/** @file Initialization and helper routines for the Virtio Filesystem device. Copyright (C) 2020, Red Hat, Inc. SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include // StrLen() #include // CopyMem() #include // AllocatePool() #include // EpochToEfiTime() #include // Virtio10WriteFeatures() #include "VirtioFsDxe.h" /** Read the Virtio Filesystem device configuration structure in full. @param[in] Virtio The Virtio protocol underlying the VIRTIO_FS object. @param[out] Config The fully populated VIRTIO_FS_CONFIG structure. @retval EFI_SUCCESS Config has been filled in. @return Error codes propagated from Virtio->ReadDevice(). The contents of Config are indeterminate. **/ STATIC EFI_STATUS VirtioFsReadConfig ( IN VIRTIO_DEVICE_PROTOCOL *Virtio, OUT VIRTIO_FS_CONFIG *Config ) { UINTN Idx; EFI_STATUS Status; for (Idx = 0; Idx < VIRTIO_FS_TAG_BYTES; Idx++) { Status = Virtio->ReadDevice ( Virtio, // This OFFSET_OF (VIRTIO_FS_CONFIG, Tag[Idx]), // FieldOffset sizeof Config->Tag[Idx], // FieldSize sizeof Config->Tag[Idx], // BufferSize &Config->Tag[Idx] // Buffer ); if (EFI_ERROR (Status)) { return Status; } } Status = Virtio->ReadDevice ( Virtio, // This OFFSET_OF (VIRTIO_FS_CONFIG, NumReqQueues), // FieldOffset sizeof Config->NumReqQueues, // FieldSize sizeof Config->NumReqQueues, // BufferSize &Config->NumReqQueues // Buffer ); return Status; } /** Configure the Virtio Filesystem device underlying VirtioFs. @param[in,out] VirtioFs The VIRTIO_FS object for which Virtio communication should be set up. On input, the caller is responsible for VirtioFs->Virtio having been initialized. On output, synchronous Virtio Filesystem commands (primitives) may be submitted to the device. @retval EFI_SUCCESS Virtio machinery has been set up. @retval EFI_UNSUPPORTED The host-side configuration of the Virtio Filesystem is not supported by this driver. @return Error codes from underlying functions. **/ EFI_STATUS VirtioFsInit ( IN OUT VIRTIO_FS *VirtioFs ) { UINT8 NextDevStat; EFI_STATUS Status; UINT64 Features; VIRTIO_FS_CONFIG Config; UINTN Idx; UINT64 RingBaseShift; // // Execute virtio-v1.1-cs01-87fa6b5d8155, 3.1.1 Driver Requirements: Device // Initialization. // // 1. Reset the device. // NextDevStat = 0; Status = VirtioFs->Virtio->SetDeviceStatus (VirtioFs->Virtio, NextDevStat); if (EFI_ERROR (Status)) { goto Failed; } // // 2. Set the ACKNOWLEDGE status bit [...] // NextDevStat |= VSTAT_ACK; Status = VirtioFs->Virtio->SetDeviceStatus (VirtioFs->Virtio, NextDevStat); if (EFI_ERROR (Status)) { goto Failed; } // // 3. Set the DRIVER status bit [...] // NextDevStat |= VSTAT_DRIVER; Status = VirtioFs->Virtio->SetDeviceStatus (VirtioFs->Virtio, NextDevStat); if (EFI_ERROR (Status)) { goto Failed; } // // 4. Read device feature bits... // Status = VirtioFs->Virtio->GetDeviceFeatures (VirtioFs->Virtio, &Features); if (EFI_ERROR (Status)) { goto Failed; } if ((Features & VIRTIO_F_VERSION_1) == 0) { Status = EFI_UNSUPPORTED; goto Failed; } // // No device-specific feature bits have been defined in file "virtio-fs.tex" // of the virtio spec at , as // of commit 87fa6b5d8155. // Features &= VIRTIO_F_VERSION_1 | VIRTIO_F_IOMMU_PLATFORM; // // ... and write the subset of feature bits understood by the [...] driver to // the device. [...] // 5. Set the FEATURES_OK status bit. // 6. Re-read device status to ensure the FEATURES_OK bit is still set [...] // Status = Virtio10WriteFeatures (VirtioFs->Virtio, Features, &NextDevStat); if (EFI_ERROR (Status)) { goto Failed; } // // 7. Perform device-specific setup, including discovery of virtqueues for // the device, [...] reading [...] the device's virtio configuration space // Status = VirtioFsReadConfig (VirtioFs->Virtio, &Config); if (EFI_ERROR (Status)) { goto Failed; } // // 7.a. Convert the filesystem label from UTF-8 to UCS-2. Only labels with // printable ASCII code points (U+0020 through U+007E) are supported. // NUL-terminate at either the terminator we find, or right after the // original label. // for (Idx = 0; Idx < VIRTIO_FS_TAG_BYTES && Config.Tag[Idx] != '\0'; Idx++) { if (Config.Tag[Idx] < 0x20 || Config.Tag[Idx] > 0x7E) { Status = EFI_UNSUPPORTED; goto Failed; } VirtioFs->Label[Idx] = Config.Tag[Idx]; } VirtioFs->Label[Idx] = L'\0'; // // 7.b. We need one queue for sending normal priority requests. // if (Config.NumReqQueues < 1) { Status = EFI_UNSUPPORTED; goto Failed; } // // 7.c. Fetch and remember the number of descriptors we can place on the // queue at once. We'll need two descriptors per request, as a minimum -- // request header, response header. // Status = VirtioFs->Virtio->SetQueueSel (VirtioFs->Virtio, VIRTIO_FS_REQUEST_QUEUE); if (EFI_ERROR (Status)) { goto Failed; } Status = VirtioFs->Virtio->GetQueueNumMax (VirtioFs->Virtio, &VirtioFs->QueueSize); if (EFI_ERROR (Status)) { goto Failed; } if (VirtioFs->QueueSize < 2) { Status = EFI_UNSUPPORTED; goto Failed; } // // 7.d. [...] population of virtqueues [...] // Status = VirtioRingInit (VirtioFs->Virtio, VirtioFs->QueueSize, &VirtioFs->Ring); if (EFI_ERROR (Status)) { goto Failed; } Status = VirtioRingMap (VirtioFs->Virtio, &VirtioFs->Ring, &RingBaseShift, &VirtioFs->RingMap); if (EFI_ERROR (Status)) { goto ReleaseQueue; } Status = VirtioFs->Virtio->SetQueueAddress (VirtioFs->Virtio, &VirtioFs->Ring, RingBaseShift); if (EFI_ERROR (Status)) { goto UnmapQueue; } // // 8. Set the DRIVER_OK status bit. // NextDevStat |= VSTAT_DRIVER_OK; Status = VirtioFs->Virtio->SetDeviceStatus (VirtioFs->Virtio, NextDevStat); if (EFI_ERROR (Status)) { goto UnmapQueue; } return EFI_SUCCESS; UnmapQueue: VirtioFs->Virtio->UnmapSharedBuffer (VirtioFs->Virtio, VirtioFs->RingMap); ReleaseQueue: VirtioRingUninit (VirtioFs->Virtio, &VirtioFs->Ring); Failed: // // If any of these steps go irrecoverably wrong, the driver SHOULD set the // FAILED status bit to indicate that it has given up on the device (it can // reset the device later to restart if desired). [...] // // Virtio access failure here should not mask the original error. // NextDevStat |= VSTAT_FAILED; VirtioFs->Virtio->SetDeviceStatus (VirtioFs->Virtio, NextDevStat); return Status; } /** De-configure the Virtio Filesystem device underlying VirtioFs. @param[in] VirtioFs The VIRTIO_FS object for which Virtio communication should be torn down. On input, the caller is responsible for having called VirtioFsInit(). On output, Virtio Filesystem commands (primitives) must no longer be submitted to the device. **/ VOID VirtioFsUninit ( IN OUT VIRTIO_FS *VirtioFs ) { // // Resetting the Virtio device makes it release its resources and forget its // configuration. // VirtioFs->Virtio->SetDeviceStatus (VirtioFs->Virtio, 0); VirtioFs->Virtio->UnmapSharedBuffer (VirtioFs->Virtio, VirtioFs->RingMap); VirtioRingUninit (VirtioFs->Virtio, &VirtioFs->Ring); } /** ExitBootServices event notification function for a Virtio Filesystem object. This function resets the VIRTIO_FS.Virtio device, causing it to release all references to guest-side resources. The function may only be called after VirtioFsInit() returns successfully and before VirtioFsUninit() is called. @param[in] ExitBootEvent The VIRTIO_FS.ExitBoot event that has been signaled. @param[in] VirtioFsAsVoid Pointer to the VIRTIO_FS object, passed in as (VOID*). **/ VOID EFIAPI VirtioFsExitBoot ( IN EFI_EVENT ExitBootEvent, IN VOID *VirtioFsAsVoid ) { VIRTIO_FS *VirtioFs; VirtioFs = VirtioFsAsVoid; DEBUG ((DEBUG_VERBOSE, "%a: VirtioFs=0x%p Label=\"%s\"\n", __FUNCTION__, VirtioFsAsVoid, VirtioFs->Label)); VirtioFs->Virtio->SetDeviceStatus (VirtioFs->Virtio, 0); } /** Validate two VIRTIO_FS_SCATTER_GATHER_LIST objects -- list of request buffers, list of response buffers -- together. On input, the caller is required to populate the following fields: - VIRTIO_FS_IO_VECTOR.Buffer, - VIRTIO_FS_IO_VECTOR.Size, - VIRTIO_FS_SCATTER_GATHER_LIST.IoVec, - VIRTIO_FS_SCATTER_GATHER_LIST.NumVec. On output (on successful return), the following fields will be zero-initialized: - VIRTIO_FS_IO_VECTOR.Mapped, - VIRTIO_FS_IO_VECTOR.MappedAddress, - VIRTIO_FS_IO_VECTOR.Mapping, - VIRTIO_FS_IO_VECTOR.Transferred. On output (on successful return), the following fields will be calculated: - VIRTIO_FS_SCATTER_GATHER_LIST.TotalSize. The function may only be called after VirtioFsInit() returns successfully and before VirtioFsUninit() is called. @param[in] VirtioFs The Virtio Filesystem device that the request-response exchange, expressed via RequestSgList and ResponseSgList, will be submitted to. @param[in,out] RequestSgList The scatter-gather list that describes the request part of the exchange -- the buffers that should be sent to the Virtio Filesystem device in the virtio transfer. @param[in,out] ResponseSgList The scatter-gather list that describes the response part of the exchange -- the buffers that the Virtio Filesystem device should populate in the virtio transfer. May be NULL if the exchange with the Virtio Filesystem device consists of a request only, with the response part omitted altogether. @retval EFI_SUCCESS RequestSgList and ResponseSgList have been validated, output fields have been set. @retval EFI_INVALID_PARAMETER RequestSgList is NULL. @retval EFI_INVALID_PARAMETER On input, a VIRTIO_FS_SCATTER_GATHER_LIST.IoVec field is NULL, or a VIRTIO_FS_SCATTER_GATHER_LIST.NumVec field is zero. @retval EFI_INVALID_PARAMETER On input, a VIRTIO_FS_IO_VECTOR.Buffer field is NULL, or a VIRTIO_FS_IO_VECTOR.Size field is zero. @retval EFI_UNSUPPORTED (RequestSgList->NumVec + ResponseSgList->NumVec) exceeds VirtioFs->QueueSize, meaning that the total list of buffers cannot be placed on the virtio queue in a single descriptor chain (with one descriptor per buffer). @retval EFI_UNSUPPORTED One of the VIRTIO_FS_SCATTER_GATHER_LIST.TotalSize fields would exceed MAX_UINT32. **/ EFI_STATUS VirtioFsSgListsValidate ( IN VIRTIO_FS *VirtioFs, IN OUT VIRTIO_FS_SCATTER_GATHER_LIST *RequestSgList, IN OUT VIRTIO_FS_SCATTER_GATHER_LIST *ResponseSgList OPTIONAL ) { VIRTIO_FS_SCATTER_GATHER_LIST *SgListParam[2]; UINT16 DescriptorsNeeded; UINTN ListId; if (RequestSgList == NULL) { return EFI_INVALID_PARAMETER; } SgListParam[0] = RequestSgList; SgListParam[1] = ResponseSgList; DescriptorsNeeded = 0; for (ListId = 0; ListId < ARRAY_SIZE (SgListParam); ListId++) { VIRTIO_FS_SCATTER_GATHER_LIST *SgList; UINT32 SgListTotalSize; UINTN IoVecIdx; SgList = SgListParam[ListId]; if (SgList == NULL) { continue; } // // Sanity-check SgList -- it must provide at least one IO Vector. // if (SgList->IoVec == NULL || SgList->NumVec == 0) { return EFI_INVALID_PARAMETER; } // // Make sure that, for each IO Vector in this SgList, a virtio descriptor // can be added to the virtio queue, after the other descriptors added // previously. // if (SgList->NumVec > (UINTN)(MAX_UINT16 - DescriptorsNeeded) || DescriptorsNeeded + SgList->NumVec > VirtioFs->QueueSize) { return EFI_UNSUPPORTED; } DescriptorsNeeded += (UINT16)SgList->NumVec; SgListTotalSize = 0; for (IoVecIdx = 0; IoVecIdx < SgList->NumVec; IoVecIdx++) { VIRTIO_FS_IO_VECTOR *IoVec; IoVec = &SgList->IoVec[IoVecIdx]; // // Sanity-check this IoVec -- it must describe a non-empty buffer. // if (IoVec->Buffer == NULL || IoVec->Size == 0) { return EFI_INVALID_PARAMETER; } // // Make sure the cumulative size of all IO Vectors in this SgList remains // expressible as a UINT32. // if (IoVec->Size > MAX_UINT32 - SgListTotalSize) { return EFI_UNSUPPORTED; } SgListTotalSize += (UINT32)IoVec->Size; // // Initialize those fields in this IO Vector that will be updated in // relation to mapping / transfer. // IoVec->Mapped = FALSE; IoVec->MappedAddress = 0; IoVec->Mapping = NULL; IoVec->Transferred = 0; } // // Store the cumulative size of all IO Vectors that we have calculated in // this SgList. // SgList->TotalSize = SgListTotalSize; } return EFI_SUCCESS; } /** Submit a validated pair of (request buffer list, response buffer list) to the Virtio Filesystem device. On input, the pair of VIRTIO_FS_SCATTER_GATHER_LIST objects must have been validated together, using the VirtioFsSgListsValidate() function. On output (on successful return), the following fields will be re-initialized to zero (after temporarily setting them to different values): - VIRTIO_FS_IO_VECTOR.Mapped, - VIRTIO_FS_IO_VECTOR.MappedAddress, - VIRTIO_FS_IO_VECTOR.Mapping. On output (on successful return), the following fields will be calculated: - VIRTIO_FS_IO_VECTOR.Transferred. The function may only be called after VirtioFsInit() returns successfully and before VirtioFsUninit() is called. @param[in,out] VirtioFs The Virtio Filesystem device that the request-response exchange, expressed via RequestSgList and ResponseSgList, should now be submitted to. @param[in,out] RequestSgList The scatter-gather list that describes the request part of the exchange -- the buffers that should be sent to the Virtio Filesystem device in the virtio transfer. @param[in,out] ResponseSgList The scatter-gather list that describes the response part of the exchange -- the buffers that the Virtio Filesystem device should populate in the virtio transfer. May be NULL if and only if NULL was passed to VirtioFsSgListsValidate() as ResponseSgList. @retval EFI_SUCCESS Transfer complete. The caller should investigate the VIRTIO_FS_IO_VECTOR.Transferred fields in ResponseSgList, to ensure coverage of the relevant response buffers. Subsequently, the caller should investigate the contents of those buffers. @retval EFI_DEVICE_ERROR The Virtio Filesystem device reported populating more response bytes than ResponseSgList->TotalSize. @return Error codes propagated from VirtioMapAllBytesInSharedBuffer(), VirtioFlush(), or VirtioFs->Virtio->UnmapSharedBuffer(). **/ EFI_STATUS VirtioFsSgListsSubmit ( IN OUT VIRTIO_FS *VirtioFs, IN OUT VIRTIO_FS_SCATTER_GATHER_LIST *RequestSgList, IN OUT VIRTIO_FS_SCATTER_GATHER_LIST *ResponseSgList OPTIONAL ) { VIRTIO_FS_SCATTER_GATHER_LIST *SgListParam[2]; VIRTIO_MAP_OPERATION SgListVirtioMapOp[ARRAY_SIZE (SgListParam)]; UINT16 SgListDescriptorFlag[ARRAY_SIZE (SgListParam)]; UINTN ListId; VIRTIO_FS_SCATTER_GATHER_LIST *SgList; UINTN IoVecIdx; VIRTIO_FS_IO_VECTOR *IoVec; EFI_STATUS Status; DESC_INDICES Indices; UINT32 TotalBytesWrittenByDevice; UINT32 BytesPermittedForWrite; SgListParam[0] = RequestSgList; SgListVirtioMapOp[0] = VirtioOperationBusMasterRead; SgListDescriptorFlag[0] = 0; SgListParam[1] = ResponseSgList; SgListVirtioMapOp[1] = VirtioOperationBusMasterWrite; SgListDescriptorFlag[1] = VRING_DESC_F_WRITE; // // Map all IO Vectors. // for (ListId = 0; ListId < ARRAY_SIZE (SgListParam); ListId++) { SgList = SgListParam[ListId]; if (SgList == NULL) { continue; } for (IoVecIdx = 0; IoVecIdx < SgList->NumVec; IoVecIdx++) { IoVec = &SgList->IoVec[IoVecIdx]; // // Map this IO Vector. // Status = VirtioMapAllBytesInSharedBuffer ( VirtioFs->Virtio, SgListVirtioMapOp[ListId], IoVec->Buffer, IoVec->Size, &IoVec->MappedAddress, &IoVec->Mapping ); if (EFI_ERROR (Status)) { goto Unmap; } IoVec->Mapped = TRUE; } } // // Compose the descriptor chain. // VirtioPrepare (&VirtioFs->Ring, &Indices); for (ListId = 0; ListId < ARRAY_SIZE (SgListParam); ListId++) { SgList = SgListParam[ListId]; if (SgList == NULL) { continue; } for (IoVecIdx = 0; IoVecIdx < SgList->NumVec; IoVecIdx++) { UINT16 NextFlag; IoVec = &SgList->IoVec[IoVecIdx]; // // Set VRING_DESC_F_NEXT on all except the very last descriptor. // NextFlag = VRING_DESC_F_NEXT; if (ListId == ARRAY_SIZE (SgListParam) - 1 && IoVecIdx == SgList->NumVec - 1) { NextFlag = 0; } VirtioAppendDesc ( &VirtioFs->Ring, IoVec->MappedAddress, (UINT32)IoVec->Size, SgListDescriptorFlag[ListId] | NextFlag, &Indices ); } } // // Submit the descriptor chain. // Status = VirtioFlush (VirtioFs->Virtio, VIRTIO_FS_REQUEST_QUEUE, &VirtioFs->Ring, &Indices, &TotalBytesWrittenByDevice); if (EFI_ERROR (Status)) { goto Unmap; } // // Sanity-check: the Virtio Filesystem device should not have written more // bytes than what we offered buffers for. // if (ResponseSgList == NULL) { BytesPermittedForWrite = 0; } else { BytesPermittedForWrite = ResponseSgList->TotalSize; } if (TotalBytesWrittenByDevice > BytesPermittedForWrite) { Status = EFI_DEVICE_ERROR; goto Unmap; } // // Update the transfer sizes in the IO Vectors. // for (ListId = 0; ListId < ARRAY_SIZE (SgListParam); ListId++) { SgList = SgListParam[ListId]; if (SgList == NULL) { continue; } for (IoVecIdx = 0; IoVecIdx < SgList->NumVec; IoVecIdx++) { IoVec = &SgList->IoVec[IoVecIdx]; if (SgListVirtioMapOp[ListId] == VirtioOperationBusMasterRead) { // // We report that the Virtio Filesystem device has read all buffers in // the request. // IoVec->Transferred = IoVec->Size; } else { // // Regarding the response, calculate how much of the current IO Vector // has been populated by the Virtio Filesystem device. In // "TotalBytesWrittenByDevice", VirtioFlush() reported the total count // across all device-writeable descriptors, in the order they were // chained on the ring. // IoVec->Transferred = MIN ((UINTN)TotalBytesWrittenByDevice, IoVec->Size); TotalBytesWrittenByDevice -= (UINT32)IoVec->Transferred; } } } // // By now, "TotalBytesWrittenByDevice" has been exhausted. // ASSERT (TotalBytesWrittenByDevice == 0); // // We've succeeded; fall through. // Unmap: // // Unmap all mapped IO Vectors on both the success and the error paths. The // unmapping occurs in reverse order of mapping, in an attempt to avoid // memory fragmentation. // ListId = ARRAY_SIZE (SgListParam); while (ListId > 0) { --ListId; SgList = SgListParam[ListId]; if (SgList == NULL) { continue; } IoVecIdx = SgList->NumVec; while (IoVecIdx > 0) { EFI_STATUS UnmapStatus; --IoVecIdx; IoVec = &SgList->IoVec[IoVecIdx]; // // Unmap this IO Vector, if it has been mapped. // if (!IoVec->Mapped) { continue; } UnmapStatus = VirtioFs->Virtio->UnmapSharedBuffer (VirtioFs->Virtio, IoVec->Mapping); // // Re-set the following fields to the values they initially got from // VirtioFsSgListsValidate() -- the above unmapping attempt is considered // final, even if it fails. // IoVec->Mapped = FALSE; IoVec->MappedAddress = 0; IoVec->Mapping = NULL; // // If we are on the success path, but the unmapping failed, we need to // transparently flip to the failure path -- the caller must learn they // should not consult the response buffers. // // The branch below can be taken at most once. // if (!EFI_ERROR (Status) && EFI_ERROR (UnmapStatus)) { Status = UnmapStatus; } } } return Status; } /** Set up the fields of a new VIRTIO_FS_FUSE_REQUEST object. The function may only be called after VirtioFsInit() returns successfully and before VirtioFsUninit() is called. @param[in,out] VirtioFs The Virtio Filesystem device that the request is being prepared for. The "VirtioFs->RequestId" field will be copied into "Request->Unique". On output (on successful return), "VirtioFs->RequestId" will be incremented. @param[out] Request The VIRTIO_FS_FUSE_REQUEST object whose fields are to be set. @param[in] RequestSize The total size of the request, including sizeof(VIRTIO_FS_FUSE_REQUEST). @param[in] Opcode The VIRTIO_FS_FUSE_OPCODE that identifies the command to send. @param[in] NodeId The inode number of the file that the request refers to. When Opcode is VirtioFsFuseOpInit, NodeId is ignored by the Virtio Filesystem device. @retval EFI_INVALID_PARAMETER RequestSize is smaller than sizeof(VIRTIO_FS_FUSE_REQUEST). @retval EFI_OUT_OF_RESOURCES "VirtioFs->RequestId" is MAX_UINT64, and can be incremented no more. @retval EFI_SUCCESS Request has been populated, "VirtioFs->RequestId" has been incremented. **/ EFI_STATUS VirtioFsFuseNewRequest ( IN OUT VIRTIO_FS *VirtioFs, OUT VIRTIO_FS_FUSE_REQUEST *Request, IN UINT32 RequestSize, IN VIRTIO_FS_FUSE_OPCODE Opcode, IN UINT64 NodeId ) { if (RequestSize < sizeof *Request) { return EFI_INVALID_PARAMETER; } if (VirtioFs->RequestId == MAX_UINT64) { return EFI_OUT_OF_RESOURCES; } Request->Len = RequestSize; Request->Opcode = Opcode; Request->Unique = VirtioFs->RequestId++; Request->NodeId = NodeId; Request->Uid = 0; Request->Gid = 0; Request->Pid = 1; Request->Padding = 0; return EFI_SUCCESS; } /** Check the common FUSE response format. The first buffer in the response scatter-gather list is assumed a VIRTIO_FS_FUSE_RESPONSE structure. Subsequent response buffers, if any, up to and excluding the last one, are assumed fixed size. The last response buffer may or may not be fixed size, as specified by the caller. This function may only be called after VirtioFsSgListsSubmit() returns successfully. @param[in] ResponseSgList The scatter-gather list that describes the response part of the exchange -- the buffers that the Virtio Filesystem device filled in during the virtio transfer. @param[in] RequestId The request identifier to which the response is expected to belong. @param[out] TailBufferFill If NULL, then the last buffer in ResponseSgList is considered fixed size. Otherwise, the last buffer is considered variable size, and on successful return, TailBufferFill reports the number of bytes in the last buffer. @retval EFI_INVALID_PARAMETER TailBufferFill is not NULL (i.e., the last buffer is considered variable size), and ResponseSgList->NumVec is 1. @retval EFI_INVALID_PARAMETER The allocated size of the first buffer does not match sizeof(VIRTIO_FS_FUSE_RESPONSE). @retval EFI_PROTOCOL_ERROR The VIRTIO_FS_FUSE_RESPONSE structure in the first buffer has not been fully populated. @retval EFI_PROTOCOL_ERROR "VIRTIO_FS_FUSE_RESPONSE.Len" in the first buffer does not equal the sum of the individual buffer sizes (as populated). @retval EFI_PROTOCOL_ERROR "VIRTIO_FS_FUSE_RESPONSE.Unique" in the first buffer does not equal RequestId. @retval EFI_PROTOCOL_ERROR "VIRTIO_FS_FUSE_RESPONSE.Error" in the first buffer is zero, but a subsequent fixed size buffer has not been fully populated. @retval EFI_DEVICE_ERROR "VIRTIO_FS_FUSE_RESPONSE.Error" in the first buffer is nonzero. The caller may investigate "VIRTIO_FS_FUSE_RESPONSE.Error". Note that the completeness of the subsequent fixed size buffers is not verified in this case. @retval EFI_SUCCESS Verification successful. **/ EFI_STATUS VirtioFsFuseCheckResponse ( IN VIRTIO_FS_SCATTER_GATHER_LIST *ResponseSgList, IN UINT64 RequestId, OUT UINTN *TailBufferFill ) { UINTN NumFixedSizeVec; VIRTIO_FS_FUSE_RESPONSE *CommonResp; UINT32 TotalTransferred; UINTN Idx; // // Ensured by VirtioFsSgListsValidate(). // ASSERT (ResponseSgList->NumVec > 0); if (TailBufferFill == NULL) { // // All buffers are considered fixed size. // NumFixedSizeVec = ResponseSgList->NumVec; } else { // // If the last buffer is variable size, then we need that buffer to be // different from the first buffer, which is considered a // VIRTIO_FS_FUSE_RESPONSE (fixed size) structure. // if (ResponseSgList->NumVec == 1) { return EFI_INVALID_PARAMETER; } NumFixedSizeVec = ResponseSgList->NumVec - 1; } // // The first buffer is supposed to carry a (fully populated) // VIRTIO_FS_FUSE_RESPONSE structure. // if (ResponseSgList->IoVec[0].Size != sizeof *CommonResp) { return EFI_INVALID_PARAMETER; } if (ResponseSgList->IoVec[0].Transferred != ResponseSgList->IoVec[0].Size) { return EFI_PROTOCOL_ERROR; } // // FUSE must report the same number of bytes, written by the Virtio // Filesystem device, as the virtio transport does. // CommonResp = ResponseSgList->IoVec[0].Buffer; TotalTransferred = 0; for (Idx = 0; Idx < ResponseSgList->NumVec; Idx++) { // // Integer overflow and truncation are not possible, based on // VirtioFsSgListsValidate() and VirtioFsSgListsSubmit(). // TotalTransferred += (UINT32)ResponseSgList->IoVec[Idx].Transferred; } if (CommonResp->Len != TotalTransferred) { return EFI_PROTOCOL_ERROR; } // // Enforce that FUSE match our request ID in the response. // if (CommonResp->Unique != RequestId) { return EFI_PROTOCOL_ERROR; } // // If there is an explicit error report, skip checking the transfer // counts for the rest of the fixed size buffers. // if (CommonResp->Error != 0) { return EFI_DEVICE_ERROR; } // // There was no error reported, so we require that the Virtio Filesystem // device populate all fixed size buffers. We checked this for the very first // buffer above; let's check the rest (if any). // ASSERT (NumFixedSizeVec >= 1); for (Idx = 1; Idx < NumFixedSizeVec; Idx++) { if (ResponseSgList->IoVec[Idx].Transferred != ResponseSgList->IoVec[Idx].Size) { return EFI_PROTOCOL_ERROR; } } // // If the last buffer is considered variable size, report its filled size. // if (TailBufferFill != NULL) { *TailBufferFill = ResponseSgList->IoVec[NumFixedSizeVec].Transferred; } return EFI_SUCCESS; } /** An ad-hoc function for mapping FUSE (well, Linux) "errno" values to EFI_STATUS. @param[in] Errno The "VIRTIO_FS_FUSE_RESPONSE.Error" value, returned by the Virtio Filesystem device. The value is expected to be negative. @return An EFI_STATUS error code that's deemed a passable mapping for the Errno value. @retval EFI_DEVICE_ERROR Fallback EFI_STATUS code for unrecognized Errno values. **/ EFI_STATUS VirtioFsErrnoToEfiStatus ( IN INT32 Errno ) { switch (Errno) { case -1: // EPERM Operation not permitted return EFI_SECURITY_VIOLATION; case -2: // ENOENT No such file or directory case -3: // ESRCH No such process case -6: // ENXIO No such device or address case -10: // ECHILD No child processes case -19: // ENODEV No such device case -49: // EUNATCH Protocol driver not attached case -65: // ENOPKG Package not installed case -79: // ELIBACC Can not access a needed shared library case -126: // ENOKEY Required key not available return EFI_NOT_FOUND; case -4: // EINTR Interrupted system call case -11: // EAGAIN, EWOULDBLOCK Resource temporarily unavailable case -16: // EBUSY Device or resource busy case -26: // ETXTBSY Text file busy case -35: // EDEADLK, EDEADLOCK Resource deadlock avoided case -39: // ENOTEMPTY Directory not empty case -42: // ENOMSG No message of desired type case -61: // ENODATA No data available case -85: // ERESTART Interrupted system call should be restarted return EFI_NOT_READY; case -5: // EIO Input/output error case -45: // EL2NSYNC Level 2 not synchronized case -46: // EL3HLT Level 3 halted case -47: // EL3RST Level 3 reset case -51: // EL2HLT Level 2 halted case -121: // EREMOTEIO Remote I/O error case -133: // EHWPOISON Memory page has hardware error return EFI_DEVICE_ERROR; case -7: // E2BIG Argument list too long case -36: // ENAMETOOLONG File name too long case -90: // EMSGSIZE Message too long return EFI_BAD_BUFFER_SIZE; case -8: // ENOEXEC Exec format error case -15: // ENOTBLK Block device required case -18: // EXDEV Invalid cross-device link case -20: // ENOTDIR Not a directory case -21: // EISDIR Is a directory case -25: // ENOTTY Inappropriate ioctl for device case -27: // EFBIG File too large case -29: // ESPIPE Illegal seek case -38: // ENOSYS Function not implemented case -59: // EBFONT Bad font file format case -60: // ENOSTR Device not a stream case -83: // ELIBEXEC Cannot exec a shared library directly case -88: // ENOTSOCK Socket operation on non-socket case -91: // EPROTOTYPE Protocol wrong type for socket case -92: // ENOPROTOOPT Protocol not available case -93: // EPROTONOSUPPORT Protocol not supported case -94: // ESOCKTNOSUPPORT Socket type not supported case -95: // ENOTSUP, EOPNOTSUPP Operation not supported case -96: // EPFNOSUPPORT Protocol family not supported case -97: // EAFNOSUPPORT Address family not supported by protocol case -99: // EADDRNOTAVAIL Cannot assign requested address case -118: // ENOTNAM Not a XENIX named type file case -120: // EISNAM Is a named type file case -124: // EMEDIUMTYPE Wrong medium type return EFI_UNSUPPORTED; case -9: // EBADF Bad file descriptor case -14: // EFAULT Bad address case -44: // ECHRNG Channel number out of range case -48: // ELNRNG Link number out of range case -53: // EBADR Invalid request descriptor case -56: // EBADRQC Invalid request code case -57: // EBADSLT Invalid slot case -76: // ENOTUNIQ Name not unique on network case -84: // EILSEQ Invalid or incomplete multibyte or wide character return EFI_NO_MAPPING; case -12: // ENOMEM Cannot allocate memory case -23: // ENFILE Too many open files in system case -24: // EMFILE Too many open files case -31: // EMLINK Too many links case -37: // ENOLCK No locks available case -40: // ELOOP Too many levels of symbolic links case -50: // ENOCSI No CSI structure available case -55: // ENOANO No anode case -63: // ENOSR Out of streams resources case -82: // ELIBMAX Attempting to link in too many shared libraries case -87: // EUSERS Too many users case -105: // ENOBUFS No buffer space available case -109: // ETOOMANYREFS Too many references: cannot splice case -119: // ENAVAIL No XENIX semaphores available case -122: // EDQUOT Disk quota exceeded return EFI_OUT_OF_RESOURCES; case -13: // EACCES Permission denied return EFI_ACCESS_DENIED; case -17: // EEXIST File exists case -98: // EADDRINUSE Address already in use case -106: // EISCONN Transport endpoint is already connected case -114: // EALREADY Operation already in progress case -115: // EINPROGRESS Operation now in progress return EFI_ALREADY_STARTED; case -22: // EINVAL Invalid argument case -33: // EDOM Numerical argument out of domain return EFI_INVALID_PARAMETER; case -28: // ENOSPC No space left on device case -54: // EXFULL Exchange full return EFI_VOLUME_FULL; case -30: // EROFS Read-only file system return EFI_WRITE_PROTECTED; case -32: // EPIPE Broken pipe case -43: // EIDRM Identifier removed case -67: // ENOLINK Link has been severed case -68: // EADV Advertise error case -69: // ESRMNT Srmount error case -70: // ECOMM Communication error on send case -73: // EDOTDOT RFS specific error case -78: // EREMCHG Remote address changed case -86: // ESTRPIPE Streams pipe error case -102: // ENETRESET Network dropped connection on reset case -103: // ECONNABORTED Software caused connection abort case -104: // ECONNRESET Connection reset by peer case -116: // ESTALE Stale file handle case -125: // ECANCELED Operation canceled case -128: // EKEYREVOKED Key has been revoked case -129: // EKEYREJECTED Key was rejected by service case -130: // EOWNERDEAD Owner died case -131: // ENOTRECOVERABLE State not recoverable return EFI_ABORTED; case -34: // ERANGE Numerical result out of range case -75: // EOVERFLOW Value too large for defined data type return EFI_BUFFER_TOO_SMALL; case -52: // EBADE Invalid exchange case -108: // ESHUTDOWN Cannot send after transport endpoint shutdown case -111: // ECONNREFUSED Connection refused return EFI_END_OF_FILE; case -62: // ETIME Timer expired case -110: // ETIMEDOUT Connection timed out case -127: // EKEYEXPIRED Key has expired return EFI_TIMEOUT; case -64: // ENONET Machine is not on the network case -66: // EREMOTE Object is remote case -72: // EMULTIHOP Multihop attempted case -100: // ENETDOWN Network is down case -101: // ENETUNREACH Network is unreachable case -112: // EHOSTDOWN Host is down case -113: // EHOSTUNREACH No route to host case -123: // ENOMEDIUM No medium found case -132: // ERFKILL Operation not possible due to RF-kill return EFI_NO_MEDIA; case -71: // EPROTO Protocol error return EFI_PROTOCOL_ERROR; case -74: // EBADMSG Bad message case -77: // EBADFD File descriptor in bad state case -80: // ELIBBAD Accessing a corrupted shared library case -81: // ELIBSCN .lib section in a.out corrupted case -117: // EUCLEAN Structure needs cleaning return EFI_VOLUME_CORRUPTED; case -89: // EDESTADDRREQ Destination address required case -107: // ENOTCONN Transport endpoint is not connected return EFI_NOT_STARTED; default: break; } return EFI_DEVICE_ERROR; } // // Parser states for canonicalizing a POSIX pathname. // typedef enum { ParserInit, // just starting ParserEnd, // finished ParserSlash, // slash(es) seen ParserDot, // one dot seen since last slash ParserDotDot, // two dots seen since last slash ParserNormal, // a different sequence seen } PARSER_STATE; /** Strip the trailing slash from the parser's output buffer, unless the trailing slash stands for the root directory. @param[in] Buffer The parser's output buffer. Only used for sanity-checking. @param[in,out] Position On entry, points at the next character to produce (i.e., right past the end of the output written by the parser thus far). The last character in the parser's output buffer is a slash. On return, the slash is stripped, by decrementing Position by one. If this action would remove the slash character standing for the root directory, then the function has no effect. **/ STATIC VOID ParserStripSlash ( IN CHAR8 *Buffer, IN OUT UINTN *Position ) { ASSERT (*Position >= 1); ASSERT (Buffer[*Position - 1] == '/'); if (*Position == 1) { return; } (*Position)--; } /** Produce one character in the parser's output buffer. @param[out] Buffer The parser's output buffer. On return, Char8 will have been written. @param[in,out] Position On entry, points at the next character to produce (i.e., right past the end of the output written by the parser thus far). On return, Position is incremented by one. @param[in] Size Total allocated size of the parser's output buffer. Used for sanity-checking. @param[in] Char8 The character to place in the output buffer. **/ STATIC VOID ParserCopy ( OUT CHAR8 *Buffer, IN OUT UINTN *Position, IN UINTN Size, IN CHAR8 Char8 ) { ASSERT (*Position < Size); Buffer[(*Position)++] = Char8; } /** Rewind the last single-dot in the parser's output buffer. @param[in] Buffer The parser's output buffer. Only used for sanity-checking. @param[in,out] Position On entry, points at the next character to produce (i.e., right past the end of the output written by the parser thus far); the parser's output buffer ends with the characters ('/', '.'). On return, the dot is rewound by decrementing Position by one; a slash character will reside at the new end of the parser's output buffer. **/ STATIC VOID ParserRewindDot ( IN CHAR8 *Buffer, IN OUT UINTN *Position ) { ASSERT (*Position >= 2); ASSERT (Buffer[*Position - 1] == '.'); ASSERT (Buffer[*Position - 2] == '/'); (*Position)--; } /** Rewind the last dot-dot in the parser's output buffer. @param[in] Buffer The parser's output buffer. Only used for sanity-checking. @param[in,out] Position On entry, points at the next character to produce (i.e., right past the end of the output written by the parser thus far); the parser's output buffer ends with the characters ('/', '.', '.'). On return, the ('.', '.') pair is rewound unconditionally, by decrementing Position by two; a slash character resides at the new end of the parser's output buffer. If this slash character stands for the root directory, then RootEscape is set to TRUE. Otherwise (i.e., if this slash character is not the one standing for the root directory), then the slash character, and the pathname component preceding it, are removed by decrementing Position further. In this case, the slash character preceding the removed pathname component will reside at the new end of the parser's output buffer. @param[out] RootEscape Set to TRUE on output if the dot-dot component tries to escape the root directory, as described above. Otherwise, RootEscape is not modified. **/ STATIC VOID ParserRewindDotDot ( IN CHAR8 *Buffer, IN OUT UINTN *Position, OUT BOOLEAN *RootEscape ) { ASSERT (*Position >= 3); ASSERT (Buffer[*Position - 1] == '.'); ASSERT (Buffer[*Position - 2] == '.'); ASSERT (Buffer[*Position - 3] == '/'); (*Position) -= 2; if (*Position == 1) { // // Root directory slash reached; don't try to climb higher. // *RootEscape = TRUE; return; } // // Skip slash. // (*Position)--; // // Scan until next slash to the left. // do { ASSERT (*Position > 0); (*Position)--; } while (Buffer[*Position] != '/'); (*Position)++; } /** Append the UEFI-style RhsPath16 to the POSIX-style, canonical format LhsPath8. Output the POSIX-style, canonical format result in ResultPath, as a dynamically allocated string. Canonicalization (aka sanitization) establishes the following properties: - ResultPath is absolute (starts with "/"), - dot (.) and dot-dot (..) components are resolved/eliminated in ResultPath, with the usual semantics, - ResultPath uses forward slashes, - sequences of slashes are squashed in ResultPath, - the printable ASCII character set covers ResultPath, - CHAR8 encoding is used in ResultPath, - no trailing slash present in ResultPath except for the standalone root directory, - the length of ResultPath is at most VIRTIO_FS_MAX_PATHNAME_LENGTH. Any dot-dot in RhsPath16 that would remove the root directory is dropped, and reported through RootEscape, without failing the function call. @param[in] LhsPath8 Identifies the base directory. The caller is responsible for ensuring that LhsPath8 conform to the above canonical pathname format on entry. @param[in] RhsPath16 Identifies the desired file with a UEFI-style CHAR16 pathname. If RhsPath16 starts with a backslash, then RhsPath16 is considered absolute, and LhsPath8 is ignored; RhsPath16 is sanitized in isolation, for producing ResultPath8. Otherwise (i.e., if RhsPath16 is relative), RhsPath16 is transliterated to CHAR8, and naively appended to LhsPath8. The resultant fused pathname is then sanitized, to produce ResultPath8. @param[out] ResultPath8 The POSIX-style, canonical format pathname that leads to the file desired by the caller. After use, the caller is responsible for freeing ResultPath8. @param[out] RootEscape Set to TRUE if at least one dot-dot component in RhsPath16 attempted to escape the root directory; set to FALSE otherwise. @retval EFI_SUCCESS ResultPath8 has been produced. RootEscape has been output. @retval EFI_INVALID_PARAMETER RhsPath16 is zero-length. @retval EFI_INVALID_PARAMETER RhsPath16 failed the VIRTIO_FS_MAX_PATHNAME_LENGTH check. @retval EFI_OUT_OF_RESOURCES Memory allocation failed. @retval EFI_OUT_OF_RESOURCES ResultPath8 would have failed the VIRTIO_FS_MAX_PATHNAME_LENGTH check. @retval EFI_UNSUPPORTED RhsPath16 contains a character that either falls outside of the printable ASCII set, or is a forward slash. **/ EFI_STATUS VirtioFsAppendPath ( IN CHAR8 *LhsPath8, IN CHAR16 *RhsPath16, OUT CHAR8 **ResultPath8, OUT BOOLEAN *RootEscape ) { UINTN RhsLen; CHAR8 *RhsPath8; UINTN Idx; EFI_STATUS Status; UINTN SizeToSanitize; CHAR8 *BufferToSanitize; CHAR8 *SanitizedBuffer; PARSER_STATE State; UINTN SanitizedPosition; // // Appending an empty pathname is not allowed. // RhsLen = StrLen (RhsPath16); if (RhsLen == 0) { return EFI_INVALID_PARAMETER; } // // Enforce length restriction on RhsPath16. // if (RhsLen > VIRTIO_FS_MAX_PATHNAME_LENGTH) { return EFI_INVALID_PARAMETER; } // // Transliterate RhsPath16 to RhsPath8 by: // - rejecting RhsPath16 if a character outside of printable ASCII is seen, // - rejecting RhsPath16 if a forward slash is seen, // - replacing backslashes with forward slashes, // - casting the characters from CHAR16 to CHAR8. // RhsPath8 = AllocatePool (RhsLen + 1); if (RhsPath8 == NULL) { return EFI_OUT_OF_RESOURCES; } for (Idx = 0; RhsPath16[Idx] != L'\0'; Idx++) { if (RhsPath16[Idx] < 0x20 || RhsPath16[Idx] > 0x7E || RhsPath16[Idx] == L'/') { Status = EFI_UNSUPPORTED; goto FreeRhsPath8; } RhsPath8[Idx] = (CHAR8)((RhsPath16[Idx] == L'\\') ? L'/' : RhsPath16[Idx]); } RhsPath8[Idx++] = '\0'; // // Now prepare the input for the canonicalization (squashing of sequences of // forward slashes, and eliminating . (dot) and .. (dot-dot) pathname // components). // // The sanitized path can never be longer than the naive concatenation of the // left hand side and right hand side paths, so we'll use the catenated size // for allocating the sanitized output too. // if (RhsPath8[0] == '/') { // // If the right hand side path is absolute, then it is not appended to the // left hand side path -- it *replaces* the left hand side path. // SizeToSanitize = RhsLen + 1; BufferToSanitize = RhsPath8; } else { // // If the right hand side path is relative, then it is appended (naively) // to the left hand side. // UINTN LhsLen; LhsLen = AsciiStrLen (LhsPath8); SizeToSanitize = LhsLen + 1 + RhsLen + 1; BufferToSanitize = AllocatePool (SizeToSanitize); if (BufferToSanitize == NULL) { Status = EFI_OUT_OF_RESOURCES; goto FreeRhsPath8; } CopyMem (BufferToSanitize, LhsPath8, LhsLen); BufferToSanitize[LhsLen] = '/'; CopyMem (BufferToSanitize + LhsLen + 1, RhsPath8, RhsLen + 1); } // // Allocate the output buffer. // SanitizedBuffer = AllocatePool (SizeToSanitize); if (SanitizedBuffer == NULL) { Status = EFI_OUT_OF_RESOURCES; goto FreeBufferToSanitize; } // // State machine for parsing the input and producing the canonical output // follows. // *RootEscape = FALSE; Idx = 0; State = ParserInit; SanitizedPosition = 0; do { CHAR8 Chr8; ASSERT (Idx < SizeToSanitize); Chr8 = BufferToSanitize[Idx++]; switch (State) { case ParserInit: // just starting ASSERT (Chr8 == '/'); ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserSlash; break; case ParserSlash: // slash(es) seen switch (Chr8) { case '\0': ParserStripSlash (SanitizedBuffer, &SanitizedPosition); ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserEnd; break; case '/': // // skip & stay in same state // break; case '.': ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserDot; break; default: ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserNormal; break; } break; case ParserDot: // one dot seen since last slash switch (Chr8) { case '\0': ParserRewindDot (SanitizedBuffer, &SanitizedPosition); ParserStripSlash (SanitizedBuffer, &SanitizedPosition); ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserEnd; break; case '/': ParserRewindDot (SanitizedBuffer, &SanitizedPosition); State = ParserSlash; break; case '.': ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserDotDot; break; default: ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserNormal; break; } break; case ParserDotDot: // two dots seen since last slash switch (Chr8) { case '\0': ParserRewindDotDot (SanitizedBuffer, &SanitizedPosition, RootEscape); ParserStripSlash (SanitizedBuffer, &SanitizedPosition); ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserEnd; break; case '/': ParserRewindDotDot (SanitizedBuffer, &SanitizedPosition, RootEscape); State = ParserSlash; break; case '.': // // fall through // default: ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserNormal; break; } break; case ParserNormal: // a different sequence seen switch (Chr8) { case '\0': ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserEnd; break; case '/': ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); State = ParserSlash; break; case '.': // // fall through // default: // // copy and stay in same state // ParserCopy (SanitizedBuffer, &SanitizedPosition, SizeToSanitize, Chr8); break; } break; default: ASSERT (FALSE); break; } } while (State != ParserEnd); // // Ensure length invariant on ResultPath8. // ASSERT (SanitizedPosition >= 2); if (SanitizedPosition - 1 > VIRTIO_FS_MAX_PATHNAME_LENGTH) { Status = EFI_OUT_OF_RESOURCES; goto FreeSanitizedBuffer; } *ResultPath8 = SanitizedBuffer; SanitizedBuffer = NULL; Status = EFI_SUCCESS; // // Fall through. // FreeSanitizedBuffer: if (SanitizedBuffer != NULL) { FreePool (SanitizedBuffer); } FreeBufferToSanitize: if (RhsPath8[0] != '/') { FreePool (BufferToSanitize); } FreeRhsPath8: FreePool (RhsPath8); return Status; } /** For a given canonical pathname (as defined at VirtioFsAppendPath()), look up the NodeId of the most specific parent directory, plus output a pointer to the last pathname component (which is therefore a direct child of said parent directory). The function may only be called after VirtioFsFuseInitSession() returns successfully and before VirtioFsUninit() is called. @param[in,out] VirtioFs The Virtio Filesystem device to send FUSE_LOOKUP and FUSE_FORGET requests to. On output, the FUSE request counter "VirtioFs->RequestId" will have been incremented several times. @param[in,out] Path The canonical pathname (as defined in the description of VirtioFsAppendPath()) to split. Path is modified in-place temporarily; however, on return (successful or otherwise), Path reassumes its original contents. @param[out] DirNodeId The NodeId of the most specific parent directory identified by Path. The caller is responsible for sending a FUSE_FORGET request to the Virtio Filesystem device for DirNodeId -- unless DirNodeId equals VIRTIO_FS_FUSE_ROOT_DIR_NODE_ID --, when DirNodeId's use ends. @param[out] LastComponent A pointer into Path, pointing at the start of the last pathname component. @retval EFI_SUCCESS Splitting successful. @retval EFI_INVALID_PARAMETER Path is "/". @retval EFI_ACCESS_DENIED One of the components on Path before the last is not a directory. @return Error codes propagated from VirtioFsFuseLookup() and VirtioFsFuseAttrToEfiFileInfo(). **/ EFI_STATUS VirtioFsLookupMostSpecificParentDir ( IN OUT VIRTIO_FS *VirtioFs, IN OUT CHAR8 *Path, OUT UINT64 *DirNodeId, OUT CHAR8 **LastComponent ) { UINT64 ParentDirNodeId; CHAR8 *Slash; EFI_STATUS Status; UINT64 NextDirNodeId; if (AsciiStrCmp (Path, "/") == 0) { return EFI_INVALID_PARAMETER; } ParentDirNodeId = VIRTIO_FS_FUSE_ROOT_DIR_NODE_ID; Slash = Path; for (;;) { CHAR8 *NextSlash; VIRTIO_FS_FUSE_ATTRIBUTES_RESPONSE FuseAttr; EFI_FILE_INFO FileInfo; // // Find the slash (if any) that terminates the next pathname component. // NextSlash = AsciiStrStr (Slash + 1, "/"); if (NextSlash == NULL) { break; } // // Temporarily replace the found slash character with a NUL in-place, for // easy construction of the single-component filename that we need to look // up. // *NextSlash = '\0'; Status = VirtioFsFuseLookup (VirtioFs, ParentDirNodeId, Slash + 1, &NextDirNodeId, &FuseAttr); *NextSlash = '/'; // // We're done with the directory inode that was the basis for the lookup. // if (ParentDirNodeId != VIRTIO_FS_FUSE_ROOT_DIR_NODE_ID) { VirtioFsFuseForget (VirtioFs, ParentDirNodeId); } // // If we couldn't look up the next *non-final* pathname component, bail. // if (EFI_ERROR (Status)) { return Status; } // // Lookup successful; now check if the next (non-final) component is a // directory. If not, bail. // Status = VirtioFsFuseAttrToEfiFileInfo (&FuseAttr, &FileInfo); if (EFI_ERROR (Status)) { goto ForgetNextDirNodeId; } if ((FileInfo.Attribute & EFI_FILE_DIRECTORY) == 0) { Status = EFI_ACCESS_DENIED; goto ForgetNextDirNodeId; } // // Advance. // ParentDirNodeId = NextDirNodeId; Slash = NextSlash; } // // ParentDirNodeId corresponds to the last containing directory. The // remaining single-component filename represents a direct child under that // directory. Said filename starts at (Slash + 1). // *DirNodeId = ParentDirNodeId; *LastComponent = Slash + 1; return EFI_SUCCESS; ForgetNextDirNodeId: VirtioFsFuseForget (VirtioFs, NextDirNodeId); return Status; } /** Convert select fields of a VIRTIO_FS_FUSE_ATTRIBUTES_RESPONSE object to corresponding fields in EFI_FILE_INFO. @param[in] FuseAttr The VIRTIO_FS_FUSE_ATTRIBUTES_RESPONSE object to convert the relevant fields from. @param[out] FileInfo The EFI_FILE_INFO structure to modify. Importantly, the FileInfo->Size and FileInfo->FileName fields are not overwritten. @retval EFI_SUCCESS Conversion successful. @retval EFI_UNSUPPORTED The allocated size of the file is inexpressible in EFI_FILE_INFO. @retval EFI_UNSUPPORTED One of the file access times is inexpressible in EFI_FILE_INFO. @retval EFI_UNSUPPORTED The file type is inexpressible in EFI_FILE_INFO. @retval EFI_UNSUPPORTED The file is a regular file that has multiple names on the host side (i.e., its hard link count is greater than one). **/ EFI_STATUS VirtioFsFuseAttrToEfiFileInfo ( IN VIRTIO_FS_FUSE_ATTRIBUTES_RESPONSE *FuseAttr, OUT EFI_FILE_INFO *FileInfo ) { UINT64 EpochTime[3]; EFI_TIME *ConvertedTime[ARRAY_SIZE (EpochTime)]; UINTN Idx; FileInfo->FileSize = FuseAttr->Size; // // The unit for FuseAttr->Blocks is 512B. // if (FuseAttr->Blocks >= BIT55) { return EFI_UNSUPPORTED; } FileInfo->PhysicalSize = LShiftU64 (FuseAttr->Blocks, 9); // // Convert the timestamps. File creation time is not tracked by the Virtio // Filesystem device, so set FileInfo->CreateTime from FuseAttr->Mtime as // well. // EpochTime[0] = FuseAttr->Mtime; EpochTime[1] = FuseAttr->Atime; EpochTime[2] = FuseAttr->Mtime; ConvertedTime[0] = &FileInfo->CreateTime; ConvertedTime[1] = &FileInfo->LastAccessTime; ConvertedTime[2] = &FileInfo->ModificationTime; for (Idx = 0; Idx < ARRAY_SIZE (EpochTime); Idx++) { // // EpochToEfiTime() takes a UINTN for seconds. // if (EpochTime[Idx] > MAX_UINTN) { return EFI_UNSUPPORTED; } // // Set the following fields in the converted time: Year, Month, Day, Hour, // Minute, Second, Nanosecond. // EpochToEfiTime ((UINTN)EpochTime[Idx], ConvertedTime[Idx]); // // The times are all expressed in UTC. Consequently, they are not affected // by daylight saving. // ConvertedTime[Idx]->TimeZone = 0; ConvertedTime[Idx]->Daylight = 0; // // Clear the padding fields. // ConvertedTime[Idx]->Pad1 = 0; ConvertedTime[Idx]->Pad2 = 0; } // // Set the attributes. // switch (FuseAttr->Mode & VIRTIO_FS_FUSE_MODE_TYPE_MASK) { case VIRTIO_FS_FUSE_MODE_TYPE_DIR: FileInfo->Attribute = EFI_FILE_DIRECTORY; break; case VIRTIO_FS_FUSE_MODE_TYPE_REG: FileInfo->Attribute = 0; break; default: // // Other file types are not supported. // return EFI_UNSUPPORTED; } // // Report the regular file or directory as read-only if all classes lack // write permission. // if ((FuseAttr->Mode & (VIRTIO_FS_FUSE_MODE_PERM_WUSR | VIRTIO_FS_FUSE_MODE_PERM_WGRP | VIRTIO_FS_FUSE_MODE_PERM_WOTH)) == 0) { FileInfo->Attribute |= EFI_FILE_READ_ONLY; } // // A hard link count greater than 1 is not supported for regular files. // if ((FileInfo->Attribute & EFI_FILE_DIRECTORY) == 0 && FuseAttr->Nlink > 1) { return EFI_UNSUPPORTED; } return EFI_SUCCESS; }