FindDefaultRouter (IpSb, NewGateway + Index1); if (DefaultRouter == NULL) { Ip6CreateDefaultRouter (IpSb, NewGateway + Index1, IP6_INF_ROUTER_LIFETIME); OneAdded = TRUE; } } if (!OneRemoved && !OneAdded) { Item->Status = EFI_SUCCESS; return EFI_ABORTED; } else { if (Tmp != NULL) { if (Item->Data.Ptr != NULL) { FreePool (Item->Data.Ptr); } Item->Data.Ptr = Tmp; } CopyMem (Item->Data.Ptr, Data, DataSize); Item->DataSize = DataSize; Item->Status = EFI_SUCCESS; return EFI_SUCCESS; } } else { // // DataSize is 0 and Data is NULL, clean up the Gateway address. // if (Item->Data.Ptr != NULL) { FreePool (Item->Data.Ptr); } Item->Data.Ptr = NULL; Item->DataSize = 0; Item->Status = EFI_NOT_FOUND; } return EFI_SUCCESS; } /** The work function for EfiIp6ConfigSetData() to set the DNS server list for the EFI IPv6 network stack running on the communication device that this EFI IPv6 Configuration Protocol manages. It is not configurable when the policy is Ip6ConfigPolicyAutomatic. The DNS server addresses must be unicast IPv6 addresses. @param[in] Instance The pointer to the IP6 config instance data. @param[in] DataSize The size of the buffer pointed to by Data in bytes. @param[in] Data The data buffer to set, points to an array of EFI_IPv6_ADDRESS instances. @retval EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type. @retval EFI_WRITE_PROTECTED The specified configuration data cannot be set under the current policy. @retval EFI_INVALID_PARAMETER One or more fields in Data is invalid. @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to complete the operation. @retval EFI_ABORTED The DNS server addresses to be set equal the current configuration. @retval EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack was set. **/ EFI_STATUS Ip6ConfigSetDnsServer ( IN IP6_CONFIG_INSTANCE *Instance, IN UINTN DataSize, IN VOID *Data ) { UINTN OldIndex; UINTN NewIndex; EFI_IPv6_ADDRESS *OldDns; EFI_IPv6_ADDRESS *NewDns; UINTN OldDnsCount; UINTN NewDnsCount; IP6_CONFIG_DATA_ITEM *Item; BOOLEAN OneAdded; VOID *Tmp; OldDns = NULL; NewDns = NULL; Item = NULL; Tmp = NULL; if ((DataSize != 0) && (DataSize % sizeof (EFI_IPv6_ADDRESS) != 0)) { return EFI_BAD_BUFFER_SIZE; } if (Instance->Policy != Ip6ConfigPolicyManual) { return EFI_WRITE_PROTECTED; } Item = &Instance->DataItem[Ip6ConfigDataTypeDnsServer]; if (Data != NULL && DataSize != 0) { NewDns = (EFI_IPv6_ADDRESS *) Data; OldDns = Item->Data.DnsServers; NewDnsCount = DataSize / sizeof (EFI_IPv6_ADDRESS); OldDnsCount = Item->DataSize / sizeof (EFI_IPv6_ADDRESS); OneAdded = FALSE; if (NewDnsCount != OldDnsCount) { Tmp = AllocatePool (DataSize); if (Tmp == NULL) { return EFI_OUT_OF_RESOURCES; } } else { Tmp = NULL; } for (NewIndex = 0; NewIndex < NewDnsCount; NewIndex++) { if (!NetIp6IsValidUnicast (NewDns + NewIndex)) { // // The dns server address must be unicast. // if (Tmp != NULL) { FreePool (Tmp); } return EFI_INVALID_PARAMETER; } if (OneAdded) { // // If any address in the new setting is not in the old settings, skip the // comparision below. // continue; } for (OldIndex = 0; OldIndex < OldDnsCount; OldIndex++) { if (EFI_IP6_EQUAL (NewDns + NewIndex, OldDns + OldIndex)) { // // If found break out. // break; } } if (OldIndex == OldDnsCount) { OneAdded = TRUE; } } if (!OneAdded && (DataSize == Item->DataSize)) { // // No new item is added and the size is the same. // Item->Status = EFI_SUCCESS; return EFI_ABORTED; } else { if (Tmp != NULL) { if (Item->Data.Ptr != NULL) { FreePool (Item->Data.Ptr); } Item->Data.Ptr = Tmp; } CopyMem (Item->Data.Ptr, Data, DataSize); Item->DataSize = DataSize; Item->Status = EFI_SUCCESS; } } else { // // DataSize is 0 and Data is NULL, clean up the DnsServer address. // if (Item->Data.Ptr != NULL) { FreePool (Item->Data.Ptr); } Item->Data.Ptr = NULL; Item->DataSize = 0; Item->Status = EFI_NOT_FOUND; } return EFI_SUCCESS; } /** Generate the operational state of the interface this IP6 config instance manages and output in EFI_IP6_CONFIG_INTERFACE_INFO. @param[in] IpSb The pointer to the IP6 service binding instance. @param[out] IfInfo The pointer to the IP6 configuration interface information structure. **/ VOID Ip6ConfigInitIfInfo ( IN IP6_SERVICE *IpSb, OUT EFI_IP6_CONFIG_INTERFACE_INFO *IfInfo ) { UnicodeSPrint ( IfInfo->Name, sizeof (IfInfo->Name), L"eth%d", IpSb->Ip6ConfigInstance.IfIndex ); IfInfo->IfType = IpSb->SnpMode.IfType; IfInfo->HwAddressSize = IpSb->SnpMode.HwAddressSize; CopyMem (&IfInfo->HwAddress, &IpSb->SnpMode.CurrentAddress, IfInfo->HwAddressSize); } /** Parse DHCPv6 reply packet to get the DNS server list. It is the work function for Ip6ConfigOnDhcp6Reply and Ip6ConfigOnDhcp6Event. @param[in] Dhcp6 The pointer to the EFI_DHCP6_PROTOCOL instance. @param[in, out] Instance The pointer to the IP6 configuration instance data. @param[in] Reply The pointer to the DHCPv6 reply packet. @retval EFI_SUCCESS The DNS server address was retrieved from the reply packet. @retval EFI_NOT_READY The reply packet does not contain the DNS server option, or the DNS server address is not valid. **/ EFI_STATUS Ip6ConfigParseDhcpReply ( IN EFI_DHCP6_PROTOCOL *Dhcp6, IN OUT IP6_CONFIG_INSTANCE *Instance, IN EFI_DHCP6_PACKET *Reply ) { EFI_STATUS Status; UINT32 OptCount; EFI_DHCP6_PACKET_OPTION **OptList; UINT16 OpCode; UINT16 Length; UINTN Index; UINTN Index2; EFI_IPv6_ADDRESS *DnsServer; IP6_CONFIG_DATA_ITEM *Item; // // A DHCPv6 reply packet is received as the response to our InfoRequest // packet. // OptCount = 0; Status = Dhcp6->Parse (Dhcp6, Reply, &OptCount, NULL); if (Status != EFI_BUFFER_TOO_SMALL) { return EFI_NOT_READY; } OptList = AllocatePool (OptCount * sizeof (EFI_DHCP6_PACKET_OPTION *)); if (OptList == NULL) { return EFI_NOT_READY; } Status = Dhcp6->Parse (Dhcp6, Reply, &OptCount, OptList); if (EFI_ERROR (Status)) { Status = EFI_NOT_READY; goto ON_EXIT; } Status = EFI_SUCCESS; for (Index = 0; Index < OptCount; Index++) { // // Go through all the options to check the ones we are interested in. // The OpCode and Length are in network byte-order and may not be naturally // aligned. // CopyMem (&OpCode, &OptList[Index]->OpCode, sizeof (OpCode)); OpCode = NTOHS (OpCode); if (OpCode == DHCP6_OPT_DNS_SERVERS) { CopyMem (&Length, &OptList[Index]->OpLen, sizeof (Length)); Length = NTOHS (Length); if ((Length == 0) || ((Length % sizeof (EFI_IPv6_ADDRESS)) != 0)) { // // The length should be a multiple of 16 bytes. // Status = EFI_NOT_READY; break; } // // Validate the DnsServers: whether they are unicast addresses. // DnsServer = (EFI_IPv6_ADDRESS *) OptList[Index]->Data; for (Index2 = 0; Index2 < Length / sizeof (EFI_IPv6_ADDRESS); Index2++) { if (!NetIp6IsValidUnicast (DnsServer)) { Status = EFI_NOT_READY; goto ON_EXIT; } DnsServer++; } Item = &Instance->DataItem[Ip6ConfigDataTypeDnsServer]; if (Item->DataSize != Length) { if (Item->Data.Ptr != NULL) { FreePool (Item->Data.Ptr); } Item->Data.Ptr = AllocatePool (Length); ASSERT (Item->Data.Ptr != NULL); } CopyMem (Item->Data.Ptr, OptList[Index]->Data, Length); Item->DataSize = Length; Item->Status = EFI_SUCCESS; // // Signal the waiting events. // NetMapIterate (&Item->EventMap, Ip6ConfigSignalEvent, NULL); break; } } ON_EXIT: FreePool (OptList); return Status; } /** The callback function for Ip6SetAddr. The prototype is defined as IP6_DAD_CALLBACK. It is called after Duplicate Address Detection is performed on the tentative address by DHCPv6 in Ip6ConfigOnDhcp6Event(). @param[in] IsDadPassed If TRUE, Duplicate Address Detection passes. @param[in] TargetAddress The tentative IPv6 address to be checked. @param[in] Context Pointer to the IP6 configuration instance data. **/ VOID Ip6ConfigSetStatefulAddrCallback ( IN BOOLEAN IsDadPassed, IN EFI_IPv6_ADDRESS *TargetAddress, IN VOID *Context ) { IP6_CONFIG_INSTANCE *Instance; Instance = (IP6_CONFIG_INSTANCE *) Context; NET_CHECK_SIGNATURE (Instance, IP6_CONFIG_INSTANCE_SIGNATURE); // // We should record the addresses that fail the DAD, and DECLINE them. // if (IsDadPassed) { // // Decrease the count, no interests in those passed DAD. // if (Instance->FailedIaAddressCount > 0 ) { Instance->FailedIaAddressCount--; } } else { // // Record it. // IP6_COPY_ADDRESS (Instance->DeclineAddress + Instance->DeclineAddressCount, TargetAddress); Instance->DeclineAddressCount++; } if (Instance->FailedIaAddressCount == Instance->DeclineAddressCount) { // // The checking on all addresses are finished. // if (Instance->DeclineAddressCount != 0) { // // Decline those duplicates. // if (Instance->Dhcp6 != NULL) { Instance->Dhcp6->Decline ( Instance->Dhcp6, Instance->DeclineAddressCount, Instance->DeclineAddress ); } } if (Instance->DeclineAddress != NULL) { FreePool (Instance->DeclineAddress); } Instance->DeclineAddress = NULL; Instance->DeclineAddressCount = 0; } } /** The event handle routine when DHCPv6 process is finished or is updated. @param[in] Event Not used. @param[in] Context The pointer to the IP6 configuration instance data. **/ VOID EFIAPI Ip6ConfigOnDhcp6Event ( IN EFI_EVENT Event, IN VOID *Context ) { IP6_CONFIG_INSTANCE *Instance; EFI_DHCP6_PROTOCOL *Dhcp6; EFI_STATUS Status; EFI_DHCP6_MODE_DATA Dhcp6ModeData; EFI_DHCP6_IA *Ia; EFI_DHCP6_IA_ADDRESS *IaAddr; UINT32 Index; IP6_SERVICE *IpSb; IP6_ADDRESS_INFO *AddrInfo; IP6_INTERFACE *IpIf; Instance = (IP6_CONFIG_INSTANCE *) Context; if ((Instance->Policy != Ip6ConfigPolicyAutomatic) || Instance->OtherInfoOnly) { // // IPv6 is not operating in the automatic policy now or // the DHCPv6 information request message exchange is aborted. // return ; } // // The stateful address autoconfiguration is done or updated. // Dhcp6 = Instance->Dhcp6; Status = Dhcp6->GetModeData (Dhcp6, &Dhcp6ModeData, NULL); if (EFI_ERROR (Status)) { return ; } IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); IpIf = IpSb->DefaultInterface; Ia = Dhcp6ModeData.Ia; IaAddr = Ia->IaAddress; if (Instance->DeclineAddress != NULL) { FreePool (Instance->DeclineAddress); } Instance->DeclineAddress = (EFI_IPv6_ADDRESS *) AllocatePool (Ia->IaAddressCount * sizeof (EFI_IPv6_ADDRESS)); if (Instance->DeclineAddress == NULL) { goto ON_EXIT; } Instance->FailedIaAddressCount = Ia->IaAddressCount; Instance->DeclineAddressCount = 0; for (Index = 0; Index < Ia->IaAddressCount; Index++, IaAddr++) { if (Ia->IaAddress[Index].ValidLifetime != 0 && Ia->State == Dhcp6Bound) { // // Set this address, either it's a new address or with updated lifetimes. // An appropriate prefix length will be set. // Ip6SetAddress ( IpIf, &IaAddr->IpAddress, FALSE, 0, IaAddr->ValidLifetime, IaAddr->PreferredLifetime, Ip6ConfigSetStatefulAddrCallback, Instance ); } else { // // discard this address, artificially decrease the count as if this address // passed DAD. // if (Ip6IsOneOfSetAddress (IpSb, &IaAddr->IpAddress, NULL, &AddrInfo)) { ASSERT (AddrInfo != NULL); Ip6RemoveAddr ( IpSb, &IpIf->AddressList, &IpIf->AddressCount, &AddrInfo->Address, AddrInfo->PrefixLength ); } if (Instance->FailedIaAddressCount > 0) { Instance->FailedIaAddressCount--; } } } // // Parse the Reply packet to get the options we need. // if (Dhcp6ModeData.Ia->ReplyPacket != NULL) { Ip6ConfigParseDhcpReply (Dhcp6, Instance, Dhcp6ModeData.Ia->ReplyPacket); } ON_EXIT: FreePool (Dhcp6ModeData.ClientId); FreePool (Dhcp6ModeData.Ia); } /** The event process routine when the DHCPv6 server is answered with a reply packet for an information request. @param[in] This Points to the EFI_DHCP6_PROTOCOL. @param[in] Context The pointer to the IP6 configuration instance data. @param[in] Packet The DHCPv6 reply packet. @retval EFI_SUCCESS The DNS server address was retrieved from the reply packet. @retval EFI_NOT_READY The reply packet does not contain the DNS server option, or the DNS server address is not valid. **/ EFI_STATUS EFIAPI Ip6ConfigOnDhcp6Reply ( IN EFI_DHCP6_PROTOCOL *This, IN VOID *Context, IN EFI_DHCP6_PACKET *Packet ) { return Ip6ConfigParseDhcpReply (This, (IP6_CONFIG_INSTANCE *) Context, Packet); } /** The event process routine when the DHCPv6 service binding protocol is installed in the system. @param[in] Event Not used. @param[in] Context The pointer to the IP6 config instance data. **/ VOID EFIAPI Ip6ConfigOnDhcp6SbInstalled ( IN EFI_EVENT Event, IN VOID *Context ) { IP6_CONFIG_INSTANCE *Instance; Instance = (IP6_CONFIG_INSTANCE *) Context; if ((Instance->Dhcp6Handle != NULL) || (Instance->Policy != Ip6ConfigPolicyAutomatic)) { // // The DHCP6 child is already created or the policy is no longer AUTOMATIC. // return ; } Ip6ConfigStartStatefulAutoConfig (Instance, Instance->OtherInfoOnly); } /** Set the configuration for the EFI IPv6 network stack running on the communication device this EFI IPv6 Configuration Protocol instance manages. This function is used to set the configuration data of type DataType for the EFI IPv6 network stack that is running on the communication device that this EFI IPv6 Configuration Protocol instance manages. DataSize is used to calculate the count of structure instances in the Data for a DataType in which multiple structure instances are allowed. This function is always non-blocking. When setting some type of configuration data, an asynchronous process is invoked to check the correctness of the data, such as performing Duplicate Address Detection on the manually set local IPv6 addresses. EFI_NOT_READY is returned immediately to indicate that such an asynchronous process is invoked, and the process is not finished yet. The caller wanting to get the result of the asynchronous process is required to call RegisterDataNotify() to register an event on the specified configuration data. Once the event is signaled, the caller can call GetData() to obtain the configuration data and know the result. For other types of configuration data that do not require an asynchronous configuration process, the result of the operation is immediately returned. @param[in] This The pointer to the EFI_IP6_CONFIG_PROTOCOL instance. @param[in] DataType The type of data to set. @param[in] DataSize Size of the buffer pointed to by Data in bytes. @param[in] Data The data buffer to set. The type of the data buffer is associated with the DataType. @retval EFI_SUCCESS The specified configuration data for the EFI IPv6 network stack was set successfully. @retval EFI_INVALID_PARAMETER One or more of the following are TRUE: - This is NULL. - One or more fields in Data and DataSizedo not match the requirement of the data type indicated by DataType. @retval EFI_WRITE_PROTECTED The specified configuration data is read-only or the specified configuration data cannot be set under the current policy. @retval EFI_ACCESS_DENIED Another set operation on the specified configuration data is already in process. @retval EFI_NOT_READY An asynchronous process was invoked to set the specified configuration data, and the process is not finished yet. @retval EFI_BAD_BUFFER_SIZE The DataSize does not match the size of the type indicated by DataType. @retval EFI_UNSUPPORTED This DataType is not supported. @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. @retval EFI_DEVICE_ERROR An unexpected system error or network error occurred. **/ EFI_STATUS EFIAPI EfiIp6ConfigSetData ( IN EFI_IP6_CONFIG_PROTOCOL *This, IN EFI_IP6_CONFIG_DATA_TYPE DataType, IN UINTN DataSize, IN VOID *Data ) { EFI_TPL OldTpl; EFI_STATUS Status; IP6_CONFIG_INSTANCE *Instance; IP6_SERVICE *IpSb; if ((This == NULL) || (Data == NULL && DataSize != 0) || (Data != NULL && DataSize == 0)) { return EFI_INVALID_PARAMETER; } if (DataType >= Ip6ConfigDataTypeMaximum) { return EFI_UNSUPPORTED; } Instance = IP6_CONFIG_INSTANCE_FROM_PROTOCOL (This); IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); NET_CHECK_SIGNATURE (IpSb, IP6_SERVICE_SIGNATURE); if (IpSb->LinkLocalDadFail) { return EFI_DEVICE_ERROR; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Status = Instance->DataItem[DataType].Status; if (Status != EFI_NOT_READY) { if (Instance->DataItem[DataType].SetData == NULL) { // // This type of data is readonly. // Status = EFI_WRITE_PROTECTED; } else { Status = Instance->DataItem[DataType].SetData (Instance, DataSize, Data); if (!EFI_ERROR (Status)) { // // Fire up the events registered with this type of data. // NetMapIterate (&Instance->DataItem[DataType].EventMap, Ip6ConfigSignalEvent, NULL); Ip6ConfigWriteConfigData (IpSb->MacString, Instance); } else if (Status == EFI_ABORTED) { // // The SetData is aborted because the data to set is the same with // the one maintained. // Status = EFI_SUCCESS; NetMapIterate (&Instance->DataItem[DataType].EventMap, Ip6ConfigSignalEvent, NULL); } } } else { // // Another asynchronous process is on the way. // Status = EFI_ACCESS_DENIED; } gBS->RestoreTPL (OldTpl); return Status; } /** Get the configuration data for the EFI IPv6 network stack running on the communication device that this EFI IPv6 Configuration Protocol instance manages. This function returns the configuration data of type DataType for the EFI IPv6 network stack running on the communication device that this EFI IPv6 Configuration Protocol instance manages. The caller is responsible for allocating the buffer used to return the specified configuration data. The required size will be returned to the caller if the size of the buffer is too small. EFI_NOT_READY is returned if the specified configuration data is not ready due to an asynchronous configuration process already in progress. The caller can call RegisterDataNotify() to register an event on the specified configuration data. Once the asynchronous configuration process is finished, the event will be signaled, and a subsequent GetData() call will return the specified configuration data. @param[in] This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance. @param[in] DataType The type of data to get. @param[in, out] DataSize On input, in bytes, the size of Data. On output, in bytes, the size of buffer required to store the specified configuration data. @param[in] Data The data buffer in which the configuration data is returned. The type of the data buffer is associated with the DataType. This is an optional parameter that may be NULL. @retval EFI_SUCCESS The specified configuration data was obtained successfully. @retval EFI_INVALID_PARAMETER One or more of the followings are TRUE: - This is NULL. - DataSize is NULL. - Data is NULL if *DataSize is not zero. @retval EFI_BUFFER_TOO_SMALL The size of Data is too small for the specified configuration data, and the required size is returned in DataSize. @retval EFI_NOT_READY The specified configuration data is not ready due to an asynchronous configuration process already in progress. @retval EFI_NOT_FOUND The specified configuration data is not found. **/ EFI_STATUS EFIAPI EfiIp6ConfigGetData ( IN EFI_IP6_CONFIG_PROTOCOL *This, IN EFI_IP6_CONFIG_DATA_TYPE DataType, IN OUT UINTN *DataSize, IN VOID *Data OPTIONAL ) { EFI_TPL OldTpl; EFI_STATUS Status; IP6_CONFIG_INSTANCE *Instance; IP6_CONFIG_DATA_ITEM *DataItem; if ((This == NULL) || (DataSize == NULL) || ((*DataSize != 0) && (Data == NULL))) { return EFI_INVALID_PARAMETER; } if (DataType >= Ip6ConfigDataTypeMaximum) { return EFI_NOT_FOUND; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Instance = IP6_CONFIG_INSTANCE_FROM_PROTOCOL (This); DataItem = &Instance->DataItem[DataType]; Status = Instance->DataItem[DataType].Status; if (!EFI_ERROR (Status)) { if (DataItem->GetData != NULL) { Status = DataItem->GetData (Instance, DataSize, Data); } else if (*DataSize < Instance->DataItem[DataType].DataSize) { // // Update the buffer length. // *DataSize = Instance->DataItem[DataType].DataSize; Status = EFI_BUFFER_TOO_SMALL; } else { *DataSize = Instance->DataItem[DataType].DataSize; CopyMem (Data, Instance->DataItem[DataType].Data.Ptr, *DataSize); } } gBS->RestoreTPL (OldTpl); return Status; } /** Register an event that is signaled whenever a configuration process on the specified configuration data is done. This function registers an event that is to be signaled whenever a configuration process on the specified configuration data is performed. An event can be registered for a different DataType simultaneously. The caller is responsible for determining which type of configuration data causes the signaling of the event in such an event. @param[in] This Pointer to the EFI_IP6_CONFIG_PROTOCOL instance. @param[in] DataType The type of data to unregister the event for. @param[in] Event The event to register. @retval EFI_SUCCESS The notification event for the specified configuration data is registered. @retval EFI_INVALID_PARAMETER This is NULL or Event is NULL. @retval EFI_UNSUPPORTED The configuration data type specified by DataType is not supported. @retval EFI_OUT_OF_RESOURCES Required system resources could not be allocated. @retval EFI_ACCESS_DENIED The Event is already registered for the DataType. **/ EFI_STATUS EFIAPI EfiIp6ConfigRegisterDataNotify ( IN EFI_IP6_CONFIG_PROTOCOL *This, IN EFI_IP6_CONFIG_DATA_TYPE DataType, IN EFI_EVENT Event ) { EFI_TPL OldTpl; EFI_STATUS Status; IP6_CONFIG_INSTANCE *Instance; NET_MAP *EventMap; NET_MAP_ITEM *Item; if ((This == NULL) || (Event == NULL)) { return EFI_INVALID_PARAMETER; } if (DataType >= Ip6ConfigDataTypeMaximum) { return EFI_UNSUPPORTED; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Instance = IP6_CONFIG_INSTANCE_FROM_PROTOCOL (This); EventMap = &Instance->DataItem[DataType].EventMap; // // Check whether this event is already registered for this DataType. // Item = NetMapFindKey (EventMap, Event); if (Item == NULL) { Status = NetMapInsertTail (EventMap, Event, NULL); if (EFI_ERROR (Status)) { Status = EFI_OUT_OF_RESOURCES; } } else { Status = EFI_ACCESS_DENIED; } gBS->RestoreTPL (OldTpl); return Status; } /** Remove a previously registered event for the specified configuration data. @param This The pointer to the EFI_IP6_CONFIG_PROTOCOL instance. @param DataType The type of data to remove from the previously registered event. @param Event The event to be unregistered. @retval EFI_SUCCESS The event registered for the specified configuration data was removed. @retval EFI_INVALID_PARAMETER This is NULL or Event is NULL. @retval EFI_NOT_FOUND The Event has not been registered for the specified DataType. **/ EFI_STATUS EFIAPI EfiIp6ConfigUnregisterDataNotify ( IN EFI_IP6_CONFIG_PROTOCOL *This, IN EFI_IP6_CONFIG_DATA_TYPE DataType, IN EFI_EVENT Event ) { EFI_TPL OldTpl; EFI_STATUS Status; IP6_CONFIG_INSTANCE *Instance; NET_MAP_ITEM *Item; if ((This == NULL) || (Event == NULL)) { return EFI_INVALID_PARAMETER; } if (DataType >= Ip6ConfigDataTypeMaximum) { return EFI_NOT_FOUND; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Instance = IP6_CONFIG_INSTANCE_FROM_PROTOCOL (This); Item = NetMapFindKey (&Instance->DataItem[DataType].EventMap, Event); if (Item != NULL) { NetMapRemoveItem (&Instance->DataItem[DataType].EventMap, Item, NULL); Status = EFI_SUCCESS; } else { Status = EFI_NOT_FOUND; } gBS->RestoreTPL (OldTpl); return Status; } /** Initialize an IP6_CONFIG_INSTANCE. @param[out] Instance The buffer of IP6_CONFIG_INSTANCE to be initialized. @retval EFI_OUT_OF_RESOURCES Failed to allocate resources to complete the operation. @retval EFI_SUCCESS The IP6_CONFIG_INSTANCE initialized successfully. **/ EFI_STATUS Ip6ConfigInitInstance ( OUT IP6_CONFIG_INSTANCE *Instance ) { IP6_SERVICE *IpSb; IP6_CONFIG_INSTANCE *TmpInstance; LIST_ENTRY *Entry; EFI_STATUS Status; UINTN Index; UINT16 IfIndex; IP6_CONFIG_DATA_ITEM *DataItem; IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); Instance->Signature = IP6_CONFIG_INSTANCE_SIGNATURE; // // Determine the index of this interface. // IfIndex = 0; NET_LIST_FOR_EACH (Entry, &mIp6ConfigInstanceList) { TmpInstance = NET_LIST_USER_STRUCT_S (Entry, IP6_CONFIG_INSTANCE, Link, IP6_CONFIG_INSTANCE_SIGNATURE); if (TmpInstance->IfIndex > IfIndex) { // // There is a sequence hole because some interface is down. // break; } IfIndex++; } Instance->IfIndex = IfIndex; NetListInsertBefore (Entry, &Instance->Link); for (Index = 0; Index < Ip6ConfigDataTypeMaximum; Index++) { // // Initialize the event map for each data item. // NetMapInit (&Instance->DataItem[Index].EventMap); } // // Initialize the NET_MAPs used for DAD on manually configured source addresses. // NetMapInit (&Instance->DadFailedMap); NetMapInit (&Instance->DadPassedMap); // // Initialize each data type: associate storage and set data size for the // fixed size data types, hook the SetData function, set the data attribute. // DataItem = &Instance->DataItem[Ip6ConfigDataTypeInterfaceInfo]; DataItem->GetData = Ip6ConfigGetIfInfo; DataItem->Data.Ptr = &Instance->InterfaceInfo; DataItem->DataSize = sizeof (Instance->InterfaceInfo); SET_DATA_ATTRIB (DataItem->Attribute, DATA_ATTRIB_SIZE_FIXED | DATA_ATTRIB_VOLATILE); Ip6ConfigInitIfInfo (IpSb, &Instance->InterfaceInfo); DataItem = &Instance->DataItem[Ip6ConfigDataTypeAltInterfaceId]; DataItem->SetData = Ip6ConfigSetAltIfId; DataItem->Data.Ptr = &Instance->AltIfId; DataItem->DataSize = sizeof (Instance->AltIfId); DataItem->Status = EFI_NOT_FOUND; SET_DATA_ATTRIB (DataItem->Attribute, DATA_ATTRIB_SIZE_FIXED); DataItem = &Instance->DataItem[Ip6ConfigDataTypePolicy]; DataItem->SetData = Ip6ConfigSetPolicy; DataItem->Data.Ptr = &Instance->Policy; DataItem->DataSize = sizeof (Instance->Policy); Instance->Policy = Ip6ConfigPolicyManual; SET_DATA_ATTRIB (DataItem->Attribute, DATA_ATTRIB_SIZE_FIXED); DataItem = &Instance->DataItem[Ip6ConfigDataTypeDupAddrDetectTransmits]; DataItem->SetData = Ip6ConfigSetDadXmits; DataItem->Data.Ptr = &Instance->DadXmits; DataItem->DataSize = sizeof (Instance->DadXmits); Instance->DadXmits.DupAddrDetectTransmits = IP6_CONFIG_DEFAULT_DAD_XMITS; SET_DATA_ATTRIB (DataItem->Attribute, DATA_ATTRIB_SIZE_FIXED); DataItem = &Instance->DataItem[Ip6ConfigDataTypeManualAddress]; DataItem->SetData = Ip6ConfigSetManualAddress; DataItem->Status = EFI_NOT_FOUND; DataItem = &Instance->DataItem[Ip6ConfigDataTypeGateway]; DataItem->SetData = Ip6ConfigSetGateway; DataItem->Status = EFI_NOT_FOUND; DataItem = &Instance->DataItem[Ip6ConfigDataTypeDnsServer]; DataItem->SetData = Ip6ConfigSetDnsServer; DataItem->Status = EFI_NOT_FOUND; // // Create the event used for DHCP. // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL, TPL_CALLBACK, Ip6ConfigOnDhcp6Event, Instance, &Instance->Dhcp6Event ); ASSERT_EFI_ERROR (Status); Instance->Configured = TRUE; // // Try to read the config data from NV variable. // Status = Ip6ConfigReadConfigData (IpSb->MacString, Instance); if (Status == EFI_NOT_FOUND) { // // The NV variable is not set, so generate a random IAID, and write down the // fresh new configuration as the NV variable now. // Instance->IaId = NET_RANDOM (NetRandomInitSeed ()); for (Index = 0; Index < IpSb->SnpMode.HwAddressSize; Index++) { Instance->IaId |= (IpSb->SnpMode.CurrentAddress.Addr[Index] << ((Index << 3) & 31)); } Ip6ConfigWriteConfigData (IpSb->MacString, Instance); } else if (EFI_ERROR (Status)) { return Status; } Instance->Ip6Config.SetData = EfiIp6ConfigSetData; Instance->Ip6Config.GetData = EfiIp6ConfigGetData; Instance->Ip6Config.RegisterDataNotify = EfiIp6ConfigRegisterDataNotify; Instance->Ip6Config.UnregisterDataNotify = EfiIp6ConfigUnregisterDataNotify; // // Publish the IP6 configuration form // return Ip6ConfigFormInit (Instance); } /** Release an IP6_CONFIG_INSTANCE. @param[in, out] Instance The buffer of IP6_CONFIG_INSTANCE to be freed. **/ VOID Ip6ConfigCleanInstance ( IN OUT IP6_CONFIG_INSTANCE *Instance ) { UINTN Index; IP6_CONFIG_DATA_ITEM *DataItem; if (Instance->DeclineAddress != NULL) { FreePool (Instance->DeclineAddress); } if (!Instance->Configured) { return ; } if (Instance->Dhcp6Handle != NULL) { Ip6ConfigDestroyDhcp6 (Instance); } // // Close the event. // if (Instance->Dhcp6Event != NULL) { gBS->CloseEvent (Instance->Dhcp6Event); } NetMapClean (&Instance->DadPassedMap); NetMapClean (&Instance->DadFailedMap); for (Index = 0; Index < Ip6ConfigDataTypeMaximum; Index++) { DataItem = &Instance->DataItem[Index]; if (!DATA_ATTRIB_SET (DataItem->Attribute, DATA_ATTRIB_SIZE_FIXED)) { if (DataItem->Data.Ptr != NULL) { FreePool (DataItem->Data.Ptr); } DataItem->Data.Ptr = NULL; DataItem->DataSize = 0; } NetMapClean (&Instance->DataItem[Index].EventMap); } Ip6ConfigFormUnload (Instance); RemoveEntryList (&Instance->Link); } /** Destroy the Dhcp6 child in IP6_CONFIG_INSTANCE and release the resources. @param[in, out] Instance The buffer of IP6_CONFIG_INSTANCE to be freed. @retval EFI_SUCCESS The child was successfully destroyed. @retval Others Failed to destroy the child. **/ EFI_STATUS Ip6ConfigDestroyDhcp6 ( IN OUT IP6_CONFIG_INSTANCE *Instance ) { IP6_SERVICE *IpSb; EFI_STATUS Status; EFI_DHCP6_PROTOCOL *Dhcp6; Dhcp6 = Instance->Dhcp6; ASSERT (Dhcp6 != NULL); Dhcp6->Stop (Dhcp6); Dhcp6->Configure (Dhcp6, NULL); Instance->Dhcp6 = NULL; IpSb = IP6_SERVICE_FROM_IP6_CONFIG_INSTANCE (Instance); // // Close DHCPv6 protocol and destroy the child. // Status = gBS->CloseProtocol ( Instance->Dhcp6Handle, &gEfiDhcp6ProtocolGuid, IpSb->Image, IpSb->Controller ); if (EFI_ERROR (Status)) { return Status; } Status = NetLibDestroyServiceChild ( IpSb->Controller, IpSb->Image, &gEfiDhcp6ServiceBindingProtocolGuid, Instance->Dhcp6Handle ); Instance->Dhcp6Handle = NULL; return Status; }