/** @file CPU PEI Module installs CPU Multiple Processor PPI. Copyright (c) 2015 - 2022, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "CpuMpPei.h" extern EDKII_PEI_MP_SERVICES2_PPI mMpServices2Ppi; // // CPU MP PPI to be installed // EFI_PEI_MP_SERVICES_PPI mMpServicesPpi = { PeiGetNumberOfProcessors, PeiGetProcessorInfo, PeiStartupAllAPs, PeiStartupThisAP, PeiSwitchBSP, PeiEnableDisableAP, PeiWhoAmI, }; EFI_PEI_PPI_DESCRIPTOR mPeiCpuMpPpiList[] = { { EFI_PEI_PPI_DESCRIPTOR_PPI, &gEdkiiPeiMpServices2PpiGuid, &mMpServices2Ppi }, { (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST), &gEfiPeiMpServicesPpiGuid, &mMpServicesPpi } }; /** This service retrieves the number of logical processor in the platform and the number of those logical processors that are enabled on this boot. This service may only be called from the BSP. This function is used to retrieve the following information: - The number of logical processors that are present in the system. - The number of enabled logical processors in the system at the instant this call is made. Because MP Service Ppi provides services to enable and disable processors dynamically, the number of enabled logical processors may vary during the course of a boot session. If this service is called from an AP, then EFI_DEVICE_ERROR is returned. If NumberOfProcessors or NumberOfEnabledProcessors is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the total number of processors is returned in NumberOfProcessors, the number of currently enabled processor is returned in NumberOfEnabledProcessors, and EFI_SUCCESS is returned. @param[in] PeiServices An indirect pointer to the PEI Services Table published by the PEI Foundation. @param[in] This Pointer to this instance of the PPI. @param[out] NumberOfProcessors Pointer to the total number of logical processors in the system, including the BSP and disabled APs. @param[out] NumberOfEnabledProcessors Number of processors in the system that are enabled. @retval EFI_SUCCESS The number of logical processors and enabled logical processors was retrieved. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL. NumberOfEnabledProcessors is NULL. **/ EFI_STATUS EFIAPI PeiGetNumberOfProcessors ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_MP_SERVICES_PPI *This, OUT UINTN *NumberOfProcessors, OUT UINTN *NumberOfEnabledProcessors ) { if ((NumberOfProcessors == NULL) || (NumberOfEnabledProcessors == NULL)) { return EFI_INVALID_PARAMETER; } return MpInitLibGetNumberOfProcessors ( NumberOfProcessors, NumberOfEnabledProcessors ); } /** Gets detailed MP-related information on the requested processor at the instant this call is made. This service may only be called from the BSP. This service retrieves detailed MP-related information about any processor on the platform. Note the following: - The processor information may change during the course of a boot session. - The information presented here is entirely MP related. Information regarding the number of caches and their sizes, frequency of operation, slot numbers is all considered platform-related information and is not provided by this service. @param[in] PeiServices An indirect pointer to the PEI Services Table published by the PEI Foundation. @param[in] This Pointer to this instance of the PPI. @param[in] ProcessorNumber Pointer to the total number of logical processors in the system, including the BSP and disabled APs. @param[out] ProcessorInfoBuffer Number of processors in the system that are enabled. @retval EFI_SUCCESS Processor information was returned. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist in the platform. **/ EFI_STATUS EFIAPI PeiGetProcessorInfo ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_MP_SERVICES_PPI *This, IN UINTN ProcessorNumber, OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer ) { return MpInitLibGetProcessorInfo (ProcessorNumber, ProcessorInfoBuffer, NULL); } /** This service executes a caller provided function on all enabled APs. APs can run either simultaneously or one at a time in sequence. This service supports both blocking requests only. This service may only be called from the BSP. This function is used to dispatch all the enabled APs to the function specified by Procedure. If any enabled AP is busy, then EFI_NOT_READY is returned immediately and Procedure is not started on any AP. If SingleThread is TRUE, all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. Otherwise, all the enabled APs execute the function specified by Procedure simultaneously. If the timeout specified by TimeoutInMicroSeconds expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are always available for further calls to EFI_PEI_MP_SERVICES_PPI.StartupAllAPs() and EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). If FailedCpuList is not NULL, its content points to the list of processor handle numbers in which Procedure was terminated. Note: It is the responsibility of the consumer of the EFI_PEI_MP_SERVICES_PPI.StartupAllAPs() to make sure that the nature of the code that is executed on the BSP and the dispatched APs is well controlled. The MP Services Ppi does not guarantee that the Procedure function is MP-safe. Hence, the tasks that can be run in parallel are limited to certain independent tasks and well-controlled exclusive code. PEI services and Ppis may not be called by APs unless otherwise specified. In blocking execution mode, BSP waits until all APs finish or TimeoutInMicroSeconds expires. @param[in] PeiServices An indirect pointer to the PEI Services Table published by the PEI Foundation. @param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. @param[in] SingleThread If TRUE, then all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. If FALSE, then all the enabled APs execute the function specified by Procedure simultaneously. @param[in] TimeoutInMicroSeconds Indicates the time limit in microseconds for APs to return from Procedure, for blocking mode only. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_PEI_MP_SERVICES_PPI.StartupAllAPs() or EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired. @retval EFI_DEVICE_ERROR Caller processor is AP. @retval EFI_NOT_STARTED No enabled APs exist in the system. @retval EFI_NOT_READY Any enabled APs are busy. @retval EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs have finished. @retval EFI_INVALID_PARAMETER Procedure is NULL. **/ EFI_STATUS EFIAPI PeiStartupAllAPs ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_MP_SERVICES_PPI *This, IN EFI_AP_PROCEDURE Procedure, IN BOOLEAN SingleThread, IN UINTN TimeoutInMicroSeconds, IN VOID *ProcedureArgument OPTIONAL ) { return MpInitLibStartupAllAPs ( Procedure, SingleThread, NULL, TimeoutInMicroSeconds, ProcedureArgument, NULL ); } /** This service lets the caller get one enabled AP to execute a caller-provided function. The caller can request the BSP to wait for the completion of the AP. This service may only be called from the BSP. This function is used to dispatch one enabled AP to the function specified by Procedure passing in the argument specified by ProcedureArgument. The execution is in blocking mode. The BSP waits until the AP finishes or TimeoutInMicroSecondss expires. If the timeout specified by TimeoutInMicroseconds expires before the AP returns from Procedure, then execution of Procedure by the AP is terminated. The AP is available for subsequent calls to EFI_PEI_MP_SERVICES_PPI.StartupAllAPs() and EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). @param[in] PeiServices An indirect pointer to the PEI Services Table published by the PEI Foundation. @param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. @param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, for blocking mode only. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. All enabled APs are available for next function assigned by EFI_PEI_MP_SERVICES_PPI.StartupAllAPs() or EFI_PEI_MP_SERVICES_PPI.StartupThisAP(). If the timeout expires in blocking mode, BSP returns EFI_TIMEOUT. @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @retval EFI_SUCCESS In blocking mode, specified AP finished before the timeout expires. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_TIMEOUT In blocking mode, the timeout expired before the specified AP has finished. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP. @retval EFI_INVALID_PARAMETER Procedure is NULL. **/ EFI_STATUS EFIAPI PeiStartupThisAP ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_MP_SERVICES_PPI *This, IN EFI_AP_PROCEDURE Procedure, IN UINTN ProcessorNumber, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL ) { return MpInitLibStartupThisAP ( Procedure, ProcessorNumber, NULL, TimeoutInMicroseconds, ProcedureArgument, NULL ); } /** This service switches the requested AP to be the BSP from that point onward. This service changes the BSP for all purposes. This call can only be performed by the current BSP. This service switches the requested AP to be the BSP from that point onward. This service changes the BSP for all purposes. The new BSP can take over the execution of the old BSP and continue seamlessly from where the old one left off. If the BSP cannot be switched prior to the return from this service, then EFI_UNSUPPORTED must be returned. @param[in] PeiServices An indirect pointer to the PEI Services Table published by the PEI Foundation. @param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance. @param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be disabled. @retval EFI_SUCCESS BSP successfully switched. @retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to this service returning. @retval EFI_UNSUPPORTED Switching the BSP is not supported. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or a disabled AP. @retval EFI_NOT_READY The specified AP is busy. **/ EFI_STATUS EFIAPI PeiSwitchBSP ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_MP_SERVICES_PPI *This, IN UINTN ProcessorNumber, IN BOOLEAN EnableOldBSP ) { return MpInitLibSwitchBSP (ProcessorNumber, EnableOldBSP); } /** This service lets the caller enable or disable an AP from this point onward. This service may only be called from the BSP. This service allows the caller enable or disable an AP from this point onward. The caller can optionally specify the health status of the AP by Health. If an AP is being disabled, then the state of the disabled AP is implementation dependent. If an AP is enabled, then the implementation must guarantee that a complete initialization sequence is performed on the AP, so the AP is in a state that is compatible with an MP operating system. If the enable or disable AP operation cannot be completed prior to the return from this service, then EFI_UNSUPPORTED must be returned. @param[in] PeiServices An indirect pointer to the PEI Services Table published by the PEI Foundation. @param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance. @param[in] ProcessorNumber The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). @param[in] EnableAP Specifies the new state for the processor for enabled, FALSE for disabled. @param[in] HealthFlag If not NULL, a pointer to a value that specifies the new health status of the AP. This flag corresponds to StatusFlag defined in EFI_PEI_MP_SERVICES_PPI.GetProcessorInfo(). Only the PROCESSOR_HEALTH_STATUS_BIT is used. All other bits are ignored. If it is NULL, this parameter is ignored. @retval EFI_SUCCESS The specified AP was enabled or disabled successfully. @retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed prior to this service returning. @retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber does not exist. @retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP. **/ EFI_STATUS EFIAPI PeiEnableDisableAP ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_MP_SERVICES_PPI *This, IN UINTN ProcessorNumber, IN BOOLEAN EnableAP, IN UINT32 *HealthFlag OPTIONAL ) { return MpInitLibEnableDisableAP (ProcessorNumber, EnableAP, HealthFlag); } /** This return the handle number for the calling processor. This service may be called from the BSP and APs. This service returns the processor handle number for the calling processor. The returned value is in the range from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved with EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). This service may be called from the BSP and APs. If ProcessorNumber is NULL, then EFI_INVALID_PARAMETER is returned. Otherwise, the current processors handle number is returned in ProcessorNumber, and EFI_SUCCESS is returned. @param[in] PeiServices An indirect pointer to the PEI Services Table published by the PEI Foundation. @param[in] This A pointer to the EFI_PEI_MP_SERVICES_PPI instance. @param[out] ProcessorNumber The handle number of the AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by EFI_PEI_MP_SERVICES_PPI.GetNumberOfProcessors(). @retval EFI_SUCCESS The current processor handle number was returned in ProcessorNumber. @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL. **/ EFI_STATUS EFIAPI PeiWhoAmI ( IN CONST EFI_PEI_SERVICES **PeiServices, IN EFI_PEI_MP_SERVICES_PPI *This, OUT UINTN *ProcessorNumber ) { return MpInitLibWhoAmI (ProcessorNumber); } // // Structure for InitializeSeparateExceptionStacks // typedef struct { VOID *Buffer; UINTN BufferSize; EFI_STATUS Status; } EXCEPTION_STACK_SWITCH_CONTEXT; /** Initializes CPU exceptions handlers for the sake of stack switch requirement. This function is a wrapper of InitializeSeparateExceptionStacks. It's mainly for the sake of AP's init because of EFI_AP_PROCEDURE API requirement. @param[in,out] Buffer The pointer to private data buffer. **/ VOID EFIAPI InitializeExceptionStackSwitchHandlers ( IN OUT VOID *Buffer ) { EXCEPTION_STACK_SWITCH_CONTEXT *SwitchStackData; UINTN Index; MpInitLibWhoAmI (&Index); SwitchStackData = (EXCEPTION_STACK_SWITCH_CONTEXT *)Buffer; // // This function may be called twice for each Cpu. Only run InitializeSeparateExceptionStacks // if this is the first call or the first call failed because of size too small. // if ((SwitchStackData[Index].Status == EFI_NOT_STARTED) || (SwitchStackData[Index].Status == EFI_BUFFER_TOO_SMALL)) { SwitchStackData[Index].Status = InitializeSeparateExceptionStacks (SwitchStackData[Index].Buffer, &SwitchStackData[Index].BufferSize); } } /** Initializes MP exceptions handlers for the sake of stack switch requirement. This function will allocate required resources required to setup stack switch and pass them through SwitchStackData to each logic processor. **/ VOID InitializeMpExceptionStackSwitchHandlers ( VOID ) { UINTN Index; UINTN NumberOfProcessors; EXCEPTION_STACK_SWITCH_CONTEXT *SwitchStackData; UINTN BufferSize; EFI_STATUS Status; UINT8 *Buffer; if (!PcdGetBool (PcdCpuStackGuard)) { return; } Status = MpInitLibGetNumberOfProcessors (&NumberOfProcessors, NULL); ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { NumberOfProcessors = 1; } SwitchStackData = AllocatePages (EFI_SIZE_TO_PAGES (NumberOfProcessors * sizeof (EXCEPTION_STACK_SWITCH_CONTEXT))); ASSERT (SwitchStackData != NULL); ZeroMem (SwitchStackData, NumberOfProcessors * sizeof (EXCEPTION_STACK_SWITCH_CONTEXT)); for (Index = 0; Index < NumberOfProcessors; ++Index) { // // Because the procedure may runs multiple times, use the status EFI_NOT_STARTED // to indicate the procedure haven't been run yet. // SwitchStackData[Index].Status = EFI_NOT_STARTED; } Status = MpInitLibStartupAllCPUs ( InitializeExceptionStackSwitchHandlers, 0, SwitchStackData ); ASSERT_EFI_ERROR (Status); BufferSize = 0; for (Index = 0; Index < NumberOfProcessors; ++Index) { if (SwitchStackData[Index].Status == EFI_BUFFER_TOO_SMALL) { ASSERT (SwitchStackData[Index].BufferSize != 0); BufferSize += SwitchStackData[Index].BufferSize; } else { ASSERT (SwitchStackData[Index].Status == EFI_SUCCESS); ASSERT (SwitchStackData[Index].BufferSize == 0); } } if (BufferSize != 0) { Buffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize)); ASSERT (Buffer != NULL); BufferSize = 0; for (Index = 0; Index < NumberOfProcessors; ++Index) { if (SwitchStackData[Index].Status == EFI_BUFFER_TOO_SMALL) { SwitchStackData[Index].Buffer = (VOID *)(&Buffer[BufferSize]); BufferSize += SwitchStackData[Index].BufferSize; DEBUG (( DEBUG_INFO, "Buffer[cpu%lu] for InitializeExceptionStackSwitchHandlers: 0x%lX with size 0x%lX\n", (UINT64)(UINTN)Index, (UINT64)(UINTN)SwitchStackData[Index].Buffer, (UINT64)(UINTN)SwitchStackData[Index].BufferSize )); } } Status = MpInitLibStartupAllCPUs ( InitializeExceptionStackSwitchHandlers, 0, SwitchStackData ); ASSERT_EFI_ERROR (Status); for (Index = 0; Index < NumberOfProcessors; ++Index) { ASSERT (SwitchStackData[Index].Status == EFI_SUCCESS); } } FreePages (SwitchStackData, EFI_SIZE_TO_PAGES (NumberOfProcessors * sizeof (EXCEPTION_STACK_SWITCH_CONTEXT))); } /** Get CPU core type. @param[in, out] Buffer Argument of the procedure. **/ VOID EFIAPI GetProcessorCoreType ( IN OUT VOID *Buffer ) { EFI_STATUS Status; UINT8 *CoreTypes; CPUID_NATIVE_MODEL_ID_AND_CORE_TYPE_EAX NativeModelIdAndCoreTypeEax; UINTN ProcessorIndex; Status = MpInitLibWhoAmI (&ProcessorIndex); ASSERT_EFI_ERROR (Status); CoreTypes = (UINT8 *)Buffer; AsmCpuidEx (CPUID_HYBRID_INFORMATION, CPUID_HYBRID_INFORMATION_MAIN_LEAF, &NativeModelIdAndCoreTypeEax.Uint32, NULL, NULL, NULL); CoreTypes[ProcessorIndex] = (UINT8)NativeModelIdAndCoreTypeEax.Bits.CoreType; } /** Create gMpInformationHobGuid2. **/ VOID BuildMpInformationHob ( VOID ) { EFI_STATUS Status; UINTN ProcessorIndex; UINTN NumberOfProcessors; UINTN NumberOfEnabledProcessors; UINTN NumberOfProcessorsInHob; UINTN MaxProcessorsPerHob; MP_INFORMATION2_HOB_DATA *MpInformation2HobData; MP_INFORMATION2_ENTRY *MpInformation2Entry; UINTN Index; UINT8 *CoreTypes; UINT32 CpuidMaxInput; UINTN CoreTypePages; ProcessorIndex = 0; MpInformation2HobData = NULL; MpInformation2Entry = NULL; CoreTypes = NULL; CoreTypePages = 0; Status = MpInitLibGetNumberOfProcessors (&NumberOfProcessors, &NumberOfEnabledProcessors); ASSERT_EFI_ERROR (Status); // // Get Processors CoreType // AsmCpuid (CPUID_SIGNATURE, &CpuidMaxInput, NULL, NULL, NULL); if (CpuidMaxInput >= CPUID_HYBRID_INFORMATION) { CoreTypePages = EFI_SIZE_TO_PAGES (sizeof (UINT8) * NumberOfProcessors); CoreTypes = AllocatePages (CoreTypePages); ASSERT (CoreTypes != NULL); Status = MpInitLibStartupAllCPUs ( GetProcessorCoreType, 0, (VOID *)CoreTypes ); ASSERT_EFI_ERROR (Status); } MaxProcessorsPerHob = ((MAX_UINT16 & ~7) - sizeof (EFI_HOB_GUID_TYPE) - sizeof (MP_INFORMATION2_HOB_DATA)) / sizeof (MP_INFORMATION2_ENTRY); NumberOfProcessorsInHob = MaxProcessorsPerHob; // // Create MP_INFORMATION2_HOB. when the max HobLength 0xFFF8 is not enough, there // will be a MP_INFORMATION2_HOB series in the HOB list. // In the HOB list, there is a gMpInformationHobGuid2 with 0 value NumberOfProcessors // fields to indicate it's the last MP_INFORMATION2_HOB. // while (NumberOfProcessorsInHob != 0) { NumberOfProcessorsInHob = MIN (NumberOfProcessors - ProcessorIndex, MaxProcessorsPerHob); MpInformation2HobData = BuildGuidHob ( &gMpInformationHobGuid2, sizeof (MP_INFORMATION2_HOB_DATA) + sizeof (MP_INFORMATION2_ENTRY) * NumberOfProcessorsInHob ); ASSERT (MpInformation2HobData != NULL); MpInformation2HobData->Version = MP_INFORMATION2_HOB_REVISION; MpInformation2HobData->ProcessorIndex = ProcessorIndex; MpInformation2HobData->NumberOfProcessors = (UINT16)NumberOfProcessorsInHob; MpInformation2HobData->EntrySize = sizeof (MP_INFORMATION2_ENTRY); DEBUG ((DEBUG_INFO, "Creating MpInformation2 HOB...\n")); for (Index = 0; Index < NumberOfProcessorsInHob; Index++) { MpInformation2Entry = &MpInformation2HobData->Entry[Index]; Status = MpInitLibGetProcessorInfo ( (Index + ProcessorIndex) | CPU_V2_EXTENDED_TOPOLOGY, &MpInformation2Entry->ProcessorInfo, NULL ); ASSERT_EFI_ERROR (Status); MpInformation2Entry->CoreType = (CoreTypes != NULL) ? CoreTypes[Index + ProcessorIndex] : 0; DEBUG (( DEBUG_INFO, " Processor[%04d]: ProcessorId = 0x%lx, StatusFlag = 0x%x, CoreType = 0x%x\n", Index + ProcessorIndex, MpInformation2Entry->ProcessorInfo.ProcessorId, MpInformation2Entry->ProcessorInfo.StatusFlag, MpInformation2Entry->CoreType )); DEBUG (( DEBUG_INFO, " Location = Package:%d Core:%d Thread:%d\n", MpInformation2Entry->ProcessorInfo.Location.Package, MpInformation2Entry->ProcessorInfo.Location.Core, MpInformation2Entry->ProcessorInfo.Location.Thread )); DEBUG (( DEBUG_INFO, " Location2 = Package:%d Die:%d Tile:%d Module:%d Core:%d Thread:%d\n", MpInformation2Entry->ProcessorInfo.ExtendedInformation.Location2.Package, MpInformation2Entry->ProcessorInfo.ExtendedInformation.Location2.Die, MpInformation2Entry->ProcessorInfo.ExtendedInformation.Location2.Tile, MpInformation2Entry->ProcessorInfo.ExtendedInformation.Location2.Module, MpInformation2Entry->ProcessorInfo.ExtendedInformation.Location2.Core, MpInformation2Entry->ProcessorInfo.ExtendedInformation.Location2.Thread )); } ProcessorIndex += NumberOfProcessorsInHob; } if (CoreTypes != NULL) { FreePages (CoreTypes, CoreTypePages); } } /** Initializes MP and exceptions handlers. @param PeiServices The pointer to the PEI Services Table. @retval EFI_SUCCESS MP was successfully initialized. @retval others Error occurred in MP initialization. **/ EFI_STATUS InitializeCpuMpWorker ( IN CONST EFI_PEI_SERVICES **PeiServices ) { EFI_STATUS Status; EFI_VECTOR_HANDOFF_INFO *VectorInfo; EFI_PEI_VECTOR_HANDOFF_INFO_PPI *VectorHandoffInfoPpi; // // Get Vector Hand-off Info PPI // VectorInfo = NULL; Status = PeiServicesLocatePpi ( &gEfiVectorHandoffInfoPpiGuid, 0, NULL, (VOID **)&VectorHandoffInfoPpi ); if (Status == EFI_SUCCESS) { VectorInfo = VectorHandoffInfoPpi->Info; } // // Initialize default handlers // Status = InitializeCpuExceptionHandlers (VectorInfo); if (EFI_ERROR (Status)) { return Status; } Status = MpInitLibInitialize (); if (EFI_ERROR (Status)) { return Status; } // // Special initialization for the sake of Stack Guard // InitializeMpExceptionStackSwitchHandlers (); // // Update and publish CPU BIST information // CollectBistDataFromPpi (PeiServices); // // Install CPU MP PPI // Status = PeiServicesInstallPpi (mPeiCpuMpPpiList); ASSERT_EFI_ERROR (Status); // // Create gMpInformationHobGuid2 // BuildMpInformationHob (); return Status; } /** The Entry point of the MP CPU PEIM. This function will wakeup APs and collect CPU AP count and install the Mp Service Ppi. @param FileHandle Handle of the file being invoked. @param PeiServices Describes the list of possible PEI Services. @retval EFI_SUCCESS MpServicePpi is installed successfully. **/ EFI_STATUS EFIAPI CpuMpPeimInit ( IN EFI_PEI_FILE_HANDLE FileHandle, IN CONST EFI_PEI_SERVICES **PeiServices ) { EFI_STATUS Status; // // For the sake of special initialization needing to be done right after // memory discovery. // Status = PeiServicesNotifyPpi (&mPostMemNotifyList[0]); ASSERT_EFI_ERROR (Status); return Status; }