/** @file Main SEC phase code. Transitions to PEI. Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SEC_IDT_ENTRY_COUNT 34 typedef struct _SEC_IDT_TABLE { EFI_PEI_SERVICES *PeiService; IA32_IDT_GATE_DESCRIPTOR IdtTable[SEC_IDT_ENTRY_COUNT]; } SEC_IDT_TABLE; VOID EFIAPI SecStartupPhase2 ( IN VOID *Context ); EFI_STATUS EFIAPI TemporaryRamMigration ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase, IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase, IN UINTN CopySize ); // // // EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI mTemporaryRamSupportPpi = { TemporaryRamMigration }; EFI_PEI_PPI_DESCRIPTOR mPrivateDispatchTable[] = { { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiTemporaryRamSupportPpiGuid, &mTemporaryRamSupportPpi }, }; // // Template of an IDT entry pointing to 10:FFFFFFE4h. // IA32_IDT_GATE_DESCRIPTOR mIdtEntryTemplate = { { // Bits 0xffe4, // OffsetLow 0x10, // Selector 0x0, // Reserved_0 IA32_IDT_GATE_TYPE_INTERRUPT_32, // GateType 0xffff // OffsetHigh } }; /** Locates the main boot firmware volume. @param[in,out] BootFv On input, the base of the BootFv On output, the decompressed main firmware volume @retval EFI_SUCCESS The main firmware volume was located and decompressed @retval EFI_NOT_FOUND The main firmware volume was not found **/ EFI_STATUS FindMainFv ( IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv ) { EFI_FIRMWARE_VOLUME_HEADER *Fv; UINTN Distance; ASSERT (((UINTN) *BootFv & EFI_PAGE_MASK) == 0); Fv = *BootFv; Distance = (UINTN) (*BootFv)->FvLength; do { Fv = (EFI_FIRMWARE_VOLUME_HEADER*) ((UINT8*) Fv - EFI_PAGE_SIZE); Distance += EFI_PAGE_SIZE; if (Distance > SIZE_32MB) { return EFI_NOT_FOUND; } if (Fv->Signature != EFI_FVH_SIGNATURE) { continue; } if ((UINTN) Fv->FvLength > Distance) { continue; } *BootFv = Fv; return EFI_SUCCESS; } while (TRUE); } /** Locates a section within a series of sections with the specified section type. The Instance parameter indicates which instance of the section type to return. (0 is first instance, 1 is second...) @param[in] Sections The sections to search @param[in] SizeOfSections Total size of all sections @param[in] SectionType The section type to locate @param[in] Instance The section instance number @param[out] FoundSection The FFS section if found @retval EFI_SUCCESS The file and section was found @retval EFI_NOT_FOUND The file and section was not found @retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted **/ EFI_STATUS FindFfsSectionInstance ( IN VOID *Sections, IN UINTN SizeOfSections, IN EFI_SECTION_TYPE SectionType, IN UINTN Instance, OUT EFI_COMMON_SECTION_HEADER **FoundSection ) { EFI_PHYSICAL_ADDRESS CurrentAddress; UINT32 Size; EFI_PHYSICAL_ADDRESS EndOfSections; EFI_COMMON_SECTION_HEADER *Section; EFI_PHYSICAL_ADDRESS EndOfSection; // // Loop through the FFS file sections within the PEI Core FFS file // EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN) Sections; EndOfSections = EndOfSection + SizeOfSections; for (;;) { if (EndOfSection == EndOfSections) { break; } CurrentAddress = (EndOfSection + 3) & ~(3ULL); if (CurrentAddress >= EndOfSections) { return EFI_VOLUME_CORRUPTED; } Section = (EFI_COMMON_SECTION_HEADER*)(UINTN) CurrentAddress; Size = SECTION_SIZE (Section); if (Size < sizeof (*Section)) { return EFI_VOLUME_CORRUPTED; } EndOfSection = CurrentAddress + Size; if (EndOfSection > EndOfSections) { return EFI_VOLUME_CORRUPTED; } // // Look for the requested section type // if (Section->Type == SectionType) { if (Instance == 0) { *FoundSection = Section; return EFI_SUCCESS; } else { Instance--; } } } return EFI_NOT_FOUND; } /** Locates a section within a series of sections with the specified section type. @param[in] Sections The sections to search @param[in] SizeOfSections Total size of all sections @param[in] SectionType The section type to locate @param[out] FoundSection The FFS section if found @retval EFI_SUCCESS The file and section was found @retval EFI_NOT_FOUND The file and section was not found @retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted **/ EFI_STATUS FindFfsSectionInSections ( IN VOID *Sections, IN UINTN SizeOfSections, IN EFI_SECTION_TYPE SectionType, OUT EFI_COMMON_SECTION_HEADER **FoundSection ) { return FindFfsSectionInstance ( Sections, SizeOfSections, SectionType, 0, FoundSection ); } /** Locates a FFS file with the specified file type and a section within that file with the specified section type. @param[in] Fv The firmware volume to search @param[in] FileType The file type to locate @param[in] SectionType The section type to locate @param[out] FoundSection The FFS section if found @retval EFI_SUCCESS The file and section was found @retval EFI_NOT_FOUND The file and section was not found @retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted **/ EFI_STATUS FindFfsFileAndSection ( IN EFI_FIRMWARE_VOLUME_HEADER *Fv, IN EFI_FV_FILETYPE FileType, IN EFI_SECTION_TYPE SectionType, OUT EFI_COMMON_SECTION_HEADER **FoundSection ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS CurrentAddress; EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume; EFI_FFS_FILE_HEADER *File; UINT32 Size; EFI_PHYSICAL_ADDRESS EndOfFile; if (Fv->Signature != EFI_FVH_SIGNATURE) { DEBUG ((EFI_D_ERROR, "FV at %p does not have FV header signature\n", Fv)); return EFI_VOLUME_CORRUPTED; } CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) Fv; EndOfFirmwareVolume = CurrentAddress + Fv->FvLength; // // Loop through the FFS files in the Boot Firmware Volume // for (EndOfFile = CurrentAddress + Fv->HeaderLength; ; ) { CurrentAddress = (EndOfFile + 7) & ~(7ULL); if (CurrentAddress > EndOfFirmwareVolume) { return EFI_VOLUME_CORRUPTED; } File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress; Size = *(UINT32*) File->Size & 0xffffff; if (Size < (sizeof (*File) + sizeof (EFI_COMMON_SECTION_HEADER))) { return EFI_VOLUME_CORRUPTED; } EndOfFile = CurrentAddress + Size; if (EndOfFile > EndOfFirmwareVolume) { return EFI_VOLUME_CORRUPTED; } // // Look for the request file type // if (File->Type != FileType) { continue; } Status = FindFfsSectionInSections ( (VOID*) (File + 1), (UINTN) EndOfFile - (UINTN) (File + 1), SectionType, FoundSection ); if (!EFI_ERROR (Status) || (Status == EFI_VOLUME_CORRUPTED)) { return Status; } } } /** Locates the compressed main firmware volume and decompresses it. @param[in,out] Fv On input, the firmware volume to search On output, the decompressed BOOT/PEI FV @retval EFI_SUCCESS The file and section was found @retval EFI_NOT_FOUND The file and section was not found @retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted **/ EFI_STATUS DecompressMemFvs ( IN OUT EFI_FIRMWARE_VOLUME_HEADER **Fv ) { EFI_STATUS Status; EFI_GUID_DEFINED_SECTION *Section; UINT32 OutputBufferSize; UINT32 ScratchBufferSize; UINT16 SectionAttribute; UINT32 AuthenticationStatus; VOID *OutputBuffer; VOID *ScratchBuffer; EFI_FIRMWARE_VOLUME_IMAGE_SECTION *FvSection; EFI_FIRMWARE_VOLUME_HEADER *PeiMemFv; EFI_FIRMWARE_VOLUME_HEADER *DxeMemFv; FvSection = (EFI_FIRMWARE_VOLUME_IMAGE_SECTION*) NULL; Status = FindFfsFileAndSection ( *Fv, EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE, EFI_SECTION_GUID_DEFINED, (EFI_COMMON_SECTION_HEADER**) &Section ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Unable to find GUID defined section\n")); return Status; } Status = ExtractGuidedSectionGetInfo ( Section, &OutputBufferSize, &ScratchBufferSize, &SectionAttribute ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Unable to GetInfo for GUIDed section\n")); return Status; } OutputBuffer = (VOID*) ((UINT8*)(UINTN) PcdGet32 (PcdOvmfDxeMemFvBase) + SIZE_1MB); ScratchBuffer = ALIGN_POINTER ((UINT8*) OutputBuffer + OutputBufferSize, SIZE_1MB); DEBUG ((EFI_D_VERBOSE, "%a: OutputBuffer@%p+0x%x ScratchBuffer@%p+0x%x " "PcdOvmfDecompressionScratchEnd=0x%x\n", __FUNCTION__, OutputBuffer, OutputBufferSize, ScratchBuffer, ScratchBufferSize, PcdGet32 (PcdOvmfDecompressionScratchEnd))); ASSERT ((UINTN)ScratchBuffer + ScratchBufferSize == PcdGet32 (PcdOvmfDecompressionScratchEnd)); Status = ExtractGuidedSectionDecode ( Section, &OutputBuffer, ScratchBuffer, &AuthenticationStatus ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Error during GUID section decode\n")); return Status; } Status = FindFfsSectionInstance ( OutputBuffer, OutputBufferSize, EFI_SECTION_FIRMWARE_VOLUME_IMAGE, 0, (EFI_COMMON_SECTION_HEADER**) &FvSection ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Unable to find PEI FV section\n")); return Status; } ASSERT (SECTION_SIZE (FvSection) == (PcdGet32 (PcdOvmfPeiMemFvSize) + sizeof (*FvSection))); ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE); PeiMemFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfPeiMemFvBase); CopyMem (PeiMemFv, (VOID*) (FvSection + 1), PcdGet32 (PcdOvmfPeiMemFvSize)); if (PeiMemFv->Signature != EFI_FVH_SIGNATURE) { DEBUG ((EFI_D_ERROR, "Extracted FV at %p does not have FV header signature\n", PeiMemFv)); CpuDeadLoop (); return EFI_VOLUME_CORRUPTED; } Status = FindFfsSectionInstance ( OutputBuffer, OutputBufferSize, EFI_SECTION_FIRMWARE_VOLUME_IMAGE, 1, (EFI_COMMON_SECTION_HEADER**) &FvSection ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Unable to find DXE FV section\n")); return Status; } ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE); ASSERT (SECTION_SIZE (FvSection) == (PcdGet32 (PcdOvmfDxeMemFvSize) + sizeof (*FvSection))); DxeMemFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfDxeMemFvBase); CopyMem (DxeMemFv, (VOID*) (FvSection + 1), PcdGet32 (PcdOvmfDxeMemFvSize)); if (DxeMemFv->Signature != EFI_FVH_SIGNATURE) { DEBUG ((EFI_D_ERROR, "Extracted FV at %p does not have FV header signature\n", DxeMemFv)); CpuDeadLoop (); return EFI_VOLUME_CORRUPTED; } *Fv = PeiMemFv; return EFI_SUCCESS; } /** Locates the PEI Core entry point address @param[in] Fv The firmware volume to search @param[out] PeiCoreEntryPoint The entry point of the PEI Core image @retval EFI_SUCCESS The file and section was found @retval EFI_NOT_FOUND The file and section was not found @retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted **/ EFI_STATUS FindPeiCoreImageBaseInFv ( IN EFI_FIRMWARE_VOLUME_HEADER *Fv, OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase ) { EFI_STATUS Status; EFI_COMMON_SECTION_HEADER *Section; Status = FindFfsFileAndSection ( Fv, EFI_FV_FILETYPE_PEI_CORE, EFI_SECTION_PE32, &Section ); if (EFI_ERROR (Status)) { Status = FindFfsFileAndSection ( Fv, EFI_FV_FILETYPE_PEI_CORE, EFI_SECTION_TE, &Section ); if (EFI_ERROR (Status)) { DEBUG ((EFI_D_ERROR, "Unable to find PEI Core image\n")); return Status; } } *PeiCoreImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)(Section + 1); return EFI_SUCCESS; } /** Reads 8-bits of CMOS data. Reads the 8-bits of CMOS data at the location specified by Index. The 8-bit read value is returned. @param Index The CMOS location to read. @return The value read. **/ STATIC UINT8 CmosRead8 ( IN UINTN Index ) { IoWrite8 (0x70, (UINT8) Index); return IoRead8 (0x71); } STATIC BOOLEAN IsS3Resume ( VOID ) { return (CmosRead8 (0xF) == 0xFE); } STATIC EFI_STATUS GetS3ResumePeiFv ( IN OUT EFI_FIRMWARE_VOLUME_HEADER **PeiFv ) { *PeiFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfPeiMemFvBase); return EFI_SUCCESS; } /** Locates the PEI Core entry point address @param[in,out] Fv The firmware volume to search @param[out] PeiCoreEntryPoint The entry point of the PEI Core image @retval EFI_SUCCESS The file and section was found @retval EFI_NOT_FOUND The file and section was not found @retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted **/ VOID FindPeiCoreImageBase ( IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv, OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase ) { BOOLEAN S3Resume; *PeiCoreImageBase = 0; S3Resume = IsS3Resume (); if (S3Resume && !FeaturePcdGet (PcdSmmSmramRequire)) { // // A malicious runtime OS may have injected something into our previously // decoded PEI FV, but we don't care about that unless SMM/SMRAM is required. // DEBUG ((EFI_D_VERBOSE, "SEC: S3 resume\n")); GetS3ResumePeiFv (BootFv); } else { // // We're either not resuming, or resuming "securely" -- we'll decompress // both PEI FV and DXE FV from pristine flash. // DEBUG ((EFI_D_VERBOSE, "SEC: %a\n", S3Resume ? "S3 resume (with PEI decompression)" : "Normal boot")); FindMainFv (BootFv); DecompressMemFvs (BootFv); } FindPeiCoreImageBaseInFv (*BootFv, PeiCoreImageBase); } /** Find core image base. **/ EFI_STATUS FindImageBase ( IN EFI_FIRMWARE_VOLUME_HEADER *BootFirmwareVolumePtr, OUT EFI_PHYSICAL_ADDRESS *SecCoreImageBase ) { EFI_PHYSICAL_ADDRESS CurrentAddress; EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume; EFI_FFS_FILE_HEADER *File; UINT32 Size; EFI_PHYSICAL_ADDRESS EndOfFile; EFI_COMMON_SECTION_HEADER *Section; EFI_PHYSICAL_ADDRESS EndOfSection; *SecCoreImageBase = 0; CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) BootFirmwareVolumePtr; EndOfFirmwareVolume = CurrentAddress + BootFirmwareVolumePtr->FvLength; // // Loop through the FFS files in the Boot Firmware Volume // for (EndOfFile = CurrentAddress + BootFirmwareVolumePtr->HeaderLength; ; ) { CurrentAddress = (EndOfFile + 7) & 0xfffffffffffffff8ULL; if (CurrentAddress > EndOfFirmwareVolume) { return EFI_NOT_FOUND; } File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress; Size = *(UINT32*) File->Size & 0xffffff; if (Size < sizeof (*File)) { return EFI_NOT_FOUND; } EndOfFile = CurrentAddress + Size; if (EndOfFile > EndOfFirmwareVolume) { return EFI_NOT_FOUND; } // // Look for SEC Core // if (File->Type != EFI_FV_FILETYPE_SECURITY_CORE) { continue; } // // Loop through the FFS file sections within the FFS file // EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN) (File + 1); for (;;) { CurrentAddress = (EndOfSection + 3) & 0xfffffffffffffffcULL; Section = (EFI_COMMON_SECTION_HEADER*)(UINTN) CurrentAddress; Size = *(UINT32*) Section->Size & 0xffffff; if (Size < sizeof (*Section)) { return EFI_NOT_FOUND; } EndOfSection = CurrentAddress + Size; if (EndOfSection > EndOfFile) { return EFI_NOT_FOUND; } // // Look for executable sections // if (Section->Type == EFI_SECTION_PE32 || Section->Type == EFI_SECTION_TE) { if (File->Type == EFI_FV_FILETYPE_SECURITY_CORE) { *SecCoreImageBase = (PHYSICAL_ADDRESS) (UINTN) (Section + 1); } break; } } // // SEC Core image found // if (*SecCoreImageBase != 0) { return EFI_SUCCESS; } } } /* Find and return Pei Core entry point. It also find SEC and PEI Core file debug inforamtion. It will report them if remote debug is enabled. **/ VOID FindAndReportEntryPoints ( IN EFI_FIRMWARE_VOLUME_HEADER **BootFirmwareVolumePtr, OUT EFI_PEI_CORE_ENTRY_POINT *PeiCoreEntryPoint ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS SecCoreImageBase; EFI_PHYSICAL_ADDRESS PeiCoreImageBase; PE_COFF_LOADER_IMAGE_CONTEXT ImageContext; // // Find SEC Core and PEI Core image base // Status = FindImageBase (*BootFirmwareVolumePtr, &SecCoreImageBase); ASSERT_EFI_ERROR (Status); FindPeiCoreImageBase (BootFirmwareVolumePtr, &PeiCoreImageBase); ZeroMem ((VOID *) &ImageContext, sizeof (PE_COFF_LOADER_IMAGE_CONTEXT)); // // Report SEC Core debug information when remote debug is enabled // ImageContext.ImageAddress = SecCoreImageBase; ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageContext.ImageAddress); PeCoffLoaderRelocateImageExtraAction (&ImageContext); // // Report PEI Core debug information when remote debug is enabled // ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)PeiCoreImageBase; ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageContext.ImageAddress); PeCoffLoaderRelocateImageExtraAction (&ImageContext); // // Find PEI Core entry point // Status = PeCoffLoaderGetEntryPoint ((VOID *) (UINTN) PeiCoreImageBase, (VOID**) PeiCoreEntryPoint); if (EFI_ERROR (Status)) { *PeiCoreEntryPoint = 0; } return; } VOID EFIAPI SecCoreStartupWithStack ( IN EFI_FIRMWARE_VOLUME_HEADER *BootFv, IN VOID *TopOfCurrentStack ) { EFI_SEC_PEI_HAND_OFF SecCoreData; SEC_IDT_TABLE IdtTableInStack; IA32_DESCRIPTOR IdtDescriptor; UINT32 Index; volatile UINT8 *Table; // // To ensure SMM can't be compromised on S3 resume, we must force re-init of // the BaseExtractGuidedSectionLib. Since this is before library contructors // are called, we must use a loop rather than SetMem. // Table = (UINT8*)(UINTN)FixedPcdGet64 (PcdGuidedExtractHandlerTableAddress); for (Index = 0; Index < FixedPcdGet32 (PcdGuidedExtractHandlerTableSize); ++Index) { Table[Index] = 0; } ProcessLibraryConstructorList (NULL, NULL); DEBUG ((EFI_D_INFO, "SecCoreStartupWithStack(0x%x, 0x%x)\n", (UINT32)(UINTN)BootFv, (UINT32)(UINTN)TopOfCurrentStack )); // // Initialize floating point operating environment // to be compliant with UEFI spec. // InitializeFloatingPointUnits (); // // Initialize IDT // IdtTableInStack.PeiService = NULL; for (Index = 0; Index < SEC_IDT_ENTRY_COUNT; Index ++) { CopyMem (&IdtTableInStack.IdtTable[Index], &mIdtEntryTemplate, sizeof (mIdtEntryTemplate)); } IdtDescriptor.Base = (UINTN)&IdtTableInStack.IdtTable; IdtDescriptor.Limit = (UINT16)(sizeof (IdtTableInStack.IdtTable) - 1); AsmWriteIdtr (&IdtDescriptor); #if defined (MDE_CPU_X64) // // ASSERT that the Page Tables were set by the reset vector code to // the address we expect. // ASSERT (AsmReadCr3 () == (UINTN) PcdGet32 (PcdOvmfSecPageTablesBase)); #endif // // |-------------| <-- TopOfCurrentStack // | Stack | 32k // |-------------| // | Heap | 32k // |-------------| <-- SecCoreData.TemporaryRamBase // ASSERT ((UINTN) (PcdGet32 (PcdOvmfSecPeiTempRamBase) + PcdGet32 (PcdOvmfSecPeiTempRamSize)) == (UINTN) TopOfCurrentStack); // // Initialize SEC hand-off state // SecCoreData.DataSize = sizeof(EFI_SEC_PEI_HAND_OFF); SecCoreData.TemporaryRamSize = (UINTN) PcdGet32 (PcdOvmfSecPeiTempRamSize); SecCoreData.TemporaryRamBase = (VOID*)((UINT8 *)TopOfCurrentStack - SecCoreData.TemporaryRamSize); SecCoreData.PeiTemporaryRamBase = SecCoreData.TemporaryRamBase; SecCoreData.PeiTemporaryRamSize = SecCoreData.TemporaryRamSize >> 1; SecCoreData.StackBase = (UINT8 *)SecCoreData.TemporaryRamBase + SecCoreData.PeiTemporaryRamSize; SecCoreData.StackSize = SecCoreData.TemporaryRamSize >> 1; SecCoreData.BootFirmwareVolumeBase = BootFv; SecCoreData.BootFirmwareVolumeSize = (UINTN) BootFv->FvLength; // // Make sure the 8259 is masked before initializing the Debug Agent and the debug timer is enabled // IoWrite8 (0x21, 0xff); IoWrite8 (0xA1, 0xff); // // Initialize Local APIC Timer hardware and disable Local APIC Timer // interrupts before initializing the Debug Agent and the debug timer is // enabled. // InitializeApicTimer (0, MAX_UINT32, TRUE, 5); DisableApicTimerInterrupt (); // // Initialize Debug Agent to support source level debug in SEC/PEI phases before memory ready. // InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, &SecCoreData, SecStartupPhase2); } /** Caller provided function to be invoked at the end of InitializeDebugAgent(). Entry point to the C language phase of SEC. After the SEC assembly code has initialized some temporary memory and set up the stack, the control is transferred to this function. @param[in] Context The first input parameter of InitializeDebugAgent(). **/ VOID EFIAPI SecStartupPhase2( IN VOID *Context ) { EFI_SEC_PEI_HAND_OFF *SecCoreData; EFI_FIRMWARE_VOLUME_HEADER *BootFv; EFI_PEI_CORE_ENTRY_POINT PeiCoreEntryPoint; SecCoreData = (EFI_SEC_PEI_HAND_OFF *) Context; // // Find PEI Core entry point. It will report SEC and Pei Core debug information if remote debug // is enabled. // BootFv = (EFI_FIRMWARE_VOLUME_HEADER *)SecCoreData->BootFirmwareVolumeBase; FindAndReportEntryPoints (&BootFv, &PeiCoreEntryPoint); SecCoreData->BootFirmwareVolumeBase = BootFv; SecCoreData->BootFirmwareVolumeSize = (UINTN) BootFv->FvLength; // // Transfer the control to the PEI core // (*PeiCoreEntryPoint) (SecCoreData, (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTable); // // If we get here then the PEI Core returned, which is not recoverable. // ASSERT (FALSE); CpuDeadLoop (); } EFI_STATUS EFIAPI TemporaryRamMigration ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase, IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase, IN UINTN CopySize ) { IA32_DESCRIPTOR IdtDescriptor; VOID *OldHeap; VOID *NewHeap; VOID *OldStack; VOID *NewStack; DEBUG_AGENT_CONTEXT_POSTMEM_SEC DebugAgentContext; BOOLEAN OldStatus; BASE_LIBRARY_JUMP_BUFFER JumpBuffer; DEBUG ((EFI_D_INFO, "TemporaryRamMigration(0x%Lx, 0x%Lx, 0x%Lx)\n", TemporaryMemoryBase, PermanentMemoryBase, (UINT64)CopySize )); OldHeap = (VOID*)(UINTN)TemporaryMemoryBase; NewHeap = (VOID*)((UINTN)PermanentMemoryBase + (CopySize >> 1)); OldStack = (VOID*)((UINTN)TemporaryMemoryBase + (CopySize >> 1)); NewStack = (VOID*)(UINTN)PermanentMemoryBase; DebugAgentContext.HeapMigrateOffset = (UINTN)NewHeap - (UINTN)OldHeap; DebugAgentContext.StackMigrateOffset = (UINTN)NewStack - (UINTN)OldStack; OldStatus = SaveAndSetDebugTimerInterrupt (FALSE); InitializeDebugAgent (DEBUG_AGENT_INIT_POSTMEM_SEC, (VOID *) &DebugAgentContext, NULL); // // Migrate Heap // CopyMem (NewHeap, OldHeap, CopySize >> 1); // // Migrate Stack // CopyMem (NewStack, OldStack, CopySize >> 1); // // Rebase IDT table in permanent memory // AsmReadIdtr (&IdtDescriptor); IdtDescriptor.Base = IdtDescriptor.Base - (UINTN)OldStack + (UINTN)NewStack; AsmWriteIdtr (&IdtDescriptor); // // Use SetJump()/LongJump() to switch to a new stack. // if (SetJump (&JumpBuffer) == 0) { #if defined (MDE_CPU_IA32) JumpBuffer.Esp = JumpBuffer.Esp + DebugAgentContext.StackMigrateOffset; #endif #if defined (MDE_CPU_X64) JumpBuffer.Rsp = JumpBuffer.Rsp + DebugAgentContext.StackMigrateOffset; #endif LongJump (&JumpBuffer, (UINTN)-1); } SaveAndSetDebugTimerInterrupt (OldStatus); return EFI_SUCCESS; }