/** @file Memory Detection for Virtual Machines. Copyright (c) 2021, Hewlett Packard Enterprise Development LP. All rights reserved.
Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent Module Name: MemDetect.c **/ // // The package level header files this module uses // #include // // The Library classes this module consumes // #include #include #include #include #include #include #include #include #include #include #include #include VOID BuildMemoryTypeInformationHob ( VOID ); /** Create memory range resource HOB using the memory base address and size. @param MemoryBase Memory range base address. @param MemorySize Memory range size. **/ STATIC VOID AddMemoryBaseSizeHob ( IN EFI_PHYSICAL_ADDRESS MemoryBase, IN UINT64 MemorySize ) { BuildResourceDescriptorHob ( EFI_RESOURCE_SYSTEM_MEMORY, EFI_RESOURCE_ATTRIBUTE_PRESENT | EFI_RESOURCE_ATTRIBUTE_INITIALIZED | EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE | EFI_RESOURCE_ATTRIBUTE_TESTED, MemoryBase, MemorySize ); } /** Create memory range resource HOB using memory base address and top address of the memory range. @param MemoryBase Memory range base address. @param MemoryLimit Memory range size. **/ STATIC VOID AddMemoryRangeHob ( IN EFI_PHYSICAL_ADDRESS MemoryBase, IN EFI_PHYSICAL_ADDRESS MemoryLimit ) { AddMemoryBaseSizeHob (MemoryBase, (UINT64)(MemoryLimit - MemoryBase)); } /** Configure MMU **/ STATIC VOID InitMmu ( ) { // // Set supervisor translation mode to Bare mode // RiscVSetSupervisorAddressTranslationRegister ((UINT64)SATP_MODE_OFF << 60); DEBUG ((DEBUG_INFO, "%a: Set Supervisor address mode to bare-metal mode.\n", __FUNCTION__)); } /** Publish system RAM and reserve memory regions. **/ STATIC VOID InitializeRamRegions ( IN EFI_PHYSICAL_ADDRESS SystemMemoryBase, IN UINT64 SystemMemorySize ) { AddMemoryRangeHob ( SystemMemoryBase, SystemMemoryBase + SystemMemorySize ); } /** Get the number of cells for a given property @param[in] Fdt Pointer to Device Tree (DTB) @param[in] Node Node @param[in] Name Name of the property @return Number of cells. **/ STATIC INT32 GetNumCells ( IN VOID *Fdt, IN INT32 Node, IN CONST CHAR8 *Name ) { CONST INT32 *Prop; INT32 Len; UINT32 Val; Prop = fdt_getprop (Fdt, Node, Name, &Len); if (Prop == NULL) { return Len; } if (Len != sizeof (*Prop)) { return -FDT_ERR_BADNCELLS; } Val = fdt32_to_cpu (*Prop); if (Val > FDT_MAX_NCELLS) { return -FDT_ERR_BADNCELLS; } return (INT32)Val; } /** Mark reserved memory ranges in the EFI memory map The M-mode firmware ranges should not be used by the EDK2/OS. These ranges are passed via device tree using reserved memory nodes. Parse the DT and mark those ranges as of type EfiReservedMemoryType. NOTE: Device Tree spec section 3.5.4 says reserved memory regions without no-map property should be installed as EfiBootServicesData. As per UEFI spec, memory of type EfiBootServicesData can be used by the OS after ExitBootServices(). This is not an issue for DT since OS can parse the DT also along with EFI memory map and avoid using these ranges. But with ACPI, there is no such mechanisms possible. Since EDK2 needs to support both DT and ACPI, we are deviating from the DT spec and marking all reserved memory ranges as EfiReservedMemoryType itself irrespective of no-map. @param FdtPointer Pointer to FDT **/ STATIC VOID AddReservedMemoryMap ( IN VOID *FdtPointer ) { CONST INT32 *RegProp; INT32 Node; INT32 SubNode; INT32 Len; EFI_PHYSICAL_ADDRESS Addr; UINT64 Size; INTN NumRsv, i; INT32 NumAddrCells, NumSizeCells; NumRsv = fdt_num_mem_rsv (FdtPointer); /* Look for an existing entry and add it to the efi mem map. */ for (i = 0; i < NumRsv; i++) { if (fdt_get_mem_rsv (FdtPointer, i, &Addr, &Size) != 0) { continue; } BuildMemoryAllocationHob ( Addr, Size, EfiReservedMemoryType ); } /* process reserved-memory */ Node = fdt_subnode_offset (FdtPointer, 0, "reserved-memory"); if (Node >= 0) { NumAddrCells = GetNumCells (FdtPointer, Node, "#address-cells"); if (NumAddrCells <= 0) { return; } NumSizeCells = GetNumCells (FdtPointer, Node, "#size-cells"); if (NumSizeCells <= 0) { return; } fdt_for_each_subnode (SubNode, FdtPointer, Node) { RegProp = fdt_getprop (FdtPointer, SubNode, "reg", &Len); if ((RegProp != 0) && (Len == ((NumAddrCells + NumSizeCells) * sizeof (INT32)))) { Addr = fdt32_to_cpu (RegProp[0]); if (NumAddrCells > 1) { Addr = (Addr << 32) | fdt32_to_cpu (RegProp[1]); } RegProp += NumAddrCells; Size = fdt32_to_cpu (RegProp[0]); if (NumSizeCells > 1) { Size = (Size << 32) | fdt32_to_cpu (RegProp[1]); } DEBUG (( DEBUG_INFO, "%a: Adding Reserved Memory Addr = 0x%llx, Size = 0x%llx\n", __func__, Addr, Size )); BuildMemoryAllocationHob ( Addr, Size, EfiReservedMemoryType ); } } } } /** Initialize memory hob based on the DTB information. @return EFI_SUCCESS The memory hob added successfully. **/ EFI_STATUS MemoryPeimInitialization ( VOID ) { EFI_RISCV_FIRMWARE_CONTEXT *FirmwareContext; CONST UINT64 *RegProp; CONST CHAR8 *Type; UINT64 CurBase, CurSize; INT32 Node, Prev; INT32 Len; VOID *FdtPointer; FirmwareContext = NULL; GetFirmwareContextPointer (&FirmwareContext); if (FirmwareContext == NULL) { DEBUG ((DEBUG_ERROR, "%a: Firmware Context is NULL\n", __FUNCTION__)); return EFI_UNSUPPORTED; } FdtPointer = (VOID *)FirmwareContext->FlattenedDeviceTree; if (FdtPointer == NULL) { DEBUG ((DEBUG_ERROR, "%a: Invalid FDT pointer\n", __FUNCTION__)); return EFI_UNSUPPORTED; } // Look for the lowest memory node for (Prev = 0; ; Prev = Node) { Node = fdt_next_node (FdtPointer, Prev, NULL); if (Node < 0) { break; } // Check for memory node Type = fdt_getprop (FdtPointer, Node, "device_type", &Len); if (Type && (AsciiStrnCmp (Type, "memory", Len) == 0)) { // Get the 'reg' property of this node. For now, we will assume // two 8 byte quantities for base and size, respectively. RegProp = fdt_getprop (FdtPointer, Node, "reg", &Len); if ((RegProp != 0) && (Len == (2 * sizeof (UINT64)))) { CurBase = fdt64_to_cpu (ReadUnaligned64 (RegProp)); CurSize = fdt64_to_cpu (ReadUnaligned64 (RegProp + 1)); DEBUG (( DEBUG_INFO, "%a: System RAM @ 0x%lx - 0x%lx\n", __FUNCTION__, CurBase, CurBase + CurSize - 1 )); InitializeRamRegions ( CurBase, CurSize ); } else { DEBUG (( DEBUG_ERROR, "%a: Failed to parse FDT memory node\n", __FUNCTION__ )); } } } AddReservedMemoryMap (FdtPointer); InitMmu (); BuildMemoryTypeInformationHob (); return EFI_SUCCESS; }