/** @file Implementation of Managed Network Protocol private services. Copyright (c) 2005 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "MnpImpl.h" #include "MnpVlan.h" EFI_SERVICE_BINDING_PROTOCOL mMnpServiceBindingProtocol = { MnpServiceBindingCreateChild, MnpServiceBindingDestroyChild }; EFI_MANAGED_NETWORK_PROTOCOL mMnpProtocolTemplate = { MnpGetModeData, MnpConfigure, MnpMcastIpToMac, MnpGroups, MnpTransmit, MnpReceive, MnpCancel, MnpPoll }; EFI_MANAGED_NETWORK_CONFIG_DATA mMnpDefaultConfigData = { 10000000, 10000000, 0, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE }; /** Add Count of net buffers to MnpDeviceData->FreeNbufQue. The length of the net buffer is specified by MnpDeviceData->BufferLength. @param[in, out] MnpDeviceData Pointer to the MNP_DEVICE_DATA. @param[in] Count Number of NET_BUFFERs to add. @retval EFI_SUCCESS The specified amount of NET_BUFs are allocated and added to MnpDeviceData->FreeNbufQue. @retval EFI_OUT_OF_RESOURCES Failed to allocate a NET_BUF structure. **/ EFI_STATUS MnpAddFreeNbuf ( IN OUT MNP_DEVICE_DATA *MnpDeviceData, IN UINTN Count ) { EFI_STATUS Status; UINTN Index; NET_BUF *Nbuf; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); ASSERT ((Count > 0) && (MnpDeviceData->BufferLength > 0)); Status = EFI_SUCCESS; for (Index = 0; Index < Count; Index++) { Nbuf = NetbufAlloc (MnpDeviceData->BufferLength + MnpDeviceData->PaddingSize); if (Nbuf == NULL) { DEBUG ((EFI_D_ERROR, "MnpAddFreeNbuf: NetBufAlloc failed.\n")); Status = EFI_OUT_OF_RESOURCES; break; } if (MnpDeviceData->PaddingSize > 0) { // // Pad padding bytes before the media header // NetbufAllocSpace (Nbuf, MnpDeviceData->PaddingSize, NET_BUF_TAIL); NetbufTrim (Nbuf, MnpDeviceData->PaddingSize, NET_BUF_HEAD); } NetbufQueAppend (&MnpDeviceData->FreeNbufQue, Nbuf); } MnpDeviceData->NbufCnt += Index; return Status; } /** Allocate a free NET_BUF from MnpDeviceData->FreeNbufQue. If there is none in the queue, first try to allocate some and add them into the queue, then fetch the NET_BUF from the updated FreeNbufQue. @param[in, out] MnpDeviceData Pointer to the MNP_DEVICE_DATA. @return Pointer to the allocated free NET_BUF structure, if NULL the operation is failed. **/ NET_BUF * MnpAllocNbuf ( IN OUT MNP_DEVICE_DATA *MnpDeviceData ) { EFI_STATUS Status; NET_BUF_QUEUE *FreeNbufQue; NET_BUF *Nbuf; EFI_TPL OldTpl; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); FreeNbufQue = &MnpDeviceData->FreeNbufQue; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); // // Check whether there are available buffers, or else try to add some. // if (FreeNbufQue->BufNum == 0) { if ((MnpDeviceData->NbufCnt + MNP_NET_BUFFER_INCREASEMENT) > MNP_MAX_NET_BUFFER_NUM) { DEBUG ( (EFI_D_ERROR, "MnpAllocNbuf: The maximum NET_BUF size is reached for MNP driver instance %p.\n", MnpDeviceData) ); Nbuf = NULL; goto ON_EXIT; } Status = MnpAddFreeNbuf (MnpDeviceData, MNP_NET_BUFFER_INCREASEMENT); if (EFI_ERROR (Status)) { DEBUG ( (EFI_D_ERROR, "MnpAllocNbuf: Failed to add NET_BUFs into the FreeNbufQue, %r.\n", Status) ); // // Don't return NULL, perhaps MnpAddFreeNbuf does add some NET_BUFs but // the amount is less than MNP_NET_BUFFER_INCREASEMENT. // } } Nbuf = NetbufQueRemove (FreeNbufQue); // // Increase the RefCnt. // if (Nbuf != NULL) { NET_GET_REF (Nbuf); } ON_EXIT: gBS->RestoreTPL (OldTpl); return Nbuf; } /** Try to reclaim the Nbuf into the buffer pool. @param[in, out] MnpDeviceData Pointer to the mnp device context data. @param[in, out] Nbuf Pointer to the NET_BUF to free. **/ VOID MnpFreeNbuf ( IN OUT MNP_DEVICE_DATA *MnpDeviceData, IN OUT NET_BUF *Nbuf ) { EFI_TPL OldTpl; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); ASSERT (Nbuf->RefCnt > 1); OldTpl = gBS->RaiseTPL (TPL_NOTIFY); NET_PUT_REF (Nbuf); if (Nbuf->RefCnt == 1) { // // Trim all buffer contained in the Nbuf, then append it to the NbufQue. // NetbufTrim (Nbuf, Nbuf->TotalSize, NET_BUF_TAIL); if (NetbufAllocSpace (Nbuf, NET_VLAN_TAG_LEN, NET_BUF_HEAD) != NULL) { // // There is space reserved for vlan tag in the head, reclaim it // NetbufTrim (Nbuf, NET_VLAN_TAG_LEN, NET_BUF_TAIL); } NetbufQueAppend (&MnpDeviceData->FreeNbufQue, Nbuf); } gBS->RestoreTPL (OldTpl); } /** Add Count of TX buffers to MnpDeviceData->AllTxBufList and MnpDeviceData->FreeTxBufList. The length of the buffer is specified by MnpDeviceData->BufferLength. @param[in, out] MnpDeviceData Pointer to the MNP_DEVICE_DATA. @param[in] Count Number of TX buffers to add. @retval EFI_SUCCESS The specified amount of TX buffers are allocated. @retval EFI_OUT_OF_RESOURCES Failed to allocate a TX buffer. **/ EFI_STATUS MnpAddFreeTxBuf ( IN OUT MNP_DEVICE_DATA *MnpDeviceData, IN UINTN Count ) { EFI_STATUS Status; UINT32 Index; MNP_TX_BUF_WRAP *TxBufWrap; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); ASSERT ((Count > 0) && (MnpDeviceData->BufferLength > 0)); Status = EFI_SUCCESS; for (Index = 0; Index < Count; Index++) { TxBufWrap = (MNP_TX_BUF_WRAP*) AllocatePool (OFFSET_OF (MNP_TX_BUF_WRAP, TxBuf) + MnpDeviceData->BufferLength ); if (TxBufWrap == NULL) { DEBUG ((EFI_D_ERROR, "MnpAddFreeTxBuf: TxBuf Alloc failed.\n")); Status = EFI_OUT_OF_RESOURCES; break; } DEBUG ((EFI_D_INFO, "MnpAddFreeTxBuf: Add TxBufWrap %p, TxBuf %p\n", TxBufWrap, TxBufWrap->TxBuf)); TxBufWrap->Signature = MNP_TX_BUF_WRAP_SIGNATURE; TxBufWrap->InUse = FALSE; InsertTailList (&MnpDeviceData->FreeTxBufList, &TxBufWrap->WrapEntry); InsertTailList (&MnpDeviceData->AllTxBufList, &TxBufWrap->AllEntry); } MnpDeviceData->TxBufCount += Index; return Status; } /** Allocate a free TX buffer from MnpDeviceData->FreeTxBufList. If there is none in the queue, first try to recycle some from SNP, then try to allocate some and add them into the queue, then fetch the NET_BUF from the updated FreeTxBufList. @param[in, out] MnpDeviceData Pointer to the MNP_DEVICE_DATA. @return Pointer to the allocated free NET_BUF structure, if NULL the operation is failed. **/ UINT8 * MnpAllocTxBuf ( IN OUT MNP_DEVICE_DATA *MnpDeviceData ) { EFI_TPL OldTpl; UINT8 *TxBuf; EFI_STATUS Status; LIST_ENTRY *Entry; MNP_TX_BUF_WRAP *TxBufWrap; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); OldTpl = gBS->RaiseTPL (TPL_CALLBACK); if (IsListEmpty (&MnpDeviceData->FreeTxBufList)) { // // First try to recycle some TX buffer from SNP // Status = MnpRecycleTxBuf (MnpDeviceData); if (EFI_ERROR (Status)) { TxBuf = NULL; goto ON_EXIT; } // // If still no free TX buffer, allocate more. // if (IsListEmpty (&MnpDeviceData->FreeTxBufList)) { if ((MnpDeviceData->TxBufCount + MNP_TX_BUFFER_INCREASEMENT) > MNP_MAX_TX_BUFFER_NUM) { DEBUG ( (EFI_D_ERROR, "MnpAllocTxBuf: The maximum TxBuf size is reached for MNP driver instance %p.\n", MnpDeviceData) ); TxBuf = NULL; goto ON_EXIT; } Status = MnpAddFreeTxBuf (MnpDeviceData, MNP_TX_BUFFER_INCREASEMENT); if (IsListEmpty (&MnpDeviceData->FreeTxBufList)) { DEBUG ( (EFI_D_ERROR, "MnpAllocNbuf: Failed to add TxBuf into the FreeTxBufList, %r.\n", Status) ); TxBuf = NULL; goto ON_EXIT; } } } ASSERT (!IsListEmpty (&MnpDeviceData->FreeTxBufList)); Entry = MnpDeviceData->FreeTxBufList.ForwardLink; RemoveEntryList (MnpDeviceData->FreeTxBufList.ForwardLink); TxBufWrap = NET_LIST_USER_STRUCT_S (Entry, MNP_TX_BUF_WRAP, WrapEntry, MNP_TX_BUF_WRAP_SIGNATURE); TxBufWrap->InUse = TRUE; TxBuf = TxBufWrap->TxBuf; ON_EXIT: gBS->RestoreTPL (OldTpl); return TxBuf; } /** Try to reclaim the TX buffer into the buffer pool. @param[in, out] MnpDeviceData Pointer to the mnp device context data. @param[in, out] TxBuf Pointer to the TX buffer to free. **/ VOID MnpFreeTxBuf ( IN OUT MNP_DEVICE_DATA *MnpDeviceData, IN OUT UINT8 *TxBuf ) { MNP_TX_BUF_WRAP *TxBufWrap; EFI_TPL OldTpl; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); if (TxBuf == NULL) { return; } TxBufWrap = NET_LIST_USER_STRUCT (TxBuf, MNP_TX_BUF_WRAP, TxBuf); if (TxBufWrap->Signature != MNP_TX_BUF_WRAP_SIGNATURE) { DEBUG ( (EFI_D_ERROR, "MnpFreeTxBuf: Signature check failed in MnpFreeTxBuf.\n") ); return; } if (!TxBufWrap->InUse) { DEBUG ( (EFI_D_WARN, "MnpFreeTxBuf: Duplicated recycle report from SNP.\n") ); return; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); InsertTailList (&MnpDeviceData->FreeTxBufList, &TxBufWrap->WrapEntry); TxBufWrap->InUse = FALSE; gBS->RestoreTPL (OldTpl); } /** Try to recycle all the transmitted buffer address from SNP. @param[in, out] MnpDeviceData Pointer to the mnp device context data. @retval EFI_SUCCESS Successed to recyclethe transmitted buffer address. @retval Others Failed to recyclethe transmitted buffer address. **/ EFI_STATUS MnpRecycleTxBuf ( IN OUT MNP_DEVICE_DATA *MnpDeviceData ) { UINT8 *TxBuf; EFI_SIMPLE_NETWORK_PROTOCOL *Snp; EFI_STATUS Status; Snp = MnpDeviceData->Snp; ASSERT (Snp != NULL); do { TxBuf = NULL; Status = Snp->GetStatus (Snp, NULL, (VOID **) &TxBuf); if (EFI_ERROR (Status)) { return Status; } if (TxBuf != NULL) { MnpFreeTxBuf (MnpDeviceData, TxBuf); } } while (TxBuf != NULL); return EFI_SUCCESS; } /** Initialize the mnp device context data. @param[in, out] MnpDeviceData Pointer to the mnp device context data. @param[in] ImageHandle The driver image handle. @param[in] ControllerHandle Handle of device to bind driver to. @retval EFI_SUCCESS The mnp service context is initialized. @retval EFI_UNSUPPORTED ControllerHandle does not support Simple Network Protocol. @retval Others Other errors as indicated. **/ EFI_STATUS MnpInitializeDeviceData ( IN OUT MNP_DEVICE_DATA *MnpDeviceData, IN EFI_HANDLE ImageHandle, IN EFI_HANDLE ControllerHandle ) { EFI_STATUS Status; EFI_SIMPLE_NETWORK_PROTOCOL *Snp; EFI_SIMPLE_NETWORK_MODE *SnpMode; MnpDeviceData->Signature = MNP_DEVICE_DATA_SIGNATURE; MnpDeviceData->ImageHandle = ImageHandle; MnpDeviceData->ControllerHandle = ControllerHandle; // // Copy the MNP Protocol interfaces from the template. // CopyMem (&MnpDeviceData->VlanConfig, &mVlanConfigProtocolTemplate, sizeof (EFI_VLAN_CONFIG_PROTOCOL)); // // Open the Simple Network protocol. // Status = gBS->OpenProtocol ( ControllerHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &Snp, ImageHandle, ControllerHandle, EFI_OPEN_PROTOCOL_BY_DRIVER ); if (EFI_ERROR (Status)) { return EFI_UNSUPPORTED; } // // Get MTU from Snp. // SnpMode = Snp->Mode; MnpDeviceData->Snp = Snp; // // Initialize the lists. // InitializeListHead (&MnpDeviceData->ServiceList); InitializeListHead (&MnpDeviceData->GroupAddressList); // // Get the buffer length used to allocate NET_BUF to hold data received // from SNP. Do this before fill the FreeNetBufQue. // // MnpDeviceData->BufferLength = SnpMode->MediaHeaderSize + NET_VLAN_TAG_LEN + SnpMode->MaxPacketSize + NET_ETHER_FCS_SIZE; // // Make sure the protocol headers immediately following the media header // 4-byte aligned, and also preserve additional space for VLAN tag // MnpDeviceData->PaddingSize = ((4 - SnpMode->MediaHeaderSize) & 0x3) + NET_VLAN_TAG_LEN; // // Initialize MAC string which will be used as VLAN configuration variable name // Status = NetLibGetMacString (ControllerHandle, ImageHandle, &MnpDeviceData->MacString); if (EFI_ERROR (Status)) { goto ERROR; } // // Initialize the FreeNetBufQue and pre-allocate some NET_BUFs. // NetbufQueInit (&MnpDeviceData->FreeNbufQue); Status = MnpAddFreeNbuf (MnpDeviceData, MNP_INIT_NET_BUFFER_NUM); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MnpInitializeDeviceData: MnpAddFreeNbuf failed, %r.\n", Status)); goto ERROR; } // // Get one NET_BUF from the FreeNbufQue for rx cache. // MnpDeviceData->RxNbufCache = MnpAllocNbuf (MnpDeviceData); NetbufAllocSpace ( MnpDeviceData->RxNbufCache, MnpDeviceData->BufferLength, NET_BUF_TAIL ); // // Allocate buffer pool for tx. // InitializeListHead (&MnpDeviceData->FreeTxBufList); InitializeListHead (&MnpDeviceData->AllTxBufList); MnpDeviceData->TxBufCount = 0; // // Create the system poll timer. // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL | EVT_TIMER, TPL_CALLBACK, MnpSystemPoll, MnpDeviceData, &MnpDeviceData->PollTimer ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MnpInitializeDeviceData: CreateEvent for poll timer failed.\n")); goto ERROR; } // // Create the timer for packet timeout check. // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL | EVT_TIMER, TPL_CALLBACK, MnpCheckPacketTimeout, MnpDeviceData, &MnpDeviceData->TimeoutCheckTimer ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MnpInitializeDeviceData: CreateEvent for packet timeout check failed.\n")); goto ERROR; } // // Create the timer for media detection. // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL | EVT_TIMER, TPL_CALLBACK, MnpCheckMediaStatus, MnpDeviceData, &MnpDeviceData->MediaDetectTimer ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MnpInitializeDeviceData: CreateEvent for media detection failed.\n")); goto ERROR; } ERROR: if (EFI_ERROR (Status)) { // // Free the dynamic allocated resources if necessary. // if (MnpDeviceData->MacString != NULL) { FreePool (MnpDeviceData->MacString); } if (MnpDeviceData->TimeoutCheckTimer != NULL) { gBS->CloseEvent (MnpDeviceData->TimeoutCheckTimer); } if (MnpDeviceData->MediaDetectTimer != NULL) { gBS->CloseEvent (MnpDeviceData->MediaDetectTimer); } if (MnpDeviceData->PollTimer != NULL) { gBS->CloseEvent (MnpDeviceData->PollTimer); } if (MnpDeviceData->RxNbufCache != NULL) { MnpFreeNbuf (MnpDeviceData, MnpDeviceData->RxNbufCache); } if (MnpDeviceData->FreeNbufQue.BufNum != 0) { NetbufQueFlush (&MnpDeviceData->FreeNbufQue); } // // Close the Simple Network Protocol. // gBS->CloseProtocol ( ControllerHandle, &gEfiSimpleNetworkProtocolGuid, ImageHandle, ControllerHandle ); } return Status; } /** Destroy the MNP device context data. @param[in, out] MnpDeviceData Pointer to the mnp device context data. @param[in] ImageHandle The driver image handle. **/ VOID MnpDestroyDeviceData ( IN OUT MNP_DEVICE_DATA *MnpDeviceData, IN EFI_HANDLE ImageHandle ) { LIST_ENTRY *Entry; LIST_ENTRY *NextEntry; MNP_TX_BUF_WRAP *TxBufWrap; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); // // Free Vlan Config variable name string // if (MnpDeviceData->MacString != NULL) { FreePool (MnpDeviceData->MacString); } // // The GroupAddressList must be empty. // ASSERT (IsListEmpty (&MnpDeviceData->GroupAddressList)); // // Close the event. // gBS->CloseEvent (MnpDeviceData->TimeoutCheckTimer); gBS->CloseEvent (MnpDeviceData->MediaDetectTimer); gBS->CloseEvent (MnpDeviceData->PollTimer); // // Free the Tx buffer pool. // NET_LIST_FOR_EACH_SAFE(Entry, NextEntry, &MnpDeviceData->AllTxBufList) { TxBufWrap = NET_LIST_USER_STRUCT (Entry, MNP_TX_BUF_WRAP, AllEntry); RemoveEntryList (Entry); FreePool (TxBufWrap); MnpDeviceData->TxBufCount--; } ASSERT (IsListEmpty (&MnpDeviceData->AllTxBufList)); ASSERT (MnpDeviceData->TxBufCount == 0); // // Free the RxNbufCache. // MnpFreeNbuf (MnpDeviceData, MnpDeviceData->RxNbufCache); // // Flush the FreeNbufQue. // MnpDeviceData->NbufCnt -= MnpDeviceData->FreeNbufQue.BufNum; NetbufQueFlush (&MnpDeviceData->FreeNbufQue); // // Close the Simple Network Protocol. // gBS->CloseProtocol ( MnpDeviceData->ControllerHandle, &gEfiSimpleNetworkProtocolGuid, ImageHandle, MnpDeviceData->ControllerHandle ); } /** Create mnp service context data. @param[in] MnpDeviceData Pointer to the mnp device context data. @param[in] VlanId The VLAN ID. @param[in] Priority The VLAN priority. If VlanId is 0, Priority is ignored. @return A pointer to MNP_SERVICE_DATA or NULL if failed to create MNP service context. **/ MNP_SERVICE_DATA * MnpCreateServiceData ( IN MNP_DEVICE_DATA *MnpDeviceData, IN UINT16 VlanId, IN UINT8 Priority OPTIONAL ) { EFI_HANDLE MnpServiceHandle; MNP_SERVICE_DATA *MnpServiceData; EFI_STATUS Status; EFI_SIMPLE_NETWORK_MODE *SnpMode; EFI_VLAN_CONFIG_PROTOCOL *VlanConfig; // // Initialize the Mnp Service Data. // MnpServiceData = AllocateZeroPool (sizeof (MNP_SERVICE_DATA)); if (MnpServiceData == NULL) { DEBUG ((DEBUG_ERROR, "MnpCreateServiceData: Failed to allocate memory for the new Mnp Service Data.\n")); return NULL; } // // Add to MNP service list // InsertTailList (&MnpDeviceData->ServiceList, &MnpServiceData->Link); MnpServiceData->Signature = MNP_SERVICE_DATA_SIGNATURE; MnpServiceData->MnpDeviceData = MnpDeviceData; // // Copy the ServiceBinding structure. // CopyMem (&MnpServiceData->ServiceBinding, &mMnpServiceBindingProtocol, sizeof (EFI_SERVICE_BINDING_PROTOCOL)); // // Initialize the lists. // InitializeListHead (&MnpServiceData->ChildrenList); SnpMode = MnpDeviceData->Snp->Mode; if (VlanId != 0) { // // Create VLAN child handle // MnpServiceHandle = MnpCreateVlanChild ( MnpDeviceData->ImageHandle, MnpDeviceData->ControllerHandle, VlanId, &MnpServiceData->DevicePath ); if (MnpServiceHandle == NULL) { DEBUG ((DEBUG_ERROR, "MnpCreateServiceData: Failed to create child handle.\n")); return NULL; } // // Open VLAN Config Protocol by child // Status = gBS->OpenProtocol ( MnpDeviceData->ControllerHandle, &gEfiVlanConfigProtocolGuid, (VOID **) &VlanConfig, MnpDeviceData->ImageHandle, MnpServiceHandle, EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER ); if (EFI_ERROR (Status)) { goto Exit; } // // Reduce MTU for VLAN device // MnpServiceData->Mtu = SnpMode->MaxPacketSize - NET_VLAN_TAG_LEN; } else { // // VlanId set to 0 means rx/tx untagged frame // MnpServiceHandle = MnpDeviceData->ControllerHandle; MnpServiceData->Mtu = SnpMode->MaxPacketSize; } MnpServiceData->ServiceHandle = MnpServiceHandle; MnpServiceData->VlanId = VlanId; MnpServiceData->Priority = Priority; // // Install the MNP Service Binding Protocol // Status = gBS->InstallMultipleProtocolInterfaces ( &MnpServiceHandle, &gEfiManagedNetworkServiceBindingProtocolGuid, &MnpServiceData->ServiceBinding, NULL ); Exit: if (EFI_ERROR (Status)) { MnpDestroyServiceData (MnpServiceData); MnpServiceData = NULL; } return MnpServiceData; } /** Destroy the MNP service context data. @param[in, out] MnpServiceData Pointer to the mnp service context data. @retval EFI_SUCCESS The mnp service context is destroyed. @retval Others Errors as indicated. **/ EFI_STATUS MnpDestroyServiceData ( IN OUT MNP_SERVICE_DATA *MnpServiceData ) { EFI_STATUS Status; // // Uninstall the MNP Service Binding Protocol // Status = gBS->UninstallMultipleProtocolInterfaces ( MnpServiceData->ServiceHandle, &gEfiManagedNetworkServiceBindingProtocolGuid, &MnpServiceData->ServiceBinding, NULL ); if (EFI_ERROR (Status)) { return Status; } if (MnpServiceData->VlanId != 0) { // // Close VlanConfig Protocol opened by VLAN child handle // Status = gBS->CloseProtocol ( MnpServiceData->MnpDeviceData->ControllerHandle, &gEfiVlanConfigProtocolGuid, MnpServiceData->MnpDeviceData->ImageHandle, MnpServiceData->ServiceHandle ); if (EFI_ERROR (Status)) { return Status; } // // Uninstall Device Path Protocol to destroy the VLAN child handle // Status = gBS->UninstallMultipleProtocolInterfaces ( MnpServiceData->ServiceHandle, &gEfiDevicePathProtocolGuid, MnpServiceData->DevicePath, NULL ); if (EFI_ERROR (Status)) { return Status; } if (MnpServiceData->DevicePath != NULL) { FreePool (MnpServiceData->DevicePath); } } // // Remove from MnpDeviceData service list // RemoveEntryList (&MnpServiceData->Link); FreePool (MnpServiceData); return Status; } /** Callback function which provided by user to remove one node in NetDestroyLinkList process. @param[in] Entry The entry to be removed. @param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList. @retval EFI_SUCCESS The entry has been removed successfully. @retval Others Fail to remove the entry. **/ EFI_STATUS EFIAPI MnpDestoryChildEntry ( IN LIST_ENTRY *Entry, IN VOID *Context ) { MNP_INSTANCE_DATA *Instance; EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding; ServiceBinding = (EFI_SERVICE_BINDING_PROTOCOL *) Context; Instance = CR (Entry, MNP_INSTANCE_DATA, InstEntry, MNP_INSTANCE_DATA_SIGNATURE); return ServiceBinding->DestroyChild (ServiceBinding, Instance->Handle); } /** Destroy all child of the MNP service data. @param[in, out] MnpServiceData Pointer to the mnp service context data. @retval EFI_SUCCESS All child are destroyed. @retval Others Failed to destroy all child. **/ EFI_STATUS MnpDestroyServiceChild ( IN OUT MNP_SERVICE_DATA *MnpServiceData ) { LIST_ENTRY *List; EFI_STATUS Status; UINTN ListLength; List = &MnpServiceData->ChildrenList; Status = NetDestroyLinkList ( List, MnpDestoryChildEntry, &MnpServiceData->ServiceBinding, &ListLength ); if (EFI_ERROR (Status) || ListLength != 0) { return EFI_DEVICE_ERROR; } return EFI_SUCCESS; } /** Find the MNP Service Data for given VLAN ID. @param[in] MnpDeviceData Pointer to the mnp device context data. @param[in] VlanId The VLAN ID. @return A pointer to MNP_SERVICE_DATA or NULL if not found. **/ MNP_SERVICE_DATA * MnpFindServiceData ( IN MNP_DEVICE_DATA *MnpDeviceData, IN UINT16 VlanId ) { LIST_ENTRY *Entry; MNP_SERVICE_DATA *MnpServiceData; NET_LIST_FOR_EACH (Entry, &MnpDeviceData->ServiceList) { // // Check VLAN ID of each Mnp Service Data // MnpServiceData = MNP_SERVICE_DATA_FROM_LINK (Entry); if (MnpServiceData->VlanId == VlanId) { return MnpServiceData; } } return NULL; } /** Initialize the mnp instance context data. @param[in] MnpServiceData Pointer to the mnp service context data. @param[in, out] Instance Pointer to the mnp instance context data to initialize. **/ VOID MnpInitializeInstanceData ( IN MNP_SERVICE_DATA *MnpServiceData, IN OUT MNP_INSTANCE_DATA *Instance ) { NET_CHECK_SIGNATURE (MnpServiceData, MNP_SERVICE_DATA_SIGNATURE); ASSERT (Instance != NULL); // // Set the signature. // Instance->Signature = MNP_INSTANCE_DATA_SIGNATURE; // // Copy the MNP Protocol interfaces from the template. // CopyMem (&Instance->ManagedNetwork, &mMnpProtocolTemplate, sizeof (Instance->ManagedNetwork)); // // Copy the default config data. // CopyMem (&Instance->ConfigData, &mMnpDefaultConfigData, sizeof (Instance->ConfigData)); // // Initialize the lists. // InitializeListHead (&Instance->GroupCtrlBlkList); InitializeListHead (&Instance->RcvdPacketQueue); InitializeListHead (&Instance->RxDeliveredPacketQueue); // // Initialize the RxToken Map. // NetMapInit (&Instance->RxTokenMap); // // Save the MnpServiceData info. // Instance->MnpServiceData = MnpServiceData; } /** Check whether the token specified by Arg matches the token in Item. @param[in] Map Pointer to the NET_MAP. @param[in] Item Pointer to the NET_MAP_ITEM. @param[in] Arg Pointer to the Arg, it's a pointer to the token to check. @retval EFI_SUCCESS The token specified by Arg is different from the token in Item. @retval EFI_ACCESS_DENIED The token specified by Arg is the same as that in Item. **/ EFI_STATUS EFIAPI MnpTokenExist ( IN NET_MAP *Map, IN NET_MAP_ITEM *Item, IN VOID *Arg ) { EFI_MANAGED_NETWORK_COMPLETION_TOKEN *Token; EFI_MANAGED_NETWORK_COMPLETION_TOKEN *TokenInItem; Token = (EFI_MANAGED_NETWORK_COMPLETION_TOKEN *) Arg; TokenInItem = (EFI_MANAGED_NETWORK_COMPLETION_TOKEN *) Item->Key; if ((Token == TokenInItem) || (Token->Event == TokenInItem->Event)) { // // The token is the same either the two tokens equals or the Events in // the two tokens are the same. // return EFI_ACCESS_DENIED; } return EFI_SUCCESS; } /** Cancel the token specified by Arg if it matches the token in Item. @param[in, out] Map Pointer to the NET_MAP. @param[in, out] Item Pointer to the NET_MAP_ITEM. @param[in] Arg Pointer to the Arg, it's a pointer to the token to cancel. @retval EFI_SUCCESS The Arg is NULL, and the token in Item is cancelled, or the Arg isn't NULL, and the token in Item is different from the Arg. @retval EFI_ABORTED The Arg isn't NULL, the token in Item mathces the Arg, and the token is cancelled. **/ EFI_STATUS EFIAPI MnpCancelTokens ( IN OUT NET_MAP *Map, IN OUT NET_MAP_ITEM *Item, IN VOID *Arg ) { EFI_MANAGED_NETWORK_COMPLETION_TOKEN *TokenToCancel; if ((Arg != NULL) && (Item->Key != Arg)) { // // The token in Item is not the token specified by Arg. // return EFI_SUCCESS; } TokenToCancel = (EFI_MANAGED_NETWORK_COMPLETION_TOKEN *) Item->Key; // // Remove the item from the map. // NetMapRemoveItem (Map, Item, NULL); // // Cancel this token with status set to EFI_ABORTED. // TokenToCancel->Status = EFI_ABORTED; gBS->SignalEvent (TokenToCancel->Event); if (Arg != NULL) { // // Only abort the token specified by Arg if Arg isn't NULL. // return EFI_ABORTED; } return EFI_SUCCESS; } /** Start and initialize the simple network. @param[in] Snp Pointer to the simple network protocol. @retval EFI_SUCCESS The simple network protocol is started. @retval Others Other errors as indicated. **/ EFI_STATUS MnpStartSnp ( IN EFI_SIMPLE_NETWORK_PROTOCOL *Snp ) { EFI_STATUS Status; ASSERT (Snp != NULL); // // Start the simple network. // Status = Snp->Start (Snp); if (!EFI_ERROR (Status)) { // // Initialize the simple network. // Status = Snp->Initialize (Snp, 0, 0); } return Status; } /** Stop the simple network. @param[in] MnpDeviceData Pointer to the MNP_DEVICE_DATA. @retval EFI_SUCCESS The simple network is stopped. @retval Others Other errors as indicated. **/ EFI_STATUS MnpStopSnp ( IN MNP_DEVICE_DATA *MnpDeviceData ) { EFI_STATUS Status; EFI_SIMPLE_NETWORK_PROTOCOL *Snp; Snp = MnpDeviceData->Snp; ASSERT (Snp != NULL); // // Recycle all the transmit buffer from SNP. // Status = MnpRecycleTxBuf (MnpDeviceData); if (EFI_ERROR (Status)) { return Status; } // // Shut down the simple network. // Status = Snp->Shutdown (Snp); if (!EFI_ERROR (Status)) { // // Stop the simple network. // Status = Snp->Stop (Snp); } return Status; } /** Start the managed network, this function is called when one instance is configured or reconfigured. @param[in, out] MnpServiceData Pointer to the mnp service context data. @param[in] IsConfigUpdate The instance is reconfigured or it's the first time the instanced is configured. @param[in] EnableSystemPoll Enable the system polling or not. @retval EFI_SUCCESS The managed network is started and some configuration is updated. @retval Others Other errors as indicated. **/ EFI_STATUS MnpStart ( IN OUT MNP_SERVICE_DATA *MnpServiceData, IN BOOLEAN IsConfigUpdate, IN BOOLEAN EnableSystemPoll ) { EFI_STATUS Status; EFI_TIMER_DELAY TimerOpType; MNP_DEVICE_DATA *MnpDeviceData; NET_CHECK_SIGNATURE (MnpServiceData, MNP_SERVICE_DATA_SIGNATURE); Status = EFI_SUCCESS; MnpDeviceData = MnpServiceData->MnpDeviceData; if (!IsConfigUpdate) { // // If it's not a configuration update, increase the configured children number. // MnpDeviceData->ConfiguredChildrenNumber++; if (MnpDeviceData->ConfiguredChildrenNumber == 1) { // // It's the first configured child, start the simple network. // Status = MnpStartSnp (MnpDeviceData->Snp); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MnpStart: MnpStartSnp failed, %r.\n", Status)); goto ErrorExit; } // // Start the timeout timer. // Status = gBS->SetTimer ( MnpDeviceData->TimeoutCheckTimer, TimerPeriodic, MNP_TIMEOUT_CHECK_INTERVAL ); if (EFI_ERROR (Status)) { DEBUG ( (EFI_D_ERROR, "MnpStart, gBS->SetTimer for TimeoutCheckTimer %r.\n", Status) ); goto ErrorExit; } // // Start the media detection timer. // Status = gBS->SetTimer ( MnpDeviceData->MediaDetectTimer, TimerPeriodic, MNP_MEDIA_DETECT_INTERVAL ); if (EFI_ERROR (Status)) { DEBUG ( (EFI_D_ERROR, "MnpStart, gBS->SetTimer for MediaDetectTimer %r.\n", Status) ); goto ErrorExit; } } } if (MnpDeviceData->EnableSystemPoll ^ EnableSystemPoll) { // // The EnableSystemPoll differs with the current state, disable or enable // the system poll. // TimerOpType = EnableSystemPoll ? TimerPeriodic : TimerCancel; Status = gBS->SetTimer (MnpDeviceData->PollTimer, TimerOpType, MNP_SYS_POLL_INTERVAL); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "MnpStart: gBS->SetTimer for PollTimer failed, %r.\n", Status)); goto ErrorExit; } MnpDeviceData->EnableSystemPoll = EnableSystemPoll; } // // Change the receive filters if need. // Status = MnpConfigReceiveFilters (MnpDeviceData); ErrorExit: return Status; } /** Stop the managed network. @param[in, out] MnpServiceData Pointer to the mnp service context data. @retval EFI_SUCCESS The managed network is stopped. @retval Others Other errors as indicated. **/ EFI_STATUS MnpStop ( IN OUT MNP_SERVICE_DATA *MnpServiceData ) { EFI_STATUS Status; MNP_DEVICE_DATA *MnpDeviceData; NET_CHECK_SIGNATURE (MnpServiceData, MNP_SERVICE_DATA_SIGNATURE); MnpDeviceData = MnpServiceData->MnpDeviceData; ASSERT (MnpDeviceData->ConfiguredChildrenNumber > 0); // // Configure the receive filters. // MnpConfigReceiveFilters (MnpDeviceData); // // Decrease the children number. // MnpDeviceData->ConfiguredChildrenNumber--; if (MnpDeviceData->ConfiguredChildrenNumber > 0) { // // If there are other configured children, return and keep the timers and // simple network unchanged. // return EFI_SUCCESS; } // // No configured children now. // if (MnpDeviceData->EnableSystemPoll) { // // The system poll in on, cancel the poll timer. // Status = gBS->SetTimer (MnpDeviceData->PollTimer, TimerCancel, 0); MnpDeviceData->EnableSystemPoll = FALSE; } // // Cancel the timeout timer. // Status = gBS->SetTimer (MnpDeviceData->TimeoutCheckTimer, TimerCancel, 0); // // Cancel the media detect timer. // Status = gBS->SetTimer (MnpDeviceData->MediaDetectTimer, TimerCancel, 0); // // Stop the simple network. // Status = MnpStopSnp (MnpDeviceData); return Status; } /** Flush the instance's received data. @param[in, out] Instance Pointer to the mnp instance context data. **/ VOID MnpFlushRcvdDataQueue ( IN OUT MNP_INSTANCE_DATA *Instance ) { EFI_TPL OldTpl; MNP_RXDATA_WRAP *RxDataWrap; NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE); OldTpl = gBS->RaiseTPL (TPL_NOTIFY); while (!IsListEmpty (&Instance->RcvdPacketQueue)) { // // Remove all the Wraps. // RxDataWrap = NET_LIST_HEAD (&Instance->RcvdPacketQueue, MNP_RXDATA_WRAP, WrapEntry); // // Recycle the RxDataWrap. // MnpRecycleRxData (NULL, (VOID *) RxDataWrap); Instance->RcvdPacketQueueSize--; } ASSERT (Instance->RcvdPacketQueueSize == 0); gBS->RestoreTPL (OldTpl); } /** Configure the Instance using ConfigData. @param[in, out] Instance Pointer to the mnp instance context data. @param[in] ConfigData Pointer to the configuration data used to configure the instance. @retval EFI_SUCCESS The Instance is configured. @retval EFI_UNSUPPORTED EnableReceiveTimestamps is on and the implementation doesn't support it. @retval Others Other errors as indicated. **/ EFI_STATUS MnpConfigureInstance ( IN OUT MNP_INSTANCE_DATA *Instance, IN EFI_MANAGED_NETWORK_CONFIG_DATA *ConfigData OPTIONAL ) { EFI_STATUS Status; MNP_SERVICE_DATA *MnpServiceData; MNP_DEVICE_DATA *MnpDeviceData; EFI_MANAGED_NETWORK_CONFIG_DATA *OldConfigData; EFI_MANAGED_NETWORK_CONFIG_DATA *NewConfigData; BOOLEAN IsConfigUpdate; NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE); if ((ConfigData != NULL) && ConfigData->EnableReceiveTimestamps) { // // Don't support timestamp. // return EFI_UNSUPPORTED; } Status = EFI_SUCCESS; MnpServiceData = Instance->MnpServiceData; MnpDeviceData = MnpServiceData->MnpDeviceData; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); IsConfigUpdate = (BOOLEAN) ((Instance->Configured) && (ConfigData != NULL)); OldConfigData = &Instance->ConfigData; NewConfigData = ConfigData; if (NewConfigData == NULL) { // // Restore back the default config data if a reset of this instance // is required. // NewConfigData = &mMnpDefaultConfigData; } // // Reset the instance's receive filter. // Instance->ReceiveFilter = 0; // // Clear the receive counters according to the old ConfigData. // if (OldConfigData->EnableUnicastReceive) { MnpDeviceData->UnicastCount--; } if (OldConfigData->EnableMulticastReceive) { MnpDeviceData->MulticastCount--; } if (OldConfigData->EnableBroadcastReceive) { MnpDeviceData->BroadcastCount--; } if (OldConfigData->EnablePromiscuousReceive) { MnpDeviceData->PromiscuousCount--; } // // Set the receive filter counters and the receive filter of the // instance according to the new ConfigData. // if (NewConfigData->EnableUnicastReceive) { MnpDeviceData->UnicastCount++; Instance->ReceiveFilter |= MNP_RECEIVE_UNICAST; } if (NewConfigData->EnableMulticastReceive) { MnpDeviceData->MulticastCount++; } if (NewConfigData->EnableBroadcastReceive) { MnpDeviceData->BroadcastCount++; Instance->ReceiveFilter |= MNP_RECEIVE_BROADCAST; } if (NewConfigData->EnablePromiscuousReceive) { MnpDeviceData->PromiscuousCount++; } if (OldConfigData->FlushQueuesOnReset) { MnpFlushRcvdDataQueue (Instance); } if (ConfigData == NULL) { Instance->ManagedNetwork.Cancel (&Instance->ManagedNetwork, NULL); } if (!NewConfigData->EnableMulticastReceive) { MnpGroupOp (Instance, FALSE, NULL, NULL); } // // Save the new configuration data. // CopyMem (OldConfigData, NewConfigData, sizeof (*OldConfigData)); Instance->Configured = (BOOLEAN) (ConfigData != NULL); if (Instance->Configured) { // // The instance is configured, start the Mnp. // Status = MnpStart ( MnpServiceData, IsConfigUpdate, (BOOLEAN) !NewConfigData->DisableBackgroundPolling ); } else { // // The instance is changed to the unconfigured state, stop the Mnp. // Status = MnpStop (MnpServiceData); } return Status; } /** Configure the Snp receive filters according to the instances' receive filter settings. @param[in] MnpDeviceData Pointer to the mnp device context data. @retval EFI_SUCCESS The receive filters is configured. @retval EFI_OUT_OF_RESOURCES The receive filters can't be configured due to lack of memory resource. **/ EFI_STATUS MnpConfigReceiveFilters ( IN MNP_DEVICE_DATA *MnpDeviceData ) { EFI_STATUS Status; EFI_SIMPLE_NETWORK_PROTOCOL *Snp; EFI_MAC_ADDRESS *MCastFilter; UINT32 MCastFilterCnt; UINT32 EnableFilterBits; UINT32 DisableFilterBits; BOOLEAN ResetMCastFilters; LIST_ENTRY *Entry; UINT32 Index; MNP_GROUP_ADDRESS *GroupAddress; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); Snp = MnpDeviceData->Snp; // // Initialize the enable filter and disable filter. // EnableFilterBits = 0; DisableFilterBits = Snp->Mode->ReceiveFilterMask; if (MnpDeviceData->UnicastCount != 0) { // // Enable unicast if any instance wants to receive unicast. // EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_UNICAST; } if (MnpDeviceData->BroadcastCount != 0) { // // Enable broadcast if any instance wants to receive broadcast. // EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_BROADCAST; } MCastFilter = NULL; MCastFilterCnt = 0; ResetMCastFilters = TRUE; if ((MnpDeviceData->MulticastCount != 0) && (MnpDeviceData->GroupAddressCount != 0)) { // // There are instances configured to receive multicast and already some group // addresses are joined. // ResetMCastFilters = FALSE; if (MnpDeviceData->GroupAddressCount <= Snp->Mode->MaxMCastFilterCount) { // // The joind group address is less than simple network's maximum count. // Just configure the snp to do the multicast filtering. // EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_MULTICAST; // // Allocate pool for the multicast addresses. // MCastFilterCnt = MnpDeviceData->GroupAddressCount; MCastFilter = AllocatePool (sizeof (EFI_MAC_ADDRESS) * MCastFilterCnt); if (MCastFilter == NULL) { DEBUG ((EFI_D_ERROR, "MnpConfigReceiveFilters: Failed to allocate memory resource for MCastFilter.\n")); return EFI_OUT_OF_RESOURCES; } // // Fill the multicast HW address buffer. // Index = 0; NET_LIST_FOR_EACH (Entry, &MnpDeviceData->GroupAddressList) { GroupAddress = NET_LIST_USER_STRUCT (Entry, MNP_GROUP_ADDRESS, AddrEntry); CopyMem (MCastFilter + Index, &GroupAddress->Address, sizeof (*(MCastFilter + Index))); Index++; ASSERT (Index <= MCastFilterCnt); } } else { // // The maximum multicast is reached, set the filter to be promiscuous // multicast. // if ((Snp->Mode->ReceiveFilterMask & EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST) != 0) { EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS_MULTICAST; } else { // // Either MULTICAST or PROMISCUOUS_MULTICAST is not supported by Snp, // set the NIC to be promiscuous although this will tremendously degrade // the performance. // EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS; } } } if (MnpDeviceData->PromiscuousCount != 0) { // // Enable promiscuous if any instance wants to receive promiscuous. // EnableFilterBits |= EFI_SIMPLE_NETWORK_RECEIVE_PROMISCUOUS; } // // Set the disable filter. // DisableFilterBits ^= EnableFilterBits; // // Configure the receive filters of SNP. // Status = Snp->ReceiveFilters ( Snp, EnableFilterBits, DisableFilterBits, ResetMCastFilters, MCastFilterCnt, MCastFilter ); DEBUG_CODE ( if (EFI_ERROR (Status)) { DEBUG ( (EFI_D_ERROR, "MnpConfigReceiveFilters: Snp->ReceiveFilters failed, %r.\n", Status) ); } ); if (MCastFilter != NULL) { // // Free the buffer used to hold the group addresses. // FreePool (MCastFilter); } return Status; } /** Add a group address control block which controls the MacAddress for this instance. @param[in, out] Instance Pointer to the mnp instance context data. @param[in, out] CtrlBlk Pointer to the group address control block. @param[in, out] GroupAddress Pointer to the group address. @param[in] MacAddress Pointer to the mac address. @param[in] HwAddressSize The hardware address size. @retval EFI_SUCCESS The group address control block is added. @retval EFI_OUT_OF_RESOURCES Failed due to lack of memory resources. **/ EFI_STATUS MnpGroupOpAddCtrlBlk ( IN OUT MNP_INSTANCE_DATA *Instance, IN OUT MNP_GROUP_CONTROL_BLOCK *CtrlBlk, IN OUT MNP_GROUP_ADDRESS *GroupAddress OPTIONAL, IN EFI_MAC_ADDRESS *MacAddress, IN UINT32 HwAddressSize ) { MNP_DEVICE_DATA *MnpDeviceData; NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE); MnpDeviceData = Instance->MnpServiceData->MnpDeviceData; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); if (GroupAddress == NULL) { ASSERT (MacAddress != NULL); // // Allocate a new GroupAddress to be added into MNP's GroupAddressList. // GroupAddress = AllocatePool (sizeof (MNP_GROUP_ADDRESS)); if (GroupAddress == NULL) { DEBUG ((EFI_D_ERROR, "MnpGroupOpFormCtrlBlk: Failed to allocate memory resource.\n")); return EFI_OUT_OF_RESOURCES; } CopyMem (&GroupAddress->Address, MacAddress, sizeof (GroupAddress->Address)); GroupAddress->RefCnt = 0; InsertTailList ( &MnpDeviceData->GroupAddressList, &GroupAddress->AddrEntry ); MnpDeviceData->GroupAddressCount++; } // // Increase the RefCnt. // GroupAddress->RefCnt++; // // Add the CtrlBlk into the instance's GroupCtrlBlkList. // CtrlBlk->GroupAddress = GroupAddress; InsertTailList (&Instance->GroupCtrlBlkList, &CtrlBlk->CtrlBlkEntry); return EFI_SUCCESS; } /** Delete a group control block from the instance. If the controlled group address's reference count reaches zero, the group address is removed too. @param[in] Instance Pointer to the instance context data. @param[in] CtrlBlk Pointer to the group control block to delete. @return The group address controlled by the control block is no longer used or not. **/ BOOLEAN MnpGroupOpDelCtrlBlk ( IN MNP_INSTANCE_DATA *Instance, IN MNP_GROUP_CONTROL_BLOCK *CtrlBlk ) { MNP_DEVICE_DATA *MnpDeviceData; MNP_GROUP_ADDRESS *GroupAddress; NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE); MnpDeviceData = Instance->MnpServiceData->MnpDeviceData; NET_CHECK_SIGNATURE (MnpDeviceData, MNP_DEVICE_DATA_SIGNATURE); // // Remove and free the CtrlBlk. // GroupAddress = CtrlBlk->GroupAddress; RemoveEntryList (&CtrlBlk->CtrlBlkEntry); FreePool (CtrlBlk); ASSERT (GroupAddress->RefCnt > 0); // // Count down the RefCnt. // GroupAddress->RefCnt--; if (GroupAddress->RefCnt == 0) { // // Free this GroupAddress entry if no instance uses it. // MnpDeviceData->GroupAddressCount--; RemoveEntryList (&GroupAddress->AddrEntry); FreePool (GroupAddress); return TRUE; } return FALSE; } /** Do the group operations for this instance. @param[in, out] Instance Pointer to the instance context data. @param[in] JoinFlag Set to TRUE to join a group. Set to TRUE to leave a group/groups. @param[in] MacAddress Pointer to the group address to join or leave. @param[in] CtrlBlk Pointer to the group control block if JoinFlag is FALSE. @retval EFI_SUCCESS The group operation finished. @retval EFI_OUT_OF_RESOURCES Failed due to lack of memory resources. @retval Others Other errors as indicated. **/ EFI_STATUS MnpGroupOp ( IN OUT MNP_INSTANCE_DATA *Instance, IN BOOLEAN JoinFlag, IN EFI_MAC_ADDRESS *MacAddress OPTIONAL, IN MNP_GROUP_CONTROL_BLOCK *CtrlBlk OPTIONAL ) { MNP_DEVICE_DATA *MnpDeviceData; LIST_ENTRY *Entry; LIST_ENTRY *NextEntry; MNP_GROUP_ADDRESS *GroupAddress; EFI_SIMPLE_NETWORK_MODE *SnpMode; MNP_GROUP_CONTROL_BLOCK *NewCtrlBlk; EFI_STATUS Status; BOOLEAN AddressExist; BOOLEAN NeedUpdate; NET_CHECK_SIGNATURE (Instance, MNP_INSTANCE_DATA_SIGNATURE); MnpDeviceData = Instance->MnpServiceData->MnpDeviceData; SnpMode = MnpDeviceData->Snp->Mode; if (JoinFlag) { // // A new group address is to be added. // GroupAddress = NULL; AddressExist = FALSE; // // Allocate memory for the control block. // NewCtrlBlk = AllocatePool (sizeof (MNP_GROUP_CONTROL_BLOCK)); if (NewCtrlBlk == NULL) { DEBUG ((EFI_D_ERROR, "MnpGroupOp: Failed to allocate memory resource.\n")); return EFI_OUT_OF_RESOURCES; } NET_LIST_FOR_EACH (Entry, &MnpDeviceData->GroupAddressList) { // // Check whether the MacAddress is already joined by other instances. // GroupAddress = NET_LIST_USER_STRUCT (Entry, MNP_GROUP_ADDRESS, AddrEntry); if (CompareMem (MacAddress, &GroupAddress->Address, SnpMode->HwAddressSize) == 0) { AddressExist = TRUE; break; } } if (!AddressExist) { GroupAddress = NULL; } // // Add the GroupAddress for this instance. // Status = MnpGroupOpAddCtrlBlk ( Instance, NewCtrlBlk, GroupAddress, MacAddress, SnpMode->HwAddressSize ); if (EFI_ERROR (Status)) { return Status; } NeedUpdate = TRUE; } else { if (MacAddress != NULL) { ASSERT (CtrlBlk != NULL); // // Leave the specific multicast mac address. // NeedUpdate = MnpGroupOpDelCtrlBlk (Instance, CtrlBlk); } else { // // Leave all multicast mac addresses. // NeedUpdate = FALSE; NET_LIST_FOR_EACH_SAFE (Entry, NextEntry, &Instance->GroupCtrlBlkList) { NewCtrlBlk = NET_LIST_USER_STRUCT ( Entry, MNP_GROUP_CONTROL_BLOCK, CtrlBlkEntry ); // // Update is required if the group address left is no longer used // by other instances. // NeedUpdate = MnpGroupOpDelCtrlBlk (Instance, NewCtrlBlk); } } } Status = EFI_SUCCESS; if (NeedUpdate) { // // Reconfigure the receive filters if necessary. // Status = MnpConfigReceiveFilters (MnpDeviceData); } return Status; }