/** @file Provide functions to initialize NVME controller and perform NVME commands Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "OpalPasswordPei.h" #define ALIGN(v, a) (UINTN)((((v) - 1) | ((a) - 1)) + 1) /// /// NVME Host controller registers operation /// #define NVME_GET_CAP(Nvme, Cap) NvmeMmioRead (Cap, Nvme->Nbar + NVME_CAP_OFFSET, sizeof (NVME_CAP)) #define NVME_GET_CC(Nvme, Cc) NvmeMmioRead (Cc, Nvme->Nbar + NVME_CC_OFFSET, sizeof (NVME_CC)) #define NVME_SET_CC(Nvme, Cc) NvmeMmioWrite (Nvme->Nbar + NVME_CC_OFFSET, Cc, sizeof (NVME_CC)) #define NVME_GET_CSTS(Nvme, Csts) NvmeMmioRead (Csts, Nvme->Nbar + NVME_CSTS_OFFSET, sizeof (NVME_CSTS)) #define NVME_GET_AQA(Nvme, Aqa) NvmeMmioRead (Aqa, Nvme->Nbar + NVME_AQA_OFFSET, sizeof (NVME_AQA)) #define NVME_SET_AQA(Nvme, Aqa) NvmeMmioWrite (Nvme->Nbar + NVME_AQA_OFFSET, Aqa, sizeof (NVME_AQA)) #define NVME_GET_ASQ(Nvme, Asq) NvmeMmioRead (Asq, Nvme->Nbar + NVME_ASQ_OFFSET, sizeof (NVME_ASQ)) #define NVME_SET_ASQ(Nvme, Asq) NvmeMmioWrite (Nvme->Nbar + NVME_ASQ_OFFSET, Asq, sizeof (NVME_ASQ)) #define NVME_GET_ACQ(Nvme, Acq) NvmeMmioRead (Acq, Nvme->Nbar + NVME_ACQ_OFFSET, sizeof (NVME_ACQ)) #define NVME_SET_ACQ(Nvme, Acq) NvmeMmioWrite (Nvme->Nbar + NVME_ACQ_OFFSET, Acq, sizeof (NVME_ACQ)) #define NVME_GET_VER(Nvme, Ver) NvmeMmioRead (Ver, Nvme->Nbar + NVME_VER_OFFSET, sizeof (NVME_VER)) #define NVME_SET_SQTDBL(Nvme, Qid, Sqtdbl) NvmeMmioWrite (Nvme->Nbar + NVME_SQTDBL_OFFSET(Qid, Nvme->Cap.Dstrd), Sqtdbl, sizeof (NVME_SQTDBL)) #define NVME_SET_CQHDBL(Nvme, Qid, Cqhdbl) NvmeMmioWrite (Nvme->Nbar + NVME_CQHDBL_OFFSET(Qid, Nvme->Cap.Dstrd), Cqhdbl, sizeof (NVME_CQHDBL)) /// /// Base memory address /// enum { BASEMEM_CONTROLLER_DATA, BASEMEM_IDENTIFY_DATA, BASEMEM_ASQ, BASEMEM_ACQ, BASEMEM_SQ, BASEMEM_CQ, BASEMEM_PRP, BASEMEM_SECURITY, MAX_BASEMEM_COUNT }; /// /// All of base memories are 4K(0x1000) alignment /// #define NVME_MEM_BASE(Nvme) ((UINTN)(Nvme->BaseMem)) #define NVME_CONTROL_DATA_BASE(Nvme) (ALIGN (NVME_MEM_BASE(Nvme) + ((NvmeGetBaseMemPages (BASEMEM_CONTROLLER_DATA)) * EFI_PAGE_SIZE), EFI_PAGE_SIZE)) #define NVME_NAMESPACE_DATA_BASE(Nvme) (ALIGN (NVME_MEM_BASE(Nvme) + ((NvmeGetBaseMemPages (BASEMEM_IDENTIFY_DATA)) * EFI_PAGE_SIZE), EFI_PAGE_SIZE)) #define NVME_ASQ_BASE(Nvme) (ALIGN (NVME_MEM_BASE(Nvme) + ((NvmeGetBaseMemPages (BASEMEM_ASQ)) * EFI_PAGE_SIZE), EFI_PAGE_SIZE)) #define NVME_ACQ_BASE(Nvme) (ALIGN (NVME_MEM_BASE(Nvme) + ((NvmeGetBaseMemPages (BASEMEM_ACQ)) * EFI_PAGE_SIZE), EFI_PAGE_SIZE)) #define NVME_SQ_BASE(Nvme, index) (ALIGN (NVME_MEM_BASE(Nvme) + ((NvmeGetBaseMemPages (BASEMEM_SQ) + ((index)*(NVME_MAX_IO_QUEUES-1))) * EFI_PAGE_SIZE), EFI_PAGE_SIZE)) #define NVME_CQ_BASE(Nvme, index) (ALIGN (NVME_MEM_BASE(Nvme) + ((NvmeGetBaseMemPages (BASEMEM_CQ) + ((index)*(NVME_MAX_IO_QUEUES-1))) * EFI_PAGE_SIZE), EFI_PAGE_SIZE)) #define NVME_PRP_BASE(Nvme, index) (ALIGN (NVME_MEM_BASE(Nvme) + ((NvmeGetBaseMemPages (BASEMEM_PRP) + ((index)*NVME_PRP_SIZE)) * EFI_PAGE_SIZE), EFI_PAGE_SIZE)) #define NVME_SEC_BASE(Nvme) (ALIGN (NVME_MEM_BASE(Nvme) + ((NvmeGetBaseMemPages (BASEMEM_SECURITY)) * EFI_PAGE_SIZE), EFI_PAGE_SIZE)) /** Transfer MMIO Data to memory. @param[in,out] MemBuffer - Destination: Memory address @param[in] MmioAddr - Source: MMIO address @param[in] Size - Size for read @retval EFI_SUCCESS - MMIO read sucessfully **/ EFI_STATUS NvmeMmioRead ( IN OUT VOID *MemBuffer, IN UINTN MmioAddr, IN UINTN Size ) { UINTN Offset; UINT8 Data; UINT8 *Ptr; // priority has adjusted switch (Size) { case 4: *((UINT32 *)MemBuffer) = MmioRead32 (MmioAddr); break; case 8: *((UINT64 *)MemBuffer) = MmioRead64 (MmioAddr); break; case 2: *((UINT16 *)MemBuffer) = MmioRead16 (MmioAddr); break; case 1: *((UINT8 *)MemBuffer) = MmioRead8 (MmioAddr); break; default: Ptr = (UINT8 *)MemBuffer; for (Offset = 0; Offset < Size; Offset += 1) { Data = MmioRead8 (MmioAddr + Offset); Ptr[Offset] = Data; } break; } return EFI_SUCCESS; } /** Transfer memory data to MMIO. @param[in,out] MmioAddr - Destination: MMIO address @param[in] MemBuffer - Source: Memory address @param[in] Size - Size for write @retval EFI_SUCCESS - MMIO write sucessfully **/ EFI_STATUS NvmeMmioWrite ( IN OUT UINTN MmioAddr, IN VOID *MemBuffer, IN UINTN Size ) { UINTN Offset; UINT8 Data; UINT8 *Ptr; // priority has adjusted switch (Size) { case 4: MmioWrite32 (MmioAddr, *((UINT32 *)MemBuffer)); break; case 8: MmioWrite64 (MmioAddr, *((UINT64 *)MemBuffer)); break; case 2: MmioWrite16 (MmioAddr, *((UINT16 *)MemBuffer)); break; case 1: MmioWrite8 (MmioAddr, *((UINT8 *)MemBuffer)); break; default: Ptr = (UINT8 *)MemBuffer; for (Offset = 0; Offset < Size; Offset += 1) { Data = Ptr[Offset]; MmioWrite8 (MmioAddr + Offset, Data); } break; } return EFI_SUCCESS; } /** Transfer MMIO data to memory. @param[in,out] MemBuffer - Destination: Memory address @param[in] MmioAddr - Source: MMIO address @param[in] Size - Size for read @retval EFI_SUCCESS - MMIO read sucessfully **/ EFI_STATUS OpalPciRead ( IN OUT VOID *MemBuffer, IN UINTN MmioAddr, IN UINTN Size ) { UINTN Offset; UINT8 Data; UINT8 *Ptr; // priority has adjusted switch (Size) { case 4: *((UINT32 *)MemBuffer) = PciRead32 (MmioAddr); break; case 2: *((UINT16 *)MemBuffer) = PciRead16 (MmioAddr); break; case 1: *((UINT8 *)MemBuffer) = PciRead8 (MmioAddr); break; default: Ptr = (UINT8 *)MemBuffer; for (Offset = 0; Offset < Size; Offset += 1) { Data = PciRead8 (MmioAddr + Offset); Ptr[Offset] = Data; } break; } return EFI_SUCCESS; } /** Transfer memory data to MMIO. @param[in,out] MmioAddr - Destination: MMIO address @param[in] MemBuffer - Source: Memory address @param[in] Size - Size for write @retval EFI_SUCCESS - MMIO write sucessfully **/ EFI_STATUS OpalPciWrite ( IN OUT UINTN MmioAddr, IN VOID *MemBuffer, IN UINTN Size ) { UINTN Offset; UINT8 Data; UINT8 *Ptr; // priority has adjusted switch (Size) { case 4: PciWrite32 (MmioAddr, *((UINT32 *)MemBuffer)); break; case 2: PciWrite16 (MmioAddr, *((UINT16 *)MemBuffer)); break; case 1: PciWrite8 (MmioAddr, *((UINT8 *)MemBuffer)); break; default: Ptr = (UINT8 *)MemBuffer; for (Offset = 0; Offset < Size; Offset += 1) { Data = Ptr[Offset]; PciWrite8 (MmioAddr + Offset, Data); } break; } return EFI_SUCCESS; } /** Get total pages for specific NVME based memory. @param[in] BaseMemIndex - The Index of BaseMem (0-based). @retval - The page count for specific BaseMem Index **/ UINT32 NvmeGetBaseMemPages ( IN UINTN BaseMemIndex ) { UINT32 Pages; UINTN Index; UINT32 PageSizeList[8]; PageSizeList[0] = 1; /* Controller Data */ PageSizeList[1] = 1; /* Identify Data */ PageSizeList[2] = 1; /* ASQ */ PageSizeList[3] = 1; /* ACQ */ PageSizeList[4] = 1; /* SQs */ PageSizeList[5] = 1; /* CQs */ PageSizeList[6] = NVME_PRP_SIZE * NVME_CSQ_DEPTH; /* PRPs */ PageSizeList[7] = 1; /* Security Commands */ if (BaseMemIndex > MAX_BASEMEM_COUNT) { ASSERT (FALSE); return 0; } Pages = 0; for (Index = 0; Index < BaseMemIndex; Index++) { Pages += PageSizeList[Index]; } return Pages; } /** Wait for NVME controller status to be ready or not. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] WaitReady - Flag for waitting status ready or not @return EFI_SUCCESS - Successfully to wait specific status. @return others - Fail to wait for specific controller status. **/ STATIC EFI_STATUS NvmeWaitController ( IN NVME_CONTEXT *Nvme, IN BOOLEAN WaitReady ) { NVME_CSTS Csts; EFI_STATUS Status; UINT32 Index; UINT8 Timeout; // // Cap.To specifies max delay time in 500ms increments for Csts.Rdy to set after // Cc.Enable. Loop produces a 1 millisecond delay per itteration, up to 500 * Cap.To. // if (Nvme->Cap.To == 0) { Timeout = 1; } else { Timeout = Nvme->Cap.To; } Status = EFI_SUCCESS; for(Index = (Timeout * 500); Index != 0; --Index) { MicroSecondDelay (1000); // // Check if the controller is initialized // Status = NVME_GET_CSTS (Nvme, &Csts); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NVME_GET_CSTS fail, Status = %r\n", Status)); return Status; } if ((BOOLEAN) Csts.Rdy == WaitReady) { break; } } if (Index == 0) { Status = EFI_TIMEOUT; } return Status; } /** Disable the Nvm Express controller. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return EFI_SUCCESS - Successfully disable the controller. @return others - Fail to disable the controller. **/ STATIC EFI_STATUS NvmeDisableController ( IN NVME_CONTEXT *Nvme ) { NVME_CC Cc; NVME_CSTS Csts; EFI_STATUS Status; Status = NVME_GET_CSTS (Nvme, &Csts); /// /// Read Controller Configuration Register. /// Status = NVME_GET_CC (Nvme, &Cc); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NVME_GET_CC fail, Status = %r\n", Status)); goto Done; } if (Cc.En == 1) { Cc.En = 0; /// /// Disable the controller. /// Status = NVME_SET_CC (Nvme, &Cc); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NVME_SET_CC fail, Status = %r\n", Status)); goto Done; } } Status = NvmeWaitController (Nvme, FALSE); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeWaitController fail, Status = %r\n", Status)); goto Done; } return EFI_SUCCESS; Done: DEBUG ((DEBUG_INFO, "NvmeDisableController fail, Status: %r\n", Status)); return Status; } /** Enable the Nvm Express controller. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return EFI_SUCCESS - Successfully enable the controller. @return EFI_DEVICE_ERROR - Fail to enable the controller. @return EFI_TIMEOUT - Fail to enable the controller in given time slot. **/ STATIC EFI_STATUS NvmeEnableController ( IN NVME_CONTEXT *Nvme ) { NVME_CC Cc; EFI_STATUS Status; // // Enable the controller // ZeroMem (&Cc, sizeof (NVME_CC)); Cc.En = 1; Cc.Iosqes = 6; Cc.Iocqes = 4; Status = NVME_SET_CC (Nvme, &Cc); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NVME_SET_CC fail, Status = %r\n", Status)); goto Done; } Status = NvmeWaitController (Nvme, TRUE); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeWaitController fail, Status = %r\n", Status)); goto Done; } return EFI_SUCCESS; Done: DEBUG ((DEBUG_INFO, "NvmeEnableController fail, Status: %r\n", Status)); return Status; } /** Shutdown the Nvm Express controller. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return EFI_SUCCESS - Successfully shutdown the controller. @return EFI_DEVICE_ERROR - Fail to shutdown the controller. @return EFI_TIMEOUT - Fail to shutdown the controller in given time slot. **/ STATIC EFI_STATUS NvmeShutdownController ( IN NVME_CONTEXT *Nvme ) { NVME_CC Cc; NVME_CSTS Csts; EFI_STATUS Status; UINT32 Index; UINTN Timeout; Status = NVME_GET_CC (Nvme, &Cc); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NVME_GET_CC fail, Status = %r\n", Status)); return Status; } Cc.Shn = 1; // Normal shutdown Status = NVME_SET_CC (Nvme, &Cc); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NVME_SET_CC fail, Status = %r\n", Status)); return Status; } Timeout = NVME_GENERIC_TIMEOUT/1000; // ms for(Index = (UINT32)(Timeout); Index != 0; --Index) { MicroSecondDelay (1000); Status = NVME_GET_CSTS (Nvme, &Csts); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NVME_GET_CSTS fail, Status = %r\n", Status)); return Status; } if (Csts.Shst == 2) { // Shutdown processing complete break; } } if (Index == 0) { Status = EFI_TIMEOUT; } return Status; } /** Check the execution status from a given completion queue entry. @param[in] Cq - A pointer to the NVME_CQ item. **/ EFI_STATUS NvmeCheckCqStatus ( IN NVME_CQ *Cq ) { if (Cq->Sct == 0x0 && Cq->Sc == 0x0) { return EFI_SUCCESS; } DEBUG ((DEBUG_INFO, "Dump NVMe Completion Entry Status from [0x%x]:\n", (UINTN)Cq)); DEBUG ((DEBUG_INFO, " SQ Identifier : [0x%x], Phase Tag : [%d], Cmd Identifier : [0x%x]\n", Cq->Sqid, Cq->Pt, Cq->Cid)); DEBUG ((DEBUG_INFO, " NVMe Cmd Execution Result - ")); switch (Cq->Sct) { case 0x0: switch (Cq->Sc) { case 0x0: DEBUG ((DEBUG_INFO, "Successful Completion\n")); return EFI_SUCCESS; case 0x1: DEBUG ((DEBUG_INFO, "Invalid Command Opcode\n")); break; case 0x2: DEBUG ((DEBUG_INFO, "Invalid Field in Command\n")); break; case 0x3: DEBUG ((DEBUG_INFO, "Command ID Conflict\n")); break; case 0x4: DEBUG ((DEBUG_INFO, "Data Transfer Error\n")); break; case 0x5: DEBUG ((DEBUG_INFO, "Commands Aborted due to Power Loss Notification\n")); break; case 0x6: DEBUG ((DEBUG_INFO, "Internal Device Error\n")); break; case 0x7: DEBUG ((DEBUG_INFO, "Command Abort Requested\n")); break; case 0x8: DEBUG ((DEBUG_INFO, "Command Aborted due to SQ Deletion\n")); break; case 0x9: DEBUG ((DEBUG_INFO, "Command Aborted due to Failed Fused Command\n")); break; case 0xA: DEBUG ((DEBUG_INFO, "Command Aborted due to Missing Fused Command\n")); break; case 0xB: DEBUG ((DEBUG_INFO, "Invalid Namespace or Format\n")); break; case 0xC: DEBUG ((DEBUG_INFO, "Command Sequence Error\n")); break; case 0xD: DEBUG ((DEBUG_INFO, "Invalid SGL Last Segment Descriptor\n")); break; case 0xE: DEBUG ((DEBUG_INFO, "Invalid Number of SGL Descriptors\n")); break; case 0xF: DEBUG ((DEBUG_INFO, "Data SGL Length Invalid\n")); break; case 0x10: DEBUG ((DEBUG_INFO, "Metadata SGL Length Invalid\n")); break; case 0x11: DEBUG ((DEBUG_INFO, "SGL Descriptor Type Invalid\n")); break; case 0x80: DEBUG ((DEBUG_INFO, "LBA Out of Range\n")); break; case 0x81: DEBUG ((DEBUG_INFO, "Capacity Exceeded\n")); break; case 0x82: DEBUG ((DEBUG_INFO, "Namespace Not Ready\n")); break; case 0x83: DEBUG ((DEBUG_INFO, "Reservation Conflict\n")); break; } break; case 0x1: switch (Cq->Sc) { case 0x0: DEBUG ((DEBUG_INFO, "Completion Queue Invalid\n")); break; case 0x1: DEBUG ((DEBUG_INFO, "Invalid Queue Identifier\n")); break; case 0x2: DEBUG ((DEBUG_INFO, "Maximum Queue Size Exceeded\n")); break; case 0x3: DEBUG ((DEBUG_INFO, "Abort Command Limit Exceeded\n")); break; case 0x5: DEBUG ((DEBUG_INFO, "Asynchronous Event Request Limit Exceeded\n")); break; case 0x6: DEBUG ((DEBUG_INFO, "Invalid Firmware Slot\n")); break; case 0x7: DEBUG ((DEBUG_INFO, "Invalid Firmware Image\n")); break; case 0x8: DEBUG ((DEBUG_INFO, "Invalid Interrupt Vector\n")); break; case 0x9: DEBUG ((DEBUG_INFO, "Invalid Log Page\n")); break; case 0xA: DEBUG ((DEBUG_INFO, "Invalid Format\n")); break; case 0xB: DEBUG ((DEBUG_INFO, "Firmware Application Requires Conventional Reset\n")); break; case 0xC: DEBUG ((DEBUG_INFO, "Invalid Queue Deletion\n")); break; case 0xD: DEBUG ((DEBUG_INFO, "Feature Identifier Not Saveable\n")); break; case 0xE: DEBUG ((DEBUG_INFO, "Feature Not Changeable\n")); break; case 0xF: DEBUG ((DEBUG_INFO, "Feature Not Namespace Specific\n")); break; case 0x10: DEBUG ((DEBUG_INFO, "Firmware Application Requires NVM Subsystem Reset\n")); break; case 0x80: DEBUG ((DEBUG_INFO, "Conflicting Attributes\n")); break; case 0x81: DEBUG ((DEBUG_INFO, "Invalid Protection Information\n")); break; case 0x82: DEBUG ((DEBUG_INFO, "Attempted Write to Read Only Range\n")); break; } break; case 0x2: switch (Cq->Sc) { case 0x80: DEBUG ((DEBUG_INFO, "Write Fault\n")); break; case 0x81: DEBUG ((DEBUG_INFO, "Unrecovered Read Error\n")); break; case 0x82: DEBUG ((DEBUG_INFO, "End-to-end Guard Check Error\n")); break; case 0x83: DEBUG ((DEBUG_INFO, "End-to-end Application Tag Check Error\n")); break; case 0x84: DEBUG ((DEBUG_INFO, "End-to-end Reference Tag Check Error\n")); break; case 0x85: DEBUG ((DEBUG_INFO, "Compare Failure\n")); break; case 0x86: DEBUG ((DEBUG_INFO, "Access Denied\n")); break; } break; default: DEBUG ((DEBUG_INFO, "Unknown error\n")); break; } return EFI_DEVICE_ERROR; } /** Create PRP lists for Data transfer which is larger than 2 memory pages. Note here we calcuate the number of required PRP lists and allocate them at one time. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] SqId - The SQ index for this PRP @param[in] PhysicalAddr - The physical base address of Data Buffer. @param[in] Pages - The number of pages to be transfered. @param[out] PrpListHost - The host base address of PRP lists. @param[in,out] PrpListNo - The number of PRP List. @retval The pointer Value to the first PRP List of the PRP lists. **/ STATIC UINT64 NvmeCreatePrpList ( IN NVME_CONTEXT *Nvme, IN UINT16 SqId, IN EFI_PHYSICAL_ADDRESS PhysicalAddr, IN UINTN Pages, OUT VOID **PrpListHost, IN OUT UINTN *PrpListNo ) { UINTN PrpEntryNo; UINT64 PrpListBase; UINTN PrpListIndex; UINTN PrpEntryIndex; UINT64 Remainder; EFI_PHYSICAL_ADDRESS PrpListPhyAddr; UINTN Bytes; UINT8 *PrpEntry; EFI_PHYSICAL_ADDRESS NewPhyAddr; /// /// The number of Prp Entry in a memory page. /// PrpEntryNo = EFI_PAGE_SIZE / sizeof (UINT64); /// /// Calculate total PrpList number. /// *PrpListNo = (UINTN) DivU64x64Remainder ((UINT64)Pages, (UINT64)PrpEntryNo, &Remainder); if (Remainder != 0) { *PrpListNo += 1; } if (*PrpListNo > NVME_PRP_SIZE) { DEBUG ((DEBUG_INFO, "NvmeCreatePrpList (PhysicalAddr: %lx, Pages: %x) PrpEntryNo: %x\n", PhysicalAddr, Pages, PrpEntryNo)); DEBUG ((DEBUG_INFO, "*PrpListNo: %x, Remainder: %lx", *PrpListNo, Remainder)); ASSERT (FALSE); } *PrpListHost = (VOID *)(UINTN) NVME_PRP_BASE (Nvme, SqId); Bytes = EFI_PAGES_TO_SIZE (*PrpListNo); PrpListPhyAddr = (UINT64)(UINTN)(*PrpListHost); /// /// Fill all PRP lists except of last one. /// ZeroMem (*PrpListHost, Bytes); for (PrpListIndex = 0; PrpListIndex < *PrpListNo - 1; ++PrpListIndex) { PrpListBase = *(UINT64*)PrpListHost + PrpListIndex * EFI_PAGE_SIZE; for (PrpEntryIndex = 0; PrpEntryIndex < PrpEntryNo; ++PrpEntryIndex) { PrpEntry = (UINT8 *)(UINTN) (PrpListBase + PrpEntryIndex * sizeof(UINT64)); if (PrpEntryIndex != PrpEntryNo - 1) { /// /// Fill all PRP entries except of last one. /// CopyMem (PrpEntry, (VOID *)(UINTN) (&PhysicalAddr), sizeof (UINT64)); PhysicalAddr += EFI_PAGE_SIZE; } else { /// /// Fill last PRP entries with next PRP List pointer. /// NewPhyAddr = (PrpListPhyAddr + (PrpListIndex + 1) * EFI_PAGE_SIZE); CopyMem (PrpEntry, (VOID *)(UINTN) (&NewPhyAddr), sizeof (UINT64)); } } } /// /// Fill last PRP list. /// PrpListBase = *(UINT64*)PrpListHost + PrpListIndex * EFI_PAGE_SIZE; for (PrpEntryIndex = 0; PrpEntryIndex < ((Remainder != 0) ? Remainder : PrpEntryNo); ++PrpEntryIndex) { PrpEntry = (UINT8 *)(UINTN) (PrpListBase + PrpEntryIndex * sizeof(UINT64)); CopyMem (PrpEntry, (VOID *)(UINTN) (&PhysicalAddr), sizeof (UINT64)); PhysicalAddr += EFI_PAGE_SIZE; } return PrpListPhyAddr; } /** Check whether there are available command slots. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] Qid - Queue index @retval EFI_SUCCESS - Available command slot is found @retval EFI_NOT_READY - No available command slot is found @retval EFI_DEVICE_ERROR - Error occurred on device side. **/ EFI_STATUS NvmeHasFreeCmdSlot ( IN NVME_CONTEXT *Nvme, IN UINT8 Qid ) { return TRUE; } /** Check whether all command slots are clean. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] Qid - Queue index @retval EFI_SUCCESS - All command slots are clean @retval EFI_NOT_READY - Not all command slots are clean @retval EFI_DEVICE_ERROR - Error occurred on device side. **/ EFI_STATUS NvmeIsAllCmdSlotClean ( IN NVME_CONTEXT *Nvme, IN UINT8 Qid ) { return EFI_SUCCESS; } /** Waits until all NVME commands completed. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] Qid - Queue index @retval EFI_SUCCESS - All NVME commands have completed @retval EFI_TIMEOUT - Timeout occured @retval EFI_NOT_READY - Not all NVME commands have completed @retval others - Error occurred on device side. **/ EFI_STATUS NvmeWaitAllComplete ( IN NVME_CONTEXT *Nvme, IN UINT8 Qid ) { return EFI_SUCCESS; } /** Sends an NVM Express Command Packet to an NVM Express controller or namespace. This function supports both blocking I/O and nonblocking I/O. The blocking I/O functionality is required, and the nonblocking I/O functionality is optional. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] NamespaceId - Is a 32 bit Namespace ID to which the Express HCI command packet will be sent. A Value of 0 denotes the NVM Express controller, a Value of all 0FFh in the namespace ID specifies that the command packet should be sent to all valid namespaces. @param[in] NamespaceUuid - Is a 64 bit Namespace UUID to which the Express HCI command packet will be sent. A Value of 0 denotes the NVM Express controller, a Value of all 0FFh in the namespace UUID specifies that the command packet should be sent to all valid namespaces. @param[in,out] Packet - A pointer to the NVM Express HCI Command Packet to send to the NVMe namespace specified by NamespaceId. @retval EFI_SUCCESS - The NVM Express Command Packet was sent by the host. TransferLength bytes were transferred to, or from DataBuffer. @retval EFI_NOT_READY - The NVM Express Command Packet could not be sent because the controller is not ready. The caller may retry again later. @retval EFI_DEVICE_ERROR - A device error occurred while attempting to send the NVM Express Command Packet. @retval EFI_INVALID_PARAMETER - Namespace, or the contents of NVM_EXPRESS_PASS_THRU_COMMAND_PACKET are invalid. The NVM Express Command Packet was not sent, so no additional status information is available. @retval EFI_UNSUPPORTED - The command described by the NVM Express Command Packet is not supported by the host adapter. The NVM Express Command Packet was not sent, so no additional status information is available. @retval EFI_TIMEOUT - A timeout occurred while waiting for the NVM Express Command Packet to execute. **/ EFI_STATUS NvmePassThru ( IN NVME_CONTEXT *Nvme, IN UINT32 NamespaceId, IN UINT64 NamespaceUuid, IN OUT NVM_EXPRESS_PASS_THRU_COMMAND_PACKET *Packet ) { EFI_STATUS Status; NVME_SQ *Sq; NVME_CQ *Cq; UINT8 Qid; UINT32 Bytes; UINT32 Offset; EFI_PHYSICAL_ADDRESS PhyAddr; VOID *PrpListHost; UINTN PrpListNo; UINT32 Timer; UINTN SqSize; UINTN CqSize; /// /// check the Data fields in Packet parameter. /// if ((Nvme == NULL) || (Packet == NULL)) { DEBUG ((DEBUG_ERROR, "NvmePassThru, invalid parameter: Nvme(%x)/Packet(%x)\n", (UINTN)Nvme, (UINTN)Packet)); return EFI_INVALID_PARAMETER; } if ((Packet->NvmeCmd == NULL) || (Packet->NvmeResponse == NULL)) { DEBUG ((DEBUG_ERROR, "NvmePassThru, invalid parameter: NvmeCmd(%x)/NvmeResponse(%x)\n", (UINTN)Packet->NvmeCmd, (UINTN)Packet->NvmeResponse)); return EFI_INVALID_PARAMETER; } if (Packet->QueueId != NVME_ADMIN_QUEUE && Packet->QueueId != NVME_IO_QUEUE) { DEBUG ((DEBUG_ERROR, "NvmePassThru, invalid parameter: QueueId(%x)\n", Packet->QueueId)); return EFI_INVALID_PARAMETER; } PrpListHost = NULL; PrpListNo = 0; Status = EFI_SUCCESS; Qid = Packet->QueueId; Sq = Nvme->SqBuffer[Qid] + Nvme->SqTdbl[Qid].Sqt; Cq = Nvme->CqBuffer[Qid] + Nvme->CqHdbl[Qid].Cqh; if (Qid == NVME_ADMIN_QUEUE) { SqSize = NVME_ASQ_SIZE + 1; CqSize = NVME_ACQ_SIZE + 1; } else { SqSize = NVME_CSQ_DEPTH; CqSize = NVME_CCQ_DEPTH; } if (Packet->NvmeCmd->Nsid != NamespaceId) { DEBUG ((DEBUG_ERROR, "NvmePassThru: Nsid mismatch (%x, %x)\n", Packet->NvmeCmd->Nsid, NamespaceId)); return EFI_INVALID_PARAMETER; } ZeroMem (Sq, sizeof (NVME_SQ)); Sq->Opc = Packet->NvmeCmd->Cdw0.Opcode; Sq->Fuse = Packet->NvmeCmd->Cdw0.FusedOperation; Sq->Cid = Packet->NvmeCmd->Cdw0.Cid; Sq->Nsid = Packet->NvmeCmd->Nsid; /// /// Currently we only support PRP for Data transfer, SGL is NOT supported. /// ASSERT (Sq->Psdt == 0); if (Sq->Psdt != 0) { DEBUG ((DEBUG_ERROR, "NvmePassThru: doesn't support SGL mechanism\n")); return EFI_UNSUPPORTED; } Sq->Prp[0] = Packet->TransferBuffer; Sq->Prp[1] = 0; if(Packet->MetadataBuffer != (UINT64)(UINTN)NULL) { Sq->Mptr = Packet->MetadataBuffer; } /// /// If the Buffer Size spans more than two memory pages (page Size as defined in CC.Mps), /// then build a PRP list in the second PRP submission queue entry. /// Offset = ((UINT32)Sq->Prp[0]) & (EFI_PAGE_SIZE - 1); Bytes = Packet->TransferLength; if ((Offset + Bytes) > (EFI_PAGE_SIZE * 2)) { /// /// Create PrpList for remaining Data Buffer. /// PhyAddr = (Sq->Prp[0] + EFI_PAGE_SIZE) & ~(EFI_PAGE_SIZE - 1); Sq->Prp[1] = NvmeCreatePrpList (Nvme, Nvme->SqTdbl[Qid].Sqt, PhyAddr, EFI_SIZE_TO_PAGES(Offset + Bytes) - 1, &PrpListHost, &PrpListNo); if (Sq->Prp[1] == 0) { Status = EFI_OUT_OF_RESOURCES; DEBUG ((DEBUG_ERROR, "NvmeCreatePrpList fail, Status: %r\n", Status)); goto EXIT; } } else if ((Offset + Bytes) > EFI_PAGE_SIZE) { Sq->Prp[1] = (Sq->Prp[0] + EFI_PAGE_SIZE) & ~(EFI_PAGE_SIZE - 1); } if(Packet->NvmeCmd->Flags & CDW10_VALID) { Sq->Payload.Raw.Cdw10 = Packet->NvmeCmd->Cdw10; } if(Packet->NvmeCmd->Flags & CDW11_VALID) { Sq->Payload.Raw.Cdw11 = Packet->NvmeCmd->Cdw11; } if(Packet->NvmeCmd->Flags & CDW12_VALID) { Sq->Payload.Raw.Cdw12 = Packet->NvmeCmd->Cdw12; } if(Packet->NvmeCmd->Flags & CDW13_VALID) { Sq->Payload.Raw.Cdw13 = Packet->NvmeCmd->Cdw13; } if(Packet->NvmeCmd->Flags & CDW14_VALID) { Sq->Payload.Raw.Cdw14 = Packet->NvmeCmd->Cdw14; } if(Packet->NvmeCmd->Flags & CDW15_VALID) { Sq->Payload.Raw.Cdw15 = Packet->NvmeCmd->Cdw15; } /// /// Ring the submission queue doorbell. /// Nvme->SqTdbl[Qid].Sqt++; if(Nvme->SqTdbl[Qid].Sqt == SqSize) { Nvme->SqTdbl[Qid].Sqt = 0; } Status = NVME_SET_SQTDBL (Nvme, Qid, &Nvme->SqTdbl[Qid]); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NVME_SET_SQTDBL fail, Status: %r\n", Status)); goto EXIT; } /// /// Wait for completion queue to get filled in. /// Status = EFI_TIMEOUT; Timer = 0; while (Timer < NVME_CMD_TIMEOUT) { //DEBUG ((DEBUG_VERBOSE, "Timer: %x, Cq:\n", Timer)); //DumpMem (Cq, sizeof (NVME_CQ)); if (Cq->Pt != Nvme->Pt[Qid]) { Status = EFI_SUCCESS; break; } MicroSecondDelay (NVME_CMD_WAIT); Timer += NVME_CMD_WAIT; } Nvme->CqHdbl[Qid].Cqh++; if (Nvme->CqHdbl[Qid].Cqh == CqSize) { Nvme->CqHdbl[Qid].Cqh = 0; Nvme->Pt[Qid] ^= 1; } /// /// Copy the Respose Queue entry for this command to the callers response Buffer /// CopyMem (Packet->NvmeResponse, Cq, sizeof(NVM_EXPRESS_RESPONSE)); if (!EFI_ERROR(Status)) { // We still need to check CQ status if no timeout error occured Status = NvmeCheckCqStatus (Cq); } NVME_SET_CQHDBL (Nvme, Qid, &Nvme->CqHdbl[Qid]); EXIT: return Status; } /** Get identify controller Data. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] Buffer - The Buffer used to store the identify controller Data. @return EFI_SUCCESS - Successfully get the identify controller Data. @return others - Fail to get the identify controller Data. **/ STATIC EFI_STATUS NvmeIdentifyController ( IN NVME_CONTEXT *Nvme, IN VOID *Buffer ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); Command.Cdw0.Opcode = NVME_ADMIN_IDENTIFY_OPC; Command.Cdw0.Cid = Nvme->Cid[NVME_ADMIN_QUEUE]++; // // According to Nvm Express 1.1 spec Figure 38, When not used, the field shall be cleared to 0h. // For the Identify command, the Namespace Identifier is only used for the Namespace Data structure. // Command.Nsid = 0; CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; CommandPacket.TransferBuffer = (UINT64)(UINTN)Buffer; CommandPacket.TransferLength = sizeof (NVME_ADMIN_CONTROLLER_DATA); CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_ADMIN_QUEUE; // // Set bit 0 (Cns bit) to 1 to identify a controller // Command.Cdw10 = 1; Command.Flags = CDW10_VALID; Status = NvmePassThru ( Nvme, NVME_CONTROLLER_ID, 0, &CommandPacket ); if (!EFI_ERROR (Status)) { Status = NvmeWaitAllComplete (Nvme, CommandPacket.QueueId); } return Status; } /** Get specified identify namespace Data. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] NamespaceId - The specified namespace identifier. @param[in] Buffer - The Buffer used to store the identify namespace Data. @return EFI_SUCCESS - Successfully get the identify namespace Data. @return others - Fail to get the identify namespace Data. **/ STATIC EFI_STATUS NvmeIdentifyNamespace ( IN NVME_CONTEXT *Nvme, IN UINT32 NamespaceId, IN VOID *Buffer ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; Command.Cdw0.Opcode = NVME_ADMIN_IDENTIFY_OPC; Command.Cdw0.Cid = Nvme->Cid[NVME_ADMIN_QUEUE]++; Command.Nsid = NamespaceId; CommandPacket.TransferBuffer = (UINT64)(UINTN)Buffer; CommandPacket.TransferLength = sizeof (NVME_ADMIN_NAMESPACE_DATA); CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_ADMIN_QUEUE; // // Set bit 0 (Cns bit) to 1 to identify a namespace // CommandPacket.NvmeCmd->Cdw10 = 0; CommandPacket.NvmeCmd->Flags = CDW10_VALID; Status = NvmePassThru ( Nvme, NamespaceId, 0, &CommandPacket ); if (!EFI_ERROR (Status)) { Status = NvmeWaitAllComplete (Nvme, CommandPacket.QueueId); } return Status; } /** Get Block Size for specific namespace of NVME. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return - Block Size in bytes **/ STATIC UINT32 NvmeGetBlockSize ( IN NVME_CONTEXT *Nvme ) { UINT32 BlockSize; UINT32 Lbads; UINT32 Flbas; UINT32 LbaFmtIdx; Flbas = Nvme->NamespaceData->Flbas; LbaFmtIdx = Flbas & 3; Lbads = Nvme->NamespaceData->LbaFormat[LbaFmtIdx].Lbads; BlockSize = (UINT32)1 << Lbads; return BlockSize; } /** Get last LBA for specific namespace of NVME. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return - Last LBA address **/ STATIC EFI_LBA NvmeGetLastLba ( IN NVME_CONTEXT *Nvme ) { EFI_LBA LastBlock; LastBlock = Nvme->NamespaceData->Nsze - 1; return LastBlock; } /** Create io completion queue. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return EFI_SUCCESS - Successfully create io completion queue. @return others - Fail to create io completion queue. **/ STATIC EFI_STATUS NvmeCreateIoCompletionQueue ( IN NVME_CONTEXT *Nvme ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; NVME_ADMIN_CRIOCQ CrIoCq; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); ZeroMem (&CrIoCq, sizeof(NVME_ADMIN_CRIOCQ)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; Command.Cdw0.Opcode = NVME_ADMIN_CRIOCQ_OPC; Command.Cdw0.Cid = Nvme->Cid[NVME_ADMIN_QUEUE]++; CommandPacket.TransferBuffer = (UINT64)(UINTN)Nvme->CqBuffer[NVME_IO_QUEUE]; CommandPacket.TransferLength = EFI_PAGE_SIZE; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_ADMIN_QUEUE; CrIoCq.Qid = NVME_IO_QUEUE; CrIoCq.Qsize = NVME_CCQ_SIZE; CrIoCq.Pc = 1; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &CrIoCq, sizeof (NVME_ADMIN_CRIOCQ)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = NvmePassThru ( Nvme, NVME_CONTROLLER_ID, 0, &CommandPacket ); if (!EFI_ERROR (Status)) { Status = NvmeWaitAllComplete (Nvme, CommandPacket.QueueId); } return Status; } /** Create io submission queue. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return EFI_SUCCESS - Successfully create io submission queue. @return others - Fail to create io submission queue. **/ STATIC EFI_STATUS NvmeCreateIoSubmissionQueue ( IN NVME_CONTEXT *Nvme ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; NVME_ADMIN_CRIOSQ CrIoSq; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); ZeroMem (&CrIoSq, sizeof(NVME_ADMIN_CRIOSQ)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; Command.Cdw0.Opcode = NVME_ADMIN_CRIOSQ_OPC; Command.Cdw0.Cid = Nvme->Cid[NVME_ADMIN_QUEUE]++; CommandPacket.TransferBuffer = (UINT64)(UINTN)Nvme->SqBuffer[NVME_IO_QUEUE]; CommandPacket.TransferLength = EFI_PAGE_SIZE; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_ADMIN_QUEUE; CrIoSq.Qid = NVME_IO_QUEUE; CrIoSq.Qsize = NVME_CSQ_SIZE; CrIoSq.Pc = 1; CrIoSq.Cqid = NVME_IO_QUEUE; CrIoSq.Qprio = 0; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &CrIoSq, sizeof (NVME_ADMIN_CRIOSQ)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = NvmePassThru ( Nvme, NVME_CONTROLLER_ID, 0, &CommandPacket ); if (!EFI_ERROR (Status)) { Status = NvmeWaitAllComplete (Nvme, CommandPacket.QueueId); } return Status; } /** Security send and receive commands. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] SendCommand - The flag to indicate the command type, TRUE for Send command and FALSE for receive command @param[in] SecurityProtocol - Security Protocol @param[in] SpSpecific - Security Protocol Specific @param[in] TransferLength - Transfer Length of Buffer (in bytes) - always a multiple of 512 @param[in,out] TransferBuffer - Address of Data to transfer @return EFI_SUCCESS - Successfully create io submission queue. @return others - Fail to send/receive commands. **/ EFI_STATUS NvmeSecuritySendReceive ( IN NVME_CONTEXT *Nvme, IN BOOLEAN SendCommand, IN UINT8 SecurityProtocol, IN UINT16 SpSpecific, IN UINTN TransferLength, IN OUT VOID *TransferBuffer ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; NVME_ADMIN_SECSEND SecSend; OACS *Oacs; UINT8 Opcode; VOID* *SecBuff; Oacs = (OACS *)&Nvme->ControllerData->Oacs; // // Verify security bit for Security Send/Receive commands // if (Oacs->Security == 0) { DEBUG ((DEBUG_ERROR, "Security command doesn't support.\n")); return EFI_NOT_READY; } SecBuff = (VOID *)(UINTN) NVME_SEC_BASE (Nvme); // // Actions for sending security command // if (SendCommand) { CopyMem (SecBuff, TransferBuffer, TransferLength); } ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); ZeroMem (&SecSend, sizeof(NVME_ADMIN_SECSEND)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; Opcode = (UINT8)(SendCommand ? NVME_ADMIN_SECURITY_SEND_OPC : NVME_ADMIN_SECURITY_RECV_OPC); Command.Cdw0.Opcode = Opcode; Command.Cdw0.Cid = Nvme->Cid[NVME_ADMIN_QUEUE]++; CommandPacket.TransferBuffer = (UINT64)(UINTN)SecBuff; CommandPacket.TransferLength = (UINT32)TransferLength; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_ADMIN_QUEUE; SecSend.Spsp = SpSpecific; SecSend.Secp = SecurityProtocol; SecSend.Tl = (UINT32)TransferLength; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &SecSend, sizeof (NVME_ADMIN_SECSEND)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = NvmePassThru ( Nvme, NVME_CONTROLLER_ID, 0, &CommandPacket ); if (!EFI_ERROR (Status)) { Status = NvmeWaitAllComplete (Nvme, CommandPacket.QueueId); } // // Actions for receiving security command // if (!SendCommand) { CopyMem (TransferBuffer, SecBuff, TransferLength); } return Status; } /** Destroy io completion queue. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return EFI_SUCCESS - Successfully destroy io completion queue. @return others - Fail to destroy io completion queue. **/ STATIC EFI_STATUS NvmeDestroyIoCompletionQueue ( IN NVME_CONTEXT *Nvme ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; NVME_ADMIN_DEIOCQ DelIoCq; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); ZeroMem (&DelIoCq, sizeof(NVME_ADMIN_DEIOCQ)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; Command.Cdw0.Opcode = NVME_ADMIN_DELIOCQ_OPC; Command.Cdw0.Cid = Nvme->Cid[NVME_ADMIN_QUEUE]++; CommandPacket.TransferBuffer = (UINT64)(UINTN)Nvme->CqBuffer[NVME_IO_QUEUE]; CommandPacket.TransferLength = EFI_PAGE_SIZE; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_ADMIN_QUEUE; DelIoCq.Qid = NVME_IO_QUEUE; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &DelIoCq, sizeof (NVME_ADMIN_DEIOCQ)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = NvmePassThru ( Nvme, NVME_CONTROLLER_ID, 0, &CommandPacket ); if (!EFI_ERROR (Status)) { Status = NvmeWaitAllComplete (Nvme, CommandPacket.QueueId); } return Status; } /** Destroy io submission queue. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @return EFI_SUCCESS - Successfully destroy io submission queue. @return others - Fail to destroy io submission queue. **/ STATIC EFI_STATUS NvmeDestroyIoSubmissionQueue ( IN NVME_CONTEXT *Nvme ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; NVME_ADMIN_DEIOSQ DelIoSq; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); ZeroMem (&DelIoSq, sizeof(NVME_ADMIN_DEIOSQ)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; Command.Cdw0.Opcode = NVME_ADMIN_DELIOSQ_OPC; Command.Cdw0.Cid = Nvme->Cid[NVME_ADMIN_QUEUE]++; CommandPacket.TransferBuffer = (UINT64)(UINTN)Nvme->SqBuffer[NVME_IO_QUEUE]; CommandPacket.TransferLength = EFI_PAGE_SIZE; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_ADMIN_QUEUE; DelIoSq.Qid = NVME_IO_QUEUE; CopyMem (&CommandPacket.NvmeCmd->Cdw10, &DelIoSq, sizeof (NVME_ADMIN_DEIOSQ)); CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; Status = NvmePassThru ( Nvme, NVME_CONTROLLER_ID, 0, &CommandPacket ); if (!EFI_ERROR (Status)) { Status = NvmeWaitAllComplete (Nvme, CommandPacket.QueueId); } return Status; } /** Allocate transfer-related Data struct which is used at Nvme. @param[in, out] Nvme The pointer to the NVME_CONTEXT Data structure. @retval EFI_OUT_OF_RESOURCE No enough resource. @retval EFI_SUCCESS Successful to allocate resource. **/ EFI_STATUS EFIAPI NvmeAllocateResource ( IN OUT NVME_CONTEXT *Nvme ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS DeviceAddress; VOID *Base; VOID *Mapping; // // Allocate resources for DMA. // Status = IoMmuAllocateBuffer ( EFI_SIZE_TO_PAGES (NVME_MEM_MAX_SIZE), &Base, &DeviceAddress, &Mapping ); if (EFI_ERROR (Status)) { return EFI_OUT_OF_RESOURCES; } ASSERT (DeviceAddress == ((EFI_PHYSICAL_ADDRESS) (UINTN) Base)); Nvme->BaseMemMapping = Mapping; Nvme->BaseMem = Base; ZeroMem (Nvme->BaseMem, EFI_PAGE_SIZE * EFI_SIZE_TO_PAGES (NVME_MEM_MAX_SIZE)); DEBUG (( DEBUG_INFO, "%a() NvmeContext 0x%x\n", __FUNCTION__, Nvme->BaseMem )); return EFI_SUCCESS; } /** Free allocated transfer-related Data struct which is used at NVMe. @param[in, out] Nvme The pointer to the NVME_CONTEXT Data structure. **/ VOID EFIAPI NvmeFreeResource ( IN OUT NVME_CONTEXT *Nvme ) { if (Nvme->BaseMem != NULL) { IoMmuFreeBuffer ( EFI_SIZE_TO_PAGES (NVME_MEM_MAX_SIZE), Nvme->BaseMem, Nvme->BaseMemMapping ); Nvme->BaseMem = NULL; } } /** Initialize the Nvm Express controller. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @retval EFI_SUCCESS - The NVM Express Controller is initialized successfully. @retval Others - A device error occurred while initializing the controller. **/ EFI_STATUS NvmeControllerInit ( IN NVME_CONTEXT *Nvme ) { EFI_STATUS Status; NVME_AQA Aqa; NVME_ASQ Asq; NVME_ACQ Acq; NVME_VER Ver; UINT32 MlBAR; UINT32 MuBAR; /// /// Update PCIE BAR0/1 for NVME device /// MlBAR = Nvme->Nbar; MuBAR = 0; PciWrite32 (Nvme->PciBase + 0x10, MlBAR); // MLBAR (BAR0) PciWrite32 (Nvme->PciBase + 0x14, MuBAR); // MUBAR (BAR1) /// /// Enable PCIE decode /// PciWrite8 (Nvme->PciBase + NVME_PCIE_PCICMD, 0x6); // Version NVME_GET_VER (Nvme, &Ver); if (!(Ver.Mjr == 0x0001) && (Ver.Mnr == 0x0000)) { DEBUG ((DEBUG_INFO, "\n!!!\n!!! NVME Version mismatch for the implementation !!!\n!!!\n")); } /// /// Read the Controller Capabilities register and verify that the NVM command set is supported /// Status = NVME_GET_CAP (Nvme, &Nvme->Cap); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "NVME_GET_CAP fail, Status: %r\n", Status)); goto Done; } if (Nvme->Cap.Css != 0x01) { DEBUG ((DEBUG_ERROR, "NvmeControllerInit fail: the controller doesn't support NVMe command set\n")); Status = EFI_UNSUPPORTED; goto Done; } /// /// Currently the driver only supports 4k page Size. /// if ((Nvme->Cap.Mpsmin + 12) > EFI_PAGE_SHIFT) { DEBUG ((DEBUG_ERROR, "NvmeControllerInit fail: only supports 4k page Size\n")); ASSERT (FALSE); Status = EFI_UNSUPPORTED; goto Done; } Nvme->Cid[0] = 0; Nvme->Cid[1] = 0; Nvme->Pt[0] = 0; Nvme->Pt[1] = 0; ZeroMem ((VOID *)(UINTN)(&(Nvme->SqTdbl[0])), sizeof (NVME_SQTDBL) * NVME_MAX_IO_QUEUES); ZeroMem ((VOID *)(UINTN)(&(Nvme->CqHdbl[0])), sizeof (NVME_CQHDBL) * NVME_MAX_IO_QUEUES); ZeroMem (Nvme->BaseMem, NVME_MEM_MAX_SIZE); Status = NvmeDisableController (Nvme); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeDisableController fail, Status: %r\n", Status)); goto Done; } /// /// set number of entries admin submission & completion queues. /// Aqa.Asqs = NVME_ASQ_SIZE; Aqa.Rsvd1 = 0; Aqa.Acqs = NVME_ACQ_SIZE; Aqa.Rsvd2 = 0; /// /// Address of admin submission queue. /// Asq = (UINT64)(UINTN)(NVME_ASQ_BASE (Nvme) & ~0xFFF); /// /// Address of admin completion queue. /// Acq = (UINT64)(UINTN)(NVME_ACQ_BASE (Nvme) & ~0xFFF); /// /// Address of I/O submission & completion queue. /// Nvme->SqBuffer[0] = (NVME_SQ *)(UINTN)NVME_ASQ_BASE (Nvme); // NVME_ADMIN_QUEUE Nvme->CqBuffer[0] = (NVME_CQ *)(UINTN)NVME_ACQ_BASE (Nvme); // NVME_ADMIN_QUEUE Nvme->SqBuffer[1] = (NVME_SQ *)(UINTN)NVME_SQ_BASE (Nvme, 0); // NVME_IO_QUEUE Nvme->CqBuffer[1] = (NVME_CQ *)(UINTN)NVME_CQ_BASE (Nvme, 0); // NVME_IO_QUEUE DEBUG ((DEBUG_INFO, "Admin Submission Queue Size (Aqa.Asqs) = [%08X]\n", Aqa.Asqs)); DEBUG ((DEBUG_INFO, "Admin Completion Queue Size (Aqa.Acqs) = [%08X]\n", Aqa.Acqs)); DEBUG ((DEBUG_INFO, "Admin Submission Queue (SqBuffer[0]) = [%08X]\n", Nvme->SqBuffer[0])); DEBUG ((DEBUG_INFO, "Admin Completion Queue (CqBuffer[0]) = [%08X]\n", Nvme->CqBuffer[0])); DEBUG ((DEBUG_INFO, "I/O Submission Queue (SqBuffer[1]) = [%08X]\n", Nvme->SqBuffer[1])); DEBUG ((DEBUG_INFO, "I/O Completion Queue (CqBuffer[1]) = [%08X]\n", Nvme->CqBuffer[1])); /// /// Program admin queue attributes. /// Status = NVME_SET_AQA (Nvme, &Aqa); if (EFI_ERROR(Status)) { goto Done; } /// /// Program admin submission queue address. /// Status = NVME_SET_ASQ (Nvme, &Asq); if (EFI_ERROR(Status)) { goto Done; } /// /// Program admin completion queue address. /// Status = NVME_SET_ACQ (Nvme, &Acq); if (EFI_ERROR(Status)) { goto Done; } Status = NvmeEnableController (Nvme); if (EFI_ERROR(Status)) { goto Done; } /// /// Create one I/O completion queue. /// Status = NvmeCreateIoCompletionQueue (Nvme); if (EFI_ERROR(Status)) { goto Done; } /// /// Create one I/O Submission queue. /// Status = NvmeCreateIoSubmissionQueue (Nvme); if (EFI_ERROR(Status)) { goto Done; } /// /// Get current Identify Controller Data /// Nvme->ControllerData = (NVME_ADMIN_CONTROLLER_DATA *)(UINTN) NVME_CONTROL_DATA_BASE (Nvme); Status = NvmeIdentifyController (Nvme, Nvme->ControllerData); if (EFI_ERROR(Status)) { goto Done; } /// /// Dump NvmExpress Identify Controller Data /// Nvme->ControllerData->Sn[19] = 0; Nvme->ControllerData->Mn[39] = 0; //NvmeDumpIdentifyController (Nvme->ControllerData); /// /// Get current Identify Namespace Data /// Nvme->NamespaceData = (NVME_ADMIN_NAMESPACE_DATA *)NVME_NAMESPACE_DATA_BASE (Nvme); Status = NvmeIdentifyNamespace (Nvme, Nvme->Nsid, Nvme->NamespaceData); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeIdentifyNamespace fail, Status = %r\n", Status)); goto Done; } /// /// Dump NvmExpress Identify Namespace Data /// if (Nvme->NamespaceData->Ncap == 0) { DEBUG ((DEBUG_ERROR, "Invalid Namespace, Ncap: %lx\n", Nvme->NamespaceData->Ncap)); Status = EFI_DEVICE_ERROR; goto Done; } Nvme->BlockSize = NvmeGetBlockSize (Nvme); Nvme->LastBlock = NvmeGetLastLba (Nvme); Nvme->State = NvmeStatusInit; return EFI_SUCCESS; Done: return Status; } /** Un-initialize the Nvm Express controller. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @retval EFI_SUCCESS - The NVM Express Controller is un-initialized successfully. @retval Others - A device error occurred while un-initializing the controller. **/ EFI_STATUS NvmeControllerExit ( IN NVME_CONTEXT *Nvme ) { EFI_STATUS Status; Status = EFI_SUCCESS; if (Nvme->State == NvmeStatusInit || Nvme->State == NvmeStatusMax) { /// /// Destroy I/O Submission queue. /// Status = NvmeDestroyIoSubmissionQueue (Nvme); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeDestroyIoSubmissionQueue fail, Status = %r\n", Status)); return Status; } /// /// Destroy I/O completion queue. /// Status = NvmeDestroyIoCompletionQueue (Nvme); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeDestroyIoCompletionQueue fail, Status = %r\n", Status)); return Status; } Status = NvmeShutdownController (Nvme); if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeShutdownController fail, Status: %r\n", Status)); } } /// /// Disable PCIE decode /// PciWrite8 (Nvme->PciBase + NVME_PCIE_PCICMD, 0x0); PciWrite32 (Nvme->PciBase + 0x10, 0); // MLBAR (BAR0) PciWrite32 (Nvme->PciBase + 0x14, 0); // MUBAR (BAR1) Nvme->State = NvmeStatusUnknown; return Status; } /** Read sector Data from the NVMe device. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in,out] Buffer - The Buffer used to store the Data read from the device. @param[in] Lba - The start block number. @param[in] Blocks - Total block number to be read. @retval EFI_SUCCESS - Datum are read from the device. @retval Others - Fail to read all the datum. **/ EFI_STATUS NvmeReadSectors ( IN NVME_CONTEXT *Nvme, IN OUT UINT64 Buffer, IN UINT64 Lba, IN UINT32 Blocks ) { UINT32 Bytes; NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; UINT32 BlockSize; BlockSize = Nvme->BlockSize; Bytes = Blocks * BlockSize; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; CommandPacket.NvmeCmd->Cdw0.Opcode = NVME_IO_READ_OPC; CommandPacket.NvmeCmd->Cdw0.Cid = Nvme->Cid[NVME_IO_QUEUE]++; CommandPacket.NvmeCmd->Nsid = Nvme->Nsid; CommandPacket.TransferBuffer = Buffer; CommandPacket.TransferLength = Bytes; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_IO_QUEUE; CommandPacket.NvmeCmd->Cdw10 = (UINT32)Lba; CommandPacket.NvmeCmd->Cdw11 = (UINT32)(RShiftU64 (Lba, 32)); CommandPacket.NvmeCmd->Cdw12 = (Blocks - 1) & 0xFFFF; CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID | CDW12_VALID; Status = NvmePassThru ( Nvme, Nvme->Nsid, 0, &CommandPacket ); return Status; } /** Write sector Data to the NVMe device. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] Buffer - The Buffer to be written into the device. @param[in] Lba - The start block number. @param[in] Blocks - Total block number to be written. @retval EFI_SUCCESS - Datum are written into the Buffer. @retval Others - Fail to write all the datum. **/ EFI_STATUS NvmeWriteSectors ( IN NVME_CONTEXT *Nvme, IN UINT64 Buffer, IN UINT64 Lba, IN UINT32 Blocks ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; UINT32 Bytes; UINT32 BlockSize; BlockSize = Nvme->BlockSize; Bytes = Blocks * BlockSize; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; CommandPacket.NvmeCmd->Cdw0.Opcode = NVME_IO_WRITE_OPC; CommandPacket.NvmeCmd->Cdw0.Cid = Nvme->Cid[NVME_IO_QUEUE]++; CommandPacket.NvmeCmd->Nsid = Nvme->Nsid; CommandPacket.TransferBuffer = Buffer; CommandPacket.TransferLength = Bytes; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_IO_QUEUE; CommandPacket.NvmeCmd->Cdw10 = (UINT32)Lba; CommandPacket.NvmeCmd->Cdw11 = (UINT32)(RShiftU64 (Lba, 32)); CommandPacket.NvmeCmd->Cdw12 = (Blocks - 1) & 0xFFFF; CommandPacket.MetadataBuffer = (UINT64)(UINTN)NULL; CommandPacket.MetadataLength = 0; CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID | CDW12_VALID; Status = NvmePassThru ( Nvme, Nvme->Nsid, 0, &CommandPacket ); return Status; } /** Flushes all modified Data to the device. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @retval EFI_SUCCESS - Datum are written into the Buffer. @retval Others - Fail to write all the datum. **/ EFI_STATUS NvmeFlush ( IN NVME_CONTEXT *Nvme ) { NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; NVM_EXPRESS_COMMAND Command; NVM_EXPRESS_RESPONSE Response; EFI_STATUS Status; ZeroMem (&CommandPacket, sizeof(NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof(NVM_EXPRESS_COMMAND)); ZeroMem (&Response, sizeof(NVM_EXPRESS_RESPONSE)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeResponse = &Response; CommandPacket.NvmeCmd->Cdw0.Opcode = NVME_IO_FLUSH_OPC; CommandPacket.NvmeCmd->Cdw0.Cid = Nvme->Cid[NVME_IO_QUEUE]++; CommandPacket.NvmeCmd->Nsid = Nvme->Nsid; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueId = NVME_IO_QUEUE; Status = NvmePassThru ( Nvme, Nvme->Nsid, 0, &CommandPacket ); if (!EFI_ERROR (Status)) { Status = NvmeWaitAllComplete (Nvme, CommandPacket.QueueId); } return Status; } /** Read some blocks from the device. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[out] Buffer - The Buffer used to store the Data read from the device. @param[in] Lba - The start block number. @param[in] Blocks - Total block number to be read. @retval EFI_SUCCESS - Datum are read from the device. @retval Others - Fail to read all the datum. **/ EFI_STATUS NvmeRead ( IN NVME_CONTEXT *Nvme, OUT UINT64 Buffer, IN UINT64 Lba, IN UINTN Blocks ) { EFI_STATUS Status; UINT32 BlockSize; UINT32 MaxTransferBlocks; ASSERT (Blocks <= NVME_MAX_SECTORS); Status = EFI_SUCCESS; BlockSize = Nvme->BlockSize; if (Nvme->ControllerData->Mdts != 0) { MaxTransferBlocks = (1 << (Nvme->ControllerData->Mdts)) * (1 << (Nvme->Cap.Mpsmin + 12)) / BlockSize; } else { MaxTransferBlocks = 1024; } while (Blocks > 0) { if (Blocks > MaxTransferBlocks) { Status = NvmeReadSectors (Nvme, Buffer, Lba, MaxTransferBlocks); Blocks -= MaxTransferBlocks; Buffer += (MaxTransferBlocks * BlockSize); Lba += MaxTransferBlocks; } else { Status = NvmeReadSectors (Nvme, Buffer, Lba, (UINT32) Blocks); Blocks = 0; } if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeRead fail, Status = %r\n", Status)); break; } } return Status; } /** Write some blocks to the device. @param[in] Nvme - The pointer to the NVME_CONTEXT Data structure. @param[in] Buffer - The Buffer to be written into the device. @param[in] Lba - The start block number. @param[in] Blocks - Total block number to be written. @retval EFI_SUCCESS - Datum are written into the Buffer. @retval Others - Fail to write all the datum. **/ EFI_STATUS NvmeWrite ( IN NVME_CONTEXT *Nvme, IN UINT64 Buffer, IN UINT64 Lba, IN UINTN Blocks ) { EFI_STATUS Status; UINT32 BlockSize; UINT32 MaxTransferBlocks; ASSERT (Blocks <= NVME_MAX_SECTORS); Status = EFI_SUCCESS; BlockSize = Nvme->BlockSize; if (Nvme->ControllerData->Mdts != 0) { MaxTransferBlocks = (1 << (Nvme->ControllerData->Mdts)) * (1 << (Nvme->Cap.Mpsmin + 12)) / BlockSize; } else { MaxTransferBlocks = 1024; } while (Blocks > 0) { if (Blocks > MaxTransferBlocks) { Status = NvmeWriteSectors (Nvme, Buffer, Lba, MaxTransferBlocks); Blocks -= MaxTransferBlocks; Buffer += (MaxTransferBlocks * BlockSize); Lba += MaxTransferBlocks; } else { Status = NvmeWriteSectors (Nvme, Buffer, Lba, (UINT32) Blocks); Blocks = 0; } if (EFI_ERROR(Status)) { DEBUG ((DEBUG_ERROR, "NvmeWrite fail, Status = %r\n", Status)); break; } } return Status; }