/** @file MM Core Main Entry Point Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.
Copyright (c) 2016 - 2021, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "StandaloneMmCore.h" EFI_STATUS MmDispatcher ( VOID ); // // Globals used to initialize the protocol // EFI_HANDLE mMmCpuHandle = NULL; // // MM Core global variable for MM System Table. Only accessed as a physical structure in MMRAM. // EFI_MM_SYSTEM_TABLE gMmCoreMmst = { // The table header for the MMST. { MM_MMST_SIGNATURE, EFI_MM_SYSTEM_TABLE_REVISION, sizeof (gMmCoreMmst.Hdr) }, // MmFirmwareVendor NULL, // MmFirmwareRevision 0, // MmInstallConfigurationTable MmInstallConfigurationTable, // I/O Service { { (EFI_MM_CPU_IO)MmEfiNotAvailableYetArg5, // MmMemRead (EFI_MM_CPU_IO)MmEfiNotAvailableYetArg5 // MmMemWrite }, { (EFI_MM_CPU_IO)MmEfiNotAvailableYetArg5, // MmIoRead (EFI_MM_CPU_IO)MmEfiNotAvailableYetArg5 // MmIoWrite } }, // Runtime memory services MmAllocatePool, MmFreePool, MmAllocatePages, MmFreePages, // MP service NULL, // MmStartupThisAp 0, // CurrentlyExecutingCpu 0, // NumberOfCpus NULL, // CpuSaveStateSize NULL, // CpuSaveState 0, // NumberOfTableEntries NULL, // MmConfigurationTable MmInstallProtocolInterface, MmUninstallProtocolInterface, MmHandleProtocol, MmRegisterProtocolNotify, MmLocateHandle, MmLocateProtocol, MmiManage, MmiHandlerRegister, MmiHandlerUnRegister }; // // Table of MMI Handlers that are registered by the MM Core when it is initialized // MM_CORE_MMI_HANDLERS mMmCoreMmiHandlers[] = { { MmDriverDispatchHandler, &gEventMmDispatchGuid, NULL, FALSE }, { MmReadyToLockHandler, &gEfiDxeMmReadyToLockProtocolGuid, NULL, TRUE }, { MmEndOfPeiHandler, &gEfiMmEndOfPeiProtocol, NULL, FALSE }, { MmEndOfDxeHandler, &gEfiEndOfDxeEventGroupGuid, NULL, FALSE }, { MmExitBootServiceHandler, &gEfiEventExitBootServicesGuid, NULL, FALSE }, { MmReadyToBootHandler, &gEfiEventReadyToBootGuid, NULL, FALSE }, { NULL, NULL, NULL, FALSE }, }; BOOLEAN mMmEntryPointRegistered = FALSE; MM_COMM_BUFFER *mMmCommunicationBuffer; VOID *mInternalCommBufferCopy; EFI_FIRMWARE_VOLUME_HEADER *mBfv = NULL; /** Place holder function until all the MM System Table Service are available. Note: This function is only used by MMRAM invocation. It is never used by DXE invocation. @param Arg1 Undefined @param Arg2 Undefined @param Arg3 Undefined @param Arg4 Undefined @param Arg5 Undefined @return EFI_NOT_AVAILABLE_YET **/ EFI_STATUS EFIAPI MmEfiNotAvailableYetArg5 ( UINTN Arg1, UINTN Arg2, UINTN Arg3, UINTN Arg4, UINTN Arg5 ) { // // This function should never be executed. If it does, then the architectural protocols // have not been designed correctly. // return EFI_NOT_AVAILABLE_YET; } /** Software MMI handler that is called when a ExitBoot Service event is signaled. @param DispatchHandle The unique handle assigned to this handler by MmiHandlerRegister(). @param Context Points to an optional handler context which was specified when the handler was registered. @param CommBuffer A pointer to a collection of data in memory that will be conveyed from a non-MM environment into an MM environment. @param CommBufferSize The size of the CommBuffer. @return Status Code **/ EFI_STATUS EFIAPI MmExitBootServiceHandler ( IN EFI_HANDLE DispatchHandle, IN CONST VOID *Context OPTIONAL, IN OUT VOID *CommBuffer OPTIONAL, IN OUT UINTN *CommBufferSize OPTIONAL ) { EFI_HANDLE MmHandle; EFI_STATUS Status; STATIC BOOLEAN mInExitBootServices = FALSE; Status = EFI_SUCCESS; if (!mInExitBootServices) { MmHandle = NULL; Status = MmInstallProtocolInterface ( &MmHandle, &gEfiEventExitBootServicesGuid, EFI_NATIVE_INTERFACE, NULL ); } mInExitBootServices = TRUE; return Status; } /** Software MMI handler that is called when a ExitBoot Service event is signaled. @param DispatchHandle The unique handle assigned to this handler by MmiHandlerRegister(). @param Context Points to an optional handler context which was specified when the handler was registered. @param CommBuffer A pointer to a collection of data in memory that will be conveyed from a non-MM environment into an MM environment. @param CommBufferSize The size of the CommBuffer. @return Status Code **/ EFI_STATUS EFIAPI MmReadyToBootHandler ( IN EFI_HANDLE DispatchHandle, IN CONST VOID *Context OPTIONAL, IN OUT VOID *CommBuffer OPTIONAL, IN OUT UINTN *CommBufferSize OPTIONAL ) { EFI_HANDLE MmHandle; EFI_STATUS Status; STATIC BOOLEAN mInReadyToBoot = FALSE; Status = EFI_SUCCESS; if (!mInReadyToBoot) { MmHandle = NULL; Status = MmInstallProtocolInterface ( &MmHandle, &gEfiEventReadyToBootGuid, EFI_NATIVE_INTERFACE, NULL ); } mInReadyToBoot = TRUE; return Status; } /** Software MMI handler that is called when the DxeMmReadyToLock protocol is added or if gEfiEventReadyToBootGuid is signaled. This function unregisters the Software SMIs that are nor required after MMRAM is locked and installs the MM Ready To Lock Protocol so MM Drivers are informed that MMRAM is about to be locked. @param DispatchHandle The unique handle assigned to this handler by MmiHandlerRegister(). @param Context Points to an optional handler context which was specified when the handler was registered. @param CommBuffer A pointer to a collection of data in memory that will be conveyed from a non-MM environment into an MM environment. @param CommBufferSize The size of the CommBuffer. @return Status Code **/ EFI_STATUS EFIAPI MmReadyToLockHandler ( IN EFI_HANDLE DispatchHandle, IN CONST VOID *Context OPTIONAL, IN OUT VOID *CommBuffer OPTIONAL, IN OUT UINTN *CommBufferSize OPTIONAL ) { EFI_STATUS Status; UINTN Index; EFI_HANDLE MmHandle; DEBUG ((DEBUG_INFO, "MmReadyToLockHandler\n")); // // Unregister MMI Handlers that are no longer required after the MM driver dispatch is stopped // for (Index = 0; mMmCoreMmiHandlers[Index].HandlerType != NULL; Index++) { if (mMmCoreMmiHandlers[Index].UnRegister) { MmiHandlerUnRegister (mMmCoreMmiHandlers[Index].DispatchHandle); } } // // Install MM Ready to lock protocol // MmHandle = NULL; Status = MmInstallProtocolInterface ( &MmHandle, &gEfiMmReadyToLockProtocolGuid, EFI_NATIVE_INTERFACE, NULL ); // // Make sure MM CPU I/O 2 Protocol has been installed into the handle database // // Status = MmLocateProtocol (&EFI_MM_CPU_IO_PROTOCOL_GUID, NULL, &Interface); // // Print a message on a debug build if the MM CPU I/O 2 Protocol is not installed // // if (EFI_ERROR (Status)) { // DEBUG ((DEBUG_ERROR, "\nSMM: SmmCpuIo Arch Protocol not present!!\n")); // } // // Assert if the CPU I/O 2 Protocol is not installed // // ASSERT_EFI_ERROR (Status); // // Display any drivers that were not dispatched because dependency expression // evaluated to false if this is a debug build // // MmDisplayDiscoveredNotDispatched (); return Status; } /** Software MMI handler that is called when the EndOfPei event is signaled. This function installs the MM EndOfPei Protocol so MM Drivers are informed that EndOfPei event is signaled. @param DispatchHandle The unique handle assigned to this handler by MmiHandlerRegister(). @param Context Points to an optional handler context which was specified when the handler was registered. @param CommBuffer A pointer to a collection of data in memory that will be conveyed from a non-MM environment into an MM environment. @param CommBufferSize The size of the CommBuffer. @return Status Code **/ EFI_STATUS EFIAPI MmEndOfPeiHandler ( IN EFI_HANDLE DispatchHandle, IN CONST VOID *Context OPTIONAL, IN OUT VOID *CommBuffer OPTIONAL, IN OUT UINTN *CommBufferSize OPTIONAL ) { EFI_STATUS Status; EFI_HANDLE MmHandle; DEBUG ((DEBUG_INFO, "MmEndOfPeiHandler\n")); // // Install MM EndOfDxe protocol // MmHandle = NULL; Status = MmInstallProtocolInterface ( &MmHandle, &gEfiMmEndOfPeiProtocol, EFI_NATIVE_INTERFACE, NULL ); return Status; } /** Software MMI handler that is called when the EndOfDxe event is signaled. This function installs the MM EndOfDxe Protocol so MM Drivers are informed that platform code will invoke 3rd part code. @param DispatchHandle The unique handle assigned to this handler by MmiHandlerRegister(). @param Context Points to an optional handler context which was specified when the handler was registered. @param CommBuffer A pointer to a collection of data in memory that will be conveyed from a non-MM environment into an MM environment. @param CommBufferSize The size of the CommBuffer. @return Status Code **/ EFI_STATUS EFIAPI MmEndOfDxeHandler ( IN EFI_HANDLE DispatchHandle, IN CONST VOID *Context OPTIONAL, IN OUT VOID *CommBuffer OPTIONAL, IN OUT UINTN *CommBufferSize OPTIONAL ) { EFI_STATUS Status; EFI_HANDLE MmHandle; DEBUG ((DEBUG_INFO, "MmEndOfDxeHandler\n")); // // Install MM EndOfDxe protocol // MmHandle = NULL; Status = MmInstallProtocolInterface ( &MmHandle, &gEfiMmEndOfDxeProtocolGuid, EFI_NATIVE_INTERFACE, NULL ); return Status; } /** Install LoadedImage protocol for MM Core. **/ VOID MmCoreInstallLoadedImage ( VOID ) { EFI_STATUS Status; EFI_PHYSICAL_ADDRESS MmCoreImageBaseAddress; UINT64 MmCoreImageLength; EFI_PEI_HOB_POINTERS Hob; EFI_LOADED_IMAGE_PROTOCOL *LoadedImage; EFI_HANDLE ImageHandle; // // Searching for Memory Allocation HOB // Hob.Raw = GetHobList (); while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw)) != NULL) { // // Find MM Core HOB // if (CompareGuid ( &Hob.MemoryAllocationModule->MemoryAllocationHeader.Name, &gEfiHobMemoryAllocModuleGuid )) { if (CompareGuid (&Hob.MemoryAllocationModule->ModuleName, &gEfiCallerIdGuid)) { break; } } Hob.Raw = GET_NEXT_HOB (Hob); } if (Hob.Raw == NULL) { return; } MmCoreImageBaseAddress = Hob.MemoryAllocationModule->MemoryAllocationHeader.MemoryBaseAddress; MmCoreImageLength = Hob.MemoryAllocationModule->MemoryAllocationHeader.MemoryLength; // // Allocate a Loaded Image Protocol in MM // LoadedImage = AllocatePool (sizeof (EFI_LOADED_IMAGE_PROTOCOL)); ASSERT (LoadedImage != NULL); if (LoadedImage == NULL) { return; } ZeroMem (LoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL)); // // Fill in the remaining fields of the Loaded Image Protocol instance. // LoadedImage->Revision = EFI_LOADED_IMAGE_PROTOCOL_REVISION; LoadedImage->ParentHandle = NULL; LoadedImage->SystemTable = NULL; LoadedImage->ImageBase = (VOID *)(UINTN)MmCoreImageBaseAddress; LoadedImage->ImageSize = MmCoreImageLength; LoadedImage->ImageCodeType = EfiRuntimeServicesCode; LoadedImage->ImageDataType = EfiRuntimeServicesData; // // Create a new image handle in the MM handle database for the MM Core // ImageHandle = NULL; Status = MmInstallProtocolInterface ( &ImageHandle, &gEfiLoadedImageProtocolGuid, EFI_NATIVE_INTERFACE, LoadedImage ); ASSERT_EFI_ERROR (Status); } /** Prepare communication buffer for MMI. **/ VOID MmCorePrepareCommunicationBuffer ( VOID ) { EFI_STATUS Status; EFI_HOB_GUID_TYPE *GuidHob; EFI_PHYSICAL_ADDRESS Buffer; mMmCommunicationBuffer = NULL; mInternalCommBufferCopy = NULL; GuidHob = GetFirstGuidHob (&gMmCommBufferHobGuid); ASSERT (GuidHob != NULL); if (GuidHob == NULL) { return; } mMmCommunicationBuffer = (MM_COMM_BUFFER *)GET_GUID_HOB_DATA (GuidHob); DEBUG (( DEBUG_INFO, "MM Communication Buffer is at %x, number of pages is %x\n", mMmCommunicationBuffer->PhysicalStart, mMmCommunicationBuffer->NumberOfPages )); ASSERT (mMmCommunicationBuffer->PhysicalStart != 0 && mMmCommunicationBuffer->NumberOfPages != 0); if (!MmIsBufferOutsideMmValid ( mMmCommunicationBuffer->PhysicalStart, EFI_PAGES_TO_SIZE (mMmCommunicationBuffer->NumberOfPages) )) { mMmCommunicationBuffer = NULL; DEBUG ((DEBUG_ERROR, "MM Communication Buffer is invalid!\n")); ASSERT (FALSE); return; } Status = MmAllocatePages ( AllocateAnyPages, EfiRuntimeServicesData, mMmCommunicationBuffer->NumberOfPages, &Buffer ); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { return; } mInternalCommBufferCopy = (VOID *)(UINTN)Buffer; DEBUG ((DEBUG_INFO, "Internal Communication Buffer Copy is at %p\n", mInternalCommBufferCopy)); } /** The main entry point to MM Foundation. Note: This function is only used by MMRAM invocation. It is never used by DXE invocation. @param MmEntryContext Processor information and functionality needed by MM Foundation. **/ VOID EFIAPI MmEntryPoint ( IN CONST EFI_MM_ENTRY_CONTEXT *MmEntryContext ) { EFI_STATUS Status; EFI_MM_COMMUNICATE_HEADER *CommunicateHeader; MM_COMM_BUFFER_STATUS *CommunicationStatus; UINTN BufferSize; DEBUG ((DEBUG_INFO, "MmEntryPoint ...\n")); // // Update MMST using the context // CopyMem (&gMmCoreMmst.MmStartupThisAp, MmEntryContext, sizeof (EFI_MM_ENTRY_CONTEXT)); // // Call platform hook before Mm Dispatch // // PlatformHookBeforeMmDispatch (); // // Check to see if this is a Synchronous MMI sent through the MM Communication // Protocol or an Asynchronous MMI // if ((mMmCommunicationBuffer != NULL) && (mInternalCommBufferCopy != NULL)) { CommunicationStatus = (MM_COMM_BUFFER_STATUS *)(UINTN)mMmCommunicationBuffer->Status; if (CommunicationStatus->IsCommBufferValid) { // // Synchronous MMI for MM Core or request from Communicate protocol // CommunicateHeader = (EFI_MM_COMMUNICATE_HEADER *)(UINTN)mMmCommunicationBuffer->PhysicalStart; BufferSize = OFFSET_OF (EFI_MM_COMMUNICATE_HEADER, Data) + CommunicateHeader->MessageLength; if (BufferSize <= EFI_PAGES_TO_SIZE (mMmCommunicationBuffer->NumberOfPages)) { // // Shadow the data from MM Communication Buffer to internal buffer // CopyMem ( mInternalCommBufferCopy, (VOID *)(UINTN)mMmCommunicationBuffer->PhysicalStart, BufferSize ); ZeroMem ( (UINT8 *)mInternalCommBufferCopy + BufferSize, EFI_PAGES_TO_SIZE (mMmCommunicationBuffer->NumberOfPages) - BufferSize ); CommunicateHeader = (EFI_MM_COMMUNICATE_HEADER *)mInternalCommBufferCopy; BufferSize = CommunicateHeader->MessageLength; Status = MmiManage ( &CommunicateHeader->HeaderGuid, NULL, CommunicateHeader->Data, &BufferSize ); BufferSize = BufferSize + OFFSET_OF (EFI_MM_COMMUNICATE_HEADER, Data); if (BufferSize <= EFI_PAGES_TO_SIZE (mMmCommunicationBuffer->NumberOfPages)) { // // Copy the data back to MM Communication Buffer // CopyMem ( (VOID *)(UINTN)mMmCommunicationBuffer->PhysicalStart, mInternalCommBufferCopy, BufferSize ); } else { DEBUG ((DEBUG_ERROR, "Returned buffer size is larger than the size of MM Communication Buffer\n")); ASSERT (FALSE); } // // Update ReturnBufferSize and ReturnStatus // Communicate service finished, reset IsCommBufferValid to FALSE // CommunicationStatus->IsCommBufferValid = FALSE; CommunicationStatus->ReturnBufferSize = BufferSize; CommunicationStatus->ReturnStatus = (Status == EFI_SUCCESS) ? EFI_SUCCESS : EFI_NOT_FOUND; } else { DEBUG ((DEBUG_ERROR, "Input buffer size is larger than the size of MM Communication Buffer\n")); ASSERT (FALSE); } } } else { DEBUG ((DEBUG_ERROR, "No valid communication buffer, no Synchronous MMI will be processed\n")); } // // Process Asynchronous MMI sources // MmiManage (NULL, NULL, NULL, NULL); // // TBD: Do not use private data structure ? // DEBUG ((DEBUG_INFO, "MmEntryPoint Done\n")); } /** Register the MM Entry Point provided by the MM Core with the MM Configuration protocol. @param [in] Protocol Pointer to the protocol. @param [in] Interface Pointer to the MM Configuration protocol. @param [in] Handle Handle. @retval EFI_SUCCESS Success. **/ EFI_STATUS EFIAPI MmConfigurationMmNotify ( IN CONST EFI_GUID *Protocol, IN VOID *Interface, IN EFI_HANDLE Handle ) { EFI_STATUS Status; EFI_MM_CONFIGURATION_PROTOCOL *MmConfiguration; DEBUG ((DEBUG_INFO, "MmConfigurationMmNotify(%g) - %x\n", Protocol, Interface)); MmConfiguration = Interface; // // Register the MM Entry Point provided by the MM Core with the MM COnfiguration protocol // Status = MmConfiguration->RegisterMmEntry (MmConfiguration, (EFI_MM_ENTRY_POINT)MmEntryPoint); ASSERT_EFI_ERROR (Status); // // Set flag to indicate that the MM Entry Point has been registered which // means that MMIs are now fully operational. // mMmEntryPointRegistered = TRUE; // // Print debug message showing MM Core entry point address. // DEBUG ((DEBUG_INFO, "MM Core registered MM Entry Point address %p\n", MmEntryPoint)); return EFI_SUCCESS; } /** Migrate MemoryBaseAddress in memory allocation HOBs with BootServiceData type and non-zero GUID name from Boot Service memory to MMRAM. @param[in] HobStart Pointer to the start of the HOB list. **/ VOID MigrateMemoryAllocationHobs ( IN VOID *HobStart ) { EFI_PEI_HOB_POINTERS Hob; EFI_HOB_MEMORY_ALLOCATION *MemoryAllocationHob; VOID *MemoryInMmram; MemoryAllocationHob = NULL; Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, HobStart); while (Hob.Raw != NULL) { MemoryAllocationHob = (EFI_HOB_MEMORY_ALLOCATION *)Hob.Raw; if (MemoryAllocationHob->AllocDescriptor.MemoryType == EfiBootServicesData) { if (!IsZeroGuid (&MemoryAllocationHob->AllocDescriptor.Name)) { MemoryInMmram = AllocatePages (EFI_SIZE_TO_PAGES (MemoryAllocationHob->AllocDescriptor.MemoryLength)); if (MemoryInMmram != NULL) { DEBUG (( DEBUG_INFO, "Migrate Memory Allocation Hob (%g) from %08x to %08p\n", &MemoryAllocationHob->AllocDescriptor.Name, MemoryAllocationHob->AllocDescriptor.MemoryBaseAddress, MemoryInMmram )); CopyMem ( MemoryInMmram, (VOID *)(UINTN)MemoryAllocationHob->AllocDescriptor.MemoryBaseAddress, MemoryAllocationHob->AllocDescriptor.MemoryLength ); MemoryAllocationHob->AllocDescriptor.MemoryBaseAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)MemoryInMmram; MemoryAllocationHob->AllocDescriptor.MemoryType = EfiRuntimeServicesData; } } else { DEBUG (( DEBUG_ERROR, "Error - Memory Allocation Hob [%08x, %08x] doesn't have a GUID name specified\n", MemoryAllocationHob->AllocDescriptor.MemoryBaseAddress, MemoryAllocationHob->AllocDescriptor.MemoryLength )); } } Hob.Raw = GET_NEXT_HOB (Hob); Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw); } } /** This function is responsible for validating the input HOB list and initializing a new HOB list in MMRAM based on the input HOB list. @param [in] HobStart Pointer to the start of the HOB list. @param [in] MmramRanges Pointer to the Mmram ranges. @param [in] MmramRangeCount Count of Mmram ranges. @retval Pointer to the new location of hob list in MMRAM. **/ VOID * InitializeMmHobList ( IN VOID *HobStart, IN EFI_MMRAM_DESCRIPTOR *MmramRanges, IN UINTN MmramRangeCount ) { VOID *MmHobStart; UINTN HobSize; EFI_STATUS Status; EFI_PEI_HOB_POINTERS Hob; UINTN Index; EFI_PHYSICAL_ADDRESS MmramBase; EFI_PHYSICAL_ADDRESS MmramEnd; EFI_PHYSICAL_ADDRESS ResourceHobBase; EFI_PHYSICAL_ADDRESS ResourceHobEnd; ASSERT (HobStart != NULL); Hob.Raw = (UINT8 *)HobStart; while (!END_OF_HOB_LIST (Hob)) { Hob.Raw = GET_NEXT_HOB (Hob); if (Hob.Header->HobType == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) { ResourceHobBase = Hob.ResourceDescriptor->PhysicalStart; ResourceHobEnd = Hob.ResourceDescriptor->PhysicalStart + Hob.ResourceDescriptor->ResourceLength; for (Index = 0; Index < MmramRangeCount; Index++) { MmramBase = MmramRanges[Index].PhysicalStart; MmramEnd = MmramRanges[Index].PhysicalStart + MmramRanges[Index].PhysicalSize; if ((MmramBase < ResourceHobEnd) && (MmramEnd > ResourceHobBase)) { // // The Resource HOB is to describe the accessible non-Mmram range. // All Resource HOB should not overlapp with any Mmram range. // DEBUG (( DEBUG_ERROR, "The resource HOB range [0x%lx, 0x%lx] overlaps with MMRAM range\n", ResourceHobBase, ResourceHobEnd )); CpuDeadLoop (); } } } } // // Need plus END_OF_HOB_LIST // HobSize = (UINTN)Hob.Raw - (UINTN)HobStart + sizeof (EFI_HOB_GENERIC_HEADER); DEBUG ((DEBUG_INFO, "HobSize - 0x%x\n", HobSize)); MmHobStart = AllocatePool (HobSize); DEBUG ((DEBUG_INFO, "MmHobStart - 0x%x\n", MmHobStart)); ASSERT (MmHobStart != NULL); CopyMem (MmHobStart, HobStart, HobSize); DEBUG ((DEBUG_INFO, "MmInstallConfigurationTable For HobList\n")); Status = MmInstallConfigurationTable (&gMmCoreMmst, &gEfiHobListGuid, MmHobStart, HobSize); ASSERT_EFI_ERROR (Status); MigrateMemoryAllocationHobs (MmHobStart); return MmHobStart; } /** The Entry Point for MM Core Install DXE Protocols and reload MM Core into MMRAM and register MM Core EntryPoint on the MMI vector. Note: This function is called for both DXE invocation and MMRAM invocation. @param HobStart Pointer to the start of the HOB list. @retval EFI_SUCCESS Success. @retval EFI_UNSUPPORTED Unsupported operation. **/ EFI_STATUS EFIAPI StandaloneMmMain ( IN VOID *HobStart ) { EFI_STATUS Status; UINTN Index; VOID *Registration; EFI_HOB_GUID_TYPE *MmramRangesHob; EFI_MMRAM_HOB_DESCRIPTOR_BLOCK *MmramRangesHobData; EFI_MMRAM_DESCRIPTOR *MmramRanges; UINTN MmramRangeCount; EFI_HOB_FIRMWARE_VOLUME *BfvHob; ProcessLibraryConstructorList (HobStart, &gMmCoreMmst); DEBUG ((DEBUG_INFO, "MmMain - 0x%x\n", HobStart)); DEBUG_CODE ( PrintHobList (HobStart, NULL); ); // // Extract the MMRAM ranges from the MMRAM descriptor HOB // MmramRangesHob = GetNextGuidHob (&gEfiSmmSmramMemoryGuid, HobStart); if (MmramRangesHob == NULL) { MmramRangesHob = GetNextGuidHob (&gEfiMmPeiMmramMemoryReserveGuid, HobStart); if (MmramRangesHob == NULL) { return EFI_UNSUPPORTED; } } MmramRangesHobData = GET_GUID_HOB_DATA (MmramRangesHob); ASSERT (MmramRangesHobData != NULL); MmramRanges = MmramRangesHobData->Descriptor; MmramRangeCount = (UINTN)MmramRangesHobData->NumberOfMmReservedRegions; ASSERT (MmramRanges); ASSERT (MmramRangeCount); // // Print the MMRAM ranges passed by the caller // DEBUG ((DEBUG_INFO, "MmramRangeCount - 0x%x\n", MmramRangeCount)); for (Index = 0; Index < MmramRangeCount; Index++) { DEBUG (( DEBUG_INFO, "MmramRanges[%d]: 0x%016lx - 0x%lx\n", Index, MmramRanges[Index].CpuStart, MmramRanges[Index].PhysicalSize )); } // // No need to initialize memory service. // It is done in the constructor of StandaloneMmCoreMemoryAllocationLib(), // so that the library linked with StandaloneMmCore can use AllocatePool() in // the constructor. // // // Install HobList // gHobList = InitializeMmHobList (HobStart, MmramRanges, MmramRangeCount); // // Register notification for EFI_MM_CONFIGURATION_PROTOCOL registration and // use it to register the MM Foundation entrypoint // DEBUG ((DEBUG_INFO, "MmRegisterProtocolNotify - MmConfigurationMmProtocol\n")); Status = MmRegisterProtocolNotify ( &gEfiMmConfigurationProtocolGuid, MmConfigurationMmNotify, &Registration ); ASSERT_EFI_ERROR (Status); // // Get Boot Firmware Volume address from the BFV Hob // BfvHob = GetFirstHob (EFI_HOB_TYPE_FV); if (BfvHob != NULL) { DEBUG ((DEBUG_INFO, "BFV address - 0x%x\n", BfvHob->BaseAddress)); DEBUG ((DEBUG_INFO, "BFV size - 0x%x\n", BfvHob->Length)); // // Dispatch standalone BFV // if (BfvHob->BaseAddress != 0) { // // Shadow standalone BFV into MMRAM // mBfv = AllocatePool (BfvHob->Length); if (mBfv != NULL) { CopyMem ((VOID *)mBfv, (VOID *)(UINTN)BfvHob->BaseAddress, BfvHob->Length); DEBUG ((DEBUG_INFO, "Mm Dispatch StandaloneBfvAddress - 0x%08x\n", mBfv)); MmCoreFfsFindMmDriver (mBfv, 0); MmDispatcher (); if (!FeaturePcdGet (PcdRestartMmDispatcherOnceMmEntryRegistered)) { FreePool (mBfv); } } } } // // Register all handlers in the core table // for (Index = 0; mMmCoreMmiHandlers[Index].HandlerType != NULL; Index++) { Status = MmiHandlerRegister ( mMmCoreMmiHandlers[Index].Handler, mMmCoreMmiHandlers[Index].HandlerType, &mMmCoreMmiHandlers[Index].DispatchHandle ); DEBUG ((DEBUG_INFO, "MmiHandlerRegister - GUID %g - Status %d\n", mMmCoreMmiHandlers[Index].HandlerType, Status)); } MmCorePrepareCommunicationBuffer (); // // Install Loaded Image Protocol form MM Core // MmCoreInstallLoadedImage (); DEBUG ((DEBUG_INFO, "MmMain Done!\n")); return EFI_SUCCESS; }