/**@file Memory Detection for Virtual Machines. Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.
Copyright (c) 2019, Citrix Systems, Inc. SPDX-License-Identifier: BSD-2-Clause-Patent Module Name: MemDetect.c **/ // // The package level header files this module uses // #include #include // // The Library classes this module consumes // #include #include #include #include #include #include #include #include #include #include "Platform.h" #include "Cmos.h" UINT8 mPhysMemAddressWidth; STATIC UINT32 mS3AcpiReservedMemoryBase; STATIC UINT32 mS3AcpiReservedMemorySize; STATIC UINT16 mQ35TsegMbytes; VOID Q35TsegMbytesInitialization ( VOID ) { UINT16 ExtendedTsegMbytes; RETURN_STATUS PcdStatus; if (mHostBridgeDevId != INTEL_Q35_MCH_DEVICE_ID) { DEBUG (( DEBUG_ERROR, "%a: no TSEG (SMRAM) on host bridge DID=0x%04x; " "only DID=0x%04x (Q35) is supported\n", __FUNCTION__, mHostBridgeDevId, INTEL_Q35_MCH_DEVICE_ID )); ASSERT (FALSE); CpuDeadLoop (); } // // Check if QEMU offers an extended TSEG. // // This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB // register, and reading back the register. // // On a QEMU machine type that does not offer an extended TSEG, the initial // write overwrites whatever value a malicious guest OS may have placed in // the (unimplemented) register, before entering S3 or rebooting. // Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged. // // On a QEMU machine type that offers an extended TSEG, the initial write // triggers an update to the register. Subsequently, the value read back // (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the // number of megabytes. // PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY); ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB)); if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) { mQ35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes); return; } DEBUG (( DEBUG_INFO, "%a: QEMU offers an extended TSEG (%d MB)\n", __FUNCTION__, ExtendedTsegMbytes )); PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes); ASSERT_RETURN_ERROR (PcdStatus); mQ35TsegMbytes = ExtendedTsegMbytes; } STATIC UINT64 GetHighestSystemMemoryAddress ( BOOLEAN Below4gb ) { EFI_E820_ENTRY64 *E820Map; UINT32 E820EntriesCount; EFI_E820_ENTRY64 *Entry; EFI_STATUS Status; UINT32 Loop; UINT64 HighestAddress; UINT64 EntryEnd; HighestAddress = 0; Status = XenGetE820Map (&E820Map, &E820EntriesCount); ASSERT_EFI_ERROR (Status); for (Loop = 0; Loop < E820EntriesCount; Loop++) { Entry = E820Map + Loop; EntryEnd = Entry->BaseAddr + Entry->Length; if (Entry->Type == EfiAcpiAddressRangeMemory && EntryEnd > HighestAddress) { if (Below4gb && (EntryEnd <= BASE_4GB)) { HighestAddress = EntryEnd; } else if (!Below4gb && (EntryEnd >= BASE_4GB)) { HighestAddress = EntryEnd; } } } // // Round down the end address. // return HighestAddress & ~(UINT64)EFI_PAGE_MASK; } UINT32 GetSystemMemorySizeBelow4gb ( VOID ) { UINT8 Cmos0x34; UINT8 Cmos0x35; // // In PVH case, there is no CMOS, we have to calculate the memory size // from parsing the E820 // if (XenPvhDetected ()) { UINT64 HighestAddress; HighestAddress = GetHighestSystemMemoryAddress (TRUE); ASSERT (HighestAddress > 0 && HighestAddress <= BASE_4GB); return HighestAddress; } // // CMOS 0x34/0x35 specifies the system memory above 16 MB. // * CMOS(0x35) is the high byte // * CMOS(0x34) is the low byte // * The size is specified in 64kb chunks // * Since this is memory above 16MB, the 16MB must be added // into the calculation to get the total memory size. // Cmos0x34 = (UINT8) CmosRead8 (0x34); Cmos0x35 = (UINT8) CmosRead8 (0x35); return (UINT32) (((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB); } /** Initialize the mPhysMemAddressWidth variable, based on CPUID data. **/ VOID AddressWidthInitialization ( VOID ) { UINT32 RegEax; AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000008) { AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL); mPhysMemAddressWidth = (UINT8) RegEax; } else { mPhysMemAddressWidth = 36; } // // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses. // ASSERT (mPhysMemAddressWidth <= 52); if (mPhysMemAddressWidth > 48) { mPhysMemAddressWidth = 48; } } /** Calculate the cap for the permanent PEI memory. **/ STATIC UINT32 GetPeiMemoryCap ( VOID ) { BOOLEAN Page1GSupport; UINT32 RegEax; UINT32 RegEdx; UINT32 Pml4Entries; UINT32 PdpEntries; UINTN TotalPages; // // If DXE is 32-bit, then just return the traditional 64 MB cap. // #ifdef MDE_CPU_IA32 if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) { return SIZE_64MB; } #endif // // Dependent on physical address width, PEI memory allocations can be // dominated by the page tables built for 64-bit DXE. So we key the cap off // of those. The code below is based on CreateIdentityMappingPageTables() in // "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c". // Page1GSupport = FALSE; if (PcdGetBool (PcdUse1GPageTable)) { AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000001) { AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx); if ((RegEdx & BIT26) != 0) { Page1GSupport = TRUE; } } } if (mPhysMemAddressWidth <= 39) { Pml4Entries = 1; PdpEntries = 1 << (mPhysMemAddressWidth - 30); ASSERT (PdpEntries <= 0x200); } else { Pml4Entries = 1 << (mPhysMemAddressWidth - 39); ASSERT (Pml4Entries <= 0x200); PdpEntries = 512; } TotalPages = Page1GSupport ? Pml4Entries + 1 : (PdpEntries + 1) * Pml4Entries + 1; ASSERT (TotalPages <= 0x40201); // // Add 64 MB for miscellaneous allocations. Note that for // mPhysMemAddressWidth values close to 36, the cap will actually be // dominated by this increment. // return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB); } /** Publish PEI core memory @return EFI_SUCCESS The PEIM initialized successfully. **/ EFI_STATUS PublishPeiMemory ( VOID ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS MemoryBase; UINT64 MemorySize; UINT32 LowerMemorySize; UINT32 PeiMemoryCap; LowerMemorySize = GetSystemMemorySizeBelow4gb (); if (mBootMode == BOOT_ON_S3_RESUME) { MemoryBase = mS3AcpiReservedMemoryBase; MemorySize = mS3AcpiReservedMemorySize; } else { PeiMemoryCap = GetPeiMemoryCap (); DEBUG ((DEBUG_INFO, "%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n", __FUNCTION__, mPhysMemAddressWidth, PeiMemoryCap >> 10)); // // Determine the range of memory to use during PEI // MemoryBase = PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize); MemorySize = LowerMemorySize - MemoryBase; if (MemorySize > PeiMemoryCap) { MemoryBase = LowerMemorySize - PeiMemoryCap; MemorySize = PeiMemoryCap; } } // // Publish this memory to the PEI Core // Status = PublishSystemMemory(MemoryBase, MemorySize); ASSERT_EFI_ERROR (Status); return Status; } /** Publish system RAM and reserve memory regions **/ VOID InitializeRamRegions ( VOID ) { XenPublishRamRegions (); if (mBootMode != BOOT_ON_S3_RESUME) { // // Reserve the lock box storage area // // Since this memory range will be used on S3 resume, it must be // reserved as ACPI NVS. // // If S3 is unsupported, then various drivers might still write to the // LockBox area. We ought to prevent DXE from serving allocation requests // such that they would overlap the LockBox storage. // ZeroMem ( (VOID*)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase), (UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize) ); BuildMemoryAllocationHob ( (EFI_PHYSICAL_ADDRESS)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageBase), (UINT64)(UINTN) PcdGet32 (PcdOvmfLockBoxStorageSize), EfiBootServicesData ); } }