/** @file CPU MP Initialize Library common functions. Copyright (c) 2016 - 2022, Intel Corporation. All rights reserved.
Copyright (c) 2020, AMD Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "MpLib.h" #include #include #include EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID; EFI_GUID mMpHandOffGuid = MP_HANDOFF_GUID; /** Save the volatile registers required to be restored following INIT IPI. @param[out] VolatileRegisters Returns buffer saved the volatile resisters **/ VOID SaveVolatileRegisters ( OUT CPU_VOLATILE_REGISTERS *VolatileRegisters ); /** Restore the volatile registers following INIT IPI. @param[in] VolatileRegisters Pointer to volatile resisters @param[in] IsRestoreDr TRUE: Restore DRx if supported FALSE: Do not restore DRx **/ VOID RestoreVolatileRegisters ( IN CPU_VOLATILE_REGISTERS *VolatileRegisters, IN BOOLEAN IsRestoreDr ); /** The function will check if BSP Execute Disable is enabled. DxeIpl may have enabled Execute Disable for BSP, APs need to get the status and sync up the settings. If BSP's CR0.Paging is not set, BSP execute Disble feature is not working actually. @retval TRUE BSP Execute Disable is enabled. @retval FALSE BSP Execute Disable is not enabled. **/ BOOLEAN IsBspExecuteDisableEnabled ( VOID ) { UINT32 Eax; CPUID_EXTENDED_CPU_SIG_EDX Edx; MSR_IA32_EFER_REGISTER EferMsr; BOOLEAN Enabled; IA32_CR0 Cr0; Enabled = FALSE; Cr0.UintN = AsmReadCr0 (); if (Cr0.Bits.PG != 0) { // // If CR0 Paging bit is set // AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL); if (Eax >= CPUID_EXTENDED_CPU_SIG) { AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32); // // CPUID 0x80000001 // Bit 20: Execute Disable Bit available. // if (Edx.Bits.NX != 0) { EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER); // // MSR 0xC0000080 // Bit 11: Execute Disable Bit enable. // if (EferMsr.Bits.NXE != 0) { Enabled = TRUE; } } } } return Enabled; } /** Worker function for SwitchBSP(). Worker function for SwitchBSP(), assigned to the AP which is intended to become BSP. @param[in] Buffer Pointer to CPU MP Data **/ VOID EFIAPI FutureBSPProc ( IN VOID *Buffer ) { CPU_MP_DATA *DataInHob; DataInHob = (CPU_MP_DATA *)Buffer; // // Save and restore volatile registers when switch BSP // SaveVolatileRegisters (&DataInHob->APInfo.VolatileRegisters); AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo); RestoreVolatileRegisters (&DataInHob->APInfo.VolatileRegisters, FALSE); } /** Get the Application Processors state. @param[in] CpuData The pointer to CPU_AP_DATA of specified AP @return The AP status **/ CPU_STATE GetApState ( IN CPU_AP_DATA *CpuData ) { return CpuData->State; } /** Set the Application Processors state. @param[in] CpuData The pointer to CPU_AP_DATA of specified AP @param[in] State The AP status **/ VOID SetApState ( IN CPU_AP_DATA *CpuData, IN CPU_STATE State ) { AcquireSpinLock (&CpuData->ApLock); CpuData->State = State; ReleaseSpinLock (&CpuData->ApLock); } /** Save BSP's local APIC timer setting. @param[in] CpuMpData Pointer to CPU MP Data **/ VOID SaveLocalApicTimerSetting ( IN CPU_MP_DATA *CpuMpData ) { // // Record the current local APIC timer setting of BSP // GetApicTimerState ( &CpuMpData->DivideValue, &CpuMpData->PeriodicMode, &CpuMpData->Vector ); CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount (); CpuMpData->TimerInterruptState = GetApicTimerInterruptState (); } /** Sync local APIC timer setting from BSP to AP. @param[in] CpuMpData Pointer to CPU MP Data **/ VOID SyncLocalApicTimerSetting ( IN CPU_MP_DATA *CpuMpData ) { // // Sync local APIC timer setting from BSP to AP // InitializeApicTimer ( CpuMpData->DivideValue, CpuMpData->CurrentTimerCount, CpuMpData->PeriodicMode, CpuMpData->Vector ); // // Disable AP's local APIC timer interrupt // DisableApicTimerInterrupt (); } /** Save the volatile registers required to be restored following INIT IPI. @param[out] VolatileRegisters Returns buffer saved the volatile resisters **/ VOID SaveVolatileRegisters ( OUT CPU_VOLATILE_REGISTERS *VolatileRegisters ) { CPUID_VERSION_INFO_EDX VersionInfoEdx; VolatileRegisters->Cr0 = AsmReadCr0 (); VolatileRegisters->Cr3 = AsmReadCr3 (); VolatileRegisters->Cr4 = AsmReadCr4 (); AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32); if (VersionInfoEdx.Bits.DE != 0) { // // If processor supports Debugging Extensions feature // by CPUID.[EAX=01H]:EDX.BIT2 // VolatileRegisters->Dr0 = AsmReadDr0 (); VolatileRegisters->Dr1 = AsmReadDr1 (); VolatileRegisters->Dr2 = AsmReadDr2 (); VolatileRegisters->Dr3 = AsmReadDr3 (); VolatileRegisters->Dr6 = AsmReadDr6 (); VolatileRegisters->Dr7 = AsmReadDr7 (); } AsmReadGdtr (&VolatileRegisters->Gdtr); AsmReadIdtr (&VolatileRegisters->Idtr); VolatileRegisters->Tr = AsmReadTr (); } /** Restore the volatile registers following INIT IPI. @param[in] VolatileRegisters Pointer to volatile resisters @param[in] IsRestoreDr TRUE: Restore DRx if supported FALSE: Do not restore DRx **/ VOID RestoreVolatileRegisters ( IN CPU_VOLATILE_REGISTERS *VolatileRegisters, IN BOOLEAN IsRestoreDr ) { CPUID_VERSION_INFO_EDX VersionInfoEdx; IA32_TSS_DESCRIPTOR *Tss; AsmWriteCr3 (VolatileRegisters->Cr3); AsmWriteCr4 (VolatileRegisters->Cr4); AsmWriteCr0 (VolatileRegisters->Cr0); if (IsRestoreDr) { AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32); if (VersionInfoEdx.Bits.DE != 0) { // // If processor supports Debugging Extensions feature // by CPUID.[EAX=01H]:EDX.BIT2 // AsmWriteDr0 (VolatileRegisters->Dr0); AsmWriteDr1 (VolatileRegisters->Dr1); AsmWriteDr2 (VolatileRegisters->Dr2); AsmWriteDr3 (VolatileRegisters->Dr3); AsmWriteDr6 (VolatileRegisters->Dr6); AsmWriteDr7 (VolatileRegisters->Dr7); } } AsmWriteGdtr (&VolatileRegisters->Gdtr); AsmWriteIdtr (&VolatileRegisters->Idtr); if ((VolatileRegisters->Tr != 0) && (VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit)) { Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base + VolatileRegisters->Tr); if (Tss->Bits.P == 1) { Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case AsmWriteTr (VolatileRegisters->Tr); } } } /** Detect whether Mwait-monitor feature is supported. @retval TRUE Mwait-monitor feature is supported. @retval FALSE Mwait-monitor feature is not supported. **/ BOOLEAN IsMwaitSupport ( VOID ) { CPUID_VERSION_INFO_ECX VersionInfoEcx; AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL); return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE; } /** Get AP loop mode. @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes. @return The AP loop mode. **/ UINT8 GetApLoopMode ( OUT UINT32 *MonitorFilterSize ) { UINT8 ApLoopMode; CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx; ASSERT (MonitorFilterSize != NULL); ApLoopMode = PcdGet8 (PcdCpuApLoopMode); ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop); if (ApLoopMode == ApInMwaitLoop) { if (!IsMwaitSupport ()) { // // If processor does not support MONITOR/MWAIT feature, // force AP in Hlt-loop mode // ApLoopMode = ApInHltLoop; } if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) && !ConfidentialComputingGuestHas (CCAttrAmdSevSnp)) { // // For SEV-ES (SEV-SNP is also considered SEV-ES), force AP in Hlt-loop // mode in order to use the GHCB protocol for starting APs // ApLoopMode = ApInHltLoop; } } if (ApLoopMode != ApInMwaitLoop) { *MonitorFilterSize = sizeof (UINT32); } else { // // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes // CPUID.[EAX=05H].EDX: C-states supported using MWAIT // AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL); *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize; } return ApLoopMode; } /** Sort the APIC ID of all processors. This function sorts the APIC ID of all processors so that processor number is assigned in the ascending order of APIC ID which eases MP debugging. @param[in] CpuMpData Pointer to PEI CPU MP Data **/ VOID SortApicId ( IN CPU_MP_DATA *CpuMpData ) { UINTN Index1; UINTN Index2; UINTN Index3; UINT32 ApicId; CPU_INFO_IN_HOB CpuInfo; UINT32 ApCount; CPU_INFO_IN_HOB *CpuInfoInHob; volatile UINT32 *StartupApSignal; VOID *SevEsSaveArea; ApCount = CpuMpData->CpuCount - 1; CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; if (ApCount != 0) { for (Index1 = 0; Index1 < ApCount; Index1++) { Index3 = Index1; // // Sort key is the hardware default APIC ID // ApicId = CpuInfoInHob[Index1].ApicId; for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) { if (ApicId > CpuInfoInHob[Index2].ApicId) { Index3 = Index2; ApicId = CpuInfoInHob[Index2].ApicId; } } if (Index3 != Index1) { CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB)); CopyMem ( &CpuInfoInHob[Index3], &CpuInfoInHob[Index1], sizeof (CPU_INFO_IN_HOB) ); CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB)); // // Also exchange the StartupApSignal and SevEsSaveArea. // StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal; CpuMpData->CpuData[Index3].StartupApSignal = CpuMpData->CpuData[Index1].StartupApSignal; CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal; SevEsSaveArea = CpuMpData->CpuData[Index3].SevEsSaveArea; CpuMpData->CpuData[Index3].SevEsSaveArea = CpuMpData->CpuData[Index1].SevEsSaveArea; CpuMpData->CpuData[Index1].SevEsSaveArea = SevEsSaveArea; } } // // Get the processor number for the BSP // ApicId = GetInitialApicId (); for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) { if (CpuInfoInHob[Index1].ApicId == ApicId) { CpuMpData->BspNumber = (UINT32)Index1; break; } } } } /** Enable x2APIC mode on APs. @param[in, out] Buffer Pointer to private data buffer. **/ VOID EFIAPI ApFuncEnableX2Apic ( IN OUT VOID *Buffer ) { SetApicMode (LOCAL_APIC_MODE_X2APIC); } /** Do sync on APs. @param[in, out] Buffer Pointer to private data buffer. **/ VOID EFIAPI ApInitializeSync ( IN OUT VOID *Buffer ) { CPU_MP_DATA *CpuMpData; UINTN ProcessorNumber; EFI_STATUS Status; CpuMpData = (CPU_MP_DATA *)Buffer; Status = GetProcessorNumber (CpuMpData, &ProcessorNumber); ASSERT_EFI_ERROR (Status); // // Load microcode on AP // MicrocodeDetect (CpuMpData, ProcessorNumber); // // Sync BSP's MTRR table to AP // MtrrSetAllMtrrs (&CpuMpData->MtrrTable); } /** Find the current Processor number by APIC ID. @param[in] CpuMpData Pointer to PEI CPU MP Data @param[out] ProcessorNumber Return the pocessor number found @retval EFI_SUCCESS ProcessorNumber is found and returned. @retval EFI_NOT_FOUND ProcessorNumber is not found. **/ EFI_STATUS GetProcessorNumber ( IN CPU_MP_DATA *CpuMpData, OUT UINTN *ProcessorNumber ) { UINTN TotalProcessorNumber; UINTN Index; CPU_INFO_IN_HOB *CpuInfoInHob; UINT32 CurrentApicId; CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; TotalProcessorNumber = CpuMpData->CpuCount; CurrentApicId = GetApicId (); for (Index = 0; Index < TotalProcessorNumber; Index++) { if (CpuInfoInHob[Index].ApicId == CurrentApicId) { *ProcessorNumber = Index; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** This function will get CPU count in the system. @param[in] CpuMpData Pointer to PEI CPU MP Data @return CPU count detected **/ UINTN CollectProcessorCount ( IN CPU_MP_DATA *CpuMpData ) { UINTN Index; CPU_INFO_IN_HOB *CpuInfoInHob; BOOLEAN X2Apic; // // Send 1st broadcast IPI to APs to wakeup APs // CpuMpData->InitFlag = ApInitConfig; WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE); CpuMpData->InitFlag = ApInitDone; // // When InitFlag == ApInitConfig, WakeUpAP () guarantees all APs are checked in. // FinishedCount is the number of check-in APs. // CpuMpData->CpuCount = CpuMpData->FinishedCount + 1; ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber)); // // Enable x2APIC mode if // 1. Number of CPU is greater than 255; or // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater. // X2Apic = FALSE; if (CpuMpData->CpuCount > 255) { // // If there are more than 255 processor found, force to enable X2APIC // X2Apic = TRUE; } else { CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; for (Index = 0; Index < CpuMpData->CpuCount; Index++) { if (CpuInfoInHob[Index].InitialApicId >= 0xFF) { X2Apic = TRUE; break; } } } if (X2Apic) { DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n")); // // Wakeup all APs to enable x2APIC mode // WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE); // // Wait for all known APs finished // while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) { CpuPause (); } // // Enable x2APIC on BSP // SetApicMode (LOCAL_APIC_MODE_X2APIC); // // Set BSP/Aps state to IDLE // for (Index = 0; Index < CpuMpData->CpuCount; Index++) { SetApState (&CpuMpData->CpuData[Index], CpuStateIdle); } } DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ())); // // Sort BSP/Aps by CPU APIC ID in ascending order // SortApicId (CpuMpData); DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount)); return CpuMpData->CpuCount; } /** Initialize CPU AP Data when AP is wakeup at the first time. @param[in, out] CpuMpData Pointer to PEI CPU MP Data @param[in] ProcessorNumber The handle number of processor @param[in] BistData Processor BIST data @param[in] ApTopOfStack Top of AP stack **/ VOID InitializeApData ( IN OUT CPU_MP_DATA *CpuMpData, IN UINTN ProcessorNumber, IN UINT32 BistData, IN UINT64 ApTopOfStack ) { CPU_INFO_IN_HOB *CpuInfoInHob; MSR_IA32_PLATFORM_ID_REGISTER PlatformIdMsr; AP_STACK_DATA *ApStackData; CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId (); CpuInfoInHob[ProcessorNumber].ApicId = GetApicId (); CpuInfoInHob[ProcessorNumber].Health = BistData; CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack; // // AP_STACK_DATA is stored at the top of AP Stack // ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack - sizeof (AP_STACK_DATA)); ApStackData->MpData = CpuMpData; CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE; CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE; // // NOTE: PlatformId is not relevant on AMD platforms. // if (!StandardSignatureIsAuthenticAMD ()) { PlatformIdMsr.Uint64 = AsmReadMsr64 (MSR_IA32_PLATFORM_ID); CpuMpData->CpuData[ProcessorNumber].PlatformId = (UINT8)PlatformIdMsr.Bits.PlatformId; } AsmCpuid ( CPUID_VERSION_INFO, &CpuMpData->CpuData[ProcessorNumber].ProcessorSignature, NULL, NULL, NULL ); InitializeSpinLock (&CpuMpData->CpuData[ProcessorNumber].ApLock); SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle); } /** This function place APs in Halt loop. @param[in] CpuMpData Pointer to CPU MP Data **/ VOID PlaceAPInHltLoop ( IN CPU_MP_DATA *CpuMpData ) { while (TRUE) { DisableInterrupts (); if (CpuMpData->UseSevEsAPMethod) { SevEsPlaceApHlt (CpuMpData); } else { CpuSleep (); } CpuPause (); } } /** This function place APs in Mwait or Run loop. @param[in] ApLoopMode Ap Loop Mode @param[in] ApStartupSignalBuffer Pointer to Ap Startup Signal Buffer @param[in] ApTargetCState Ap Target CState **/ VOID PlaceAPInMwaitLoopOrRunLoop ( IN UINT8 ApLoopMode, IN volatile UINT32 *ApStartupSignalBuffer, IN UINT8 ApTargetCState ) { while (TRUE) { DisableInterrupts (); if (ApLoopMode == ApInMwaitLoop) { // // Place AP in MWAIT-loop // AsmMonitor ((UINTN)ApStartupSignalBuffer, 0, 0); if ((*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) && (*ApStartupSignalBuffer != MP_HAND_OFF_SIGNAL)) { // // Check AP start-up signal again. // If AP start-up signal is not set, place AP into // the specified C-state // AsmMwait (ApTargetCState << 4, 0); } } else if (ApLoopMode == ApInRunLoop) { // // Place AP in Run-loop // CpuPause (); } else { ASSERT (FALSE); } // // If AP start-up signal is written, AP is waken up // otherwise place AP in loop again // if ((*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) || (*ApStartupSignalBuffer == MP_HAND_OFF_SIGNAL)) { break; } } } /** This function will be called from AP reset code if BSP uses WakeUpAP. @param[in] CpuMpData Pointer to CPU MP Data @param[in] ApIndex Number of current executing AP **/ VOID EFIAPI ApWakeupFunction ( IN CPU_MP_DATA *CpuMpData, IN UINTN ApIndex ) { UINTN ProcessorNumber; EFI_AP_PROCEDURE Procedure; VOID *Parameter; UINT32 BistData; volatile UINT32 *ApStartupSignalBuffer; CPU_INFO_IN_HOB *CpuInfoInHob; UINT64 ApTopOfStack; UINTN CurrentApicMode; AP_STACK_DATA *ApStackData; UINT32 OriginalValue; // // AP's local APIC settings will be lost after received INIT IPI // We need to re-initialize them at here // ProgramVirtualWireMode (); // // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler. // DisableLvtInterrupts (); SyncLocalApicTimerSetting (CpuMpData); CurrentApicMode = GetApicMode (); while (TRUE) { if (CpuMpData->InitFlag == ApInitConfig) { ProcessorNumber = ApIndex; // // This is first time AP wakeup, get BIST information from AP stack // ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize; ApStackData = (AP_STACK_DATA *)((UINTN)ApTopOfStack - sizeof (AP_STACK_DATA)); BistData = (UINT32)ApStackData->Bist; // // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment, // to initialize AP in InitConfig path. // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs. // RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE); InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack); ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal; } else { // // Execute AP function if AP is ready // GetProcessorNumber (CpuMpData, &ProcessorNumber); // // Clear AP start-up signal when AP waken up // ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal; OriginalValue = InterlockedCompareExchange32 ( (UINT32 *)ApStartupSignalBuffer, MP_HAND_OFF_SIGNAL, 0 ); if (OriginalValue == MP_HAND_OFF_SIGNAL) { SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateReady); } InterlockedCompareExchange32 ( (UINT32 *)ApStartupSignalBuffer, WAKEUP_AP_SIGNAL, 0 ); if (CpuMpData->InitFlag == ApInitReconfig) { // // ApInitReconfig happens when: // 1. AP is re-enabled after it's disabled, in either PEI or DXE phase. // 2. AP is initialized in DXE phase. // In either case, use the volatile registers value derived from BSP. // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a // different IDT shared by all APs. // RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE); } else { if (CpuMpData->ApLoopMode == ApInHltLoop) { // // Restore AP's volatile registers saved before AP is halted // RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE); } else { // // The CPU driver might not flush TLB for APs on spot after updating // page attributes. AP in mwait loop mode needs to take care of it when // woken up. // CpuFlushTlb (); } } if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) { Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction; Parameter = (VOID *)CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument; if (Procedure != NULL) { SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy); // // Enable source debugging on AP function // EnableDebugAgent (); // // Invoke AP function here // Procedure (Parameter); CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; if (CpuMpData->SwitchBspFlag) { // // Re-get the processor number due to BSP/AP maybe exchange in AP function // GetProcessorNumber (CpuMpData, &ProcessorNumber); CpuMpData->CpuData[ProcessorNumber].ApFunction = 0; CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0; ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal; CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack; } else { if ((CpuInfoInHob[ProcessorNumber].ApicId != GetApicId ()) || (CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ())) { if (CurrentApicMode != GetApicMode ()) { // // If APIC mode change happened during AP function execution, // we do not support APIC ID value changed. // ASSERT (FALSE); CpuDeadLoop (); } else { // // Re-get the CPU APICID and Initial APICID if they are changed // CpuInfoInHob[ProcessorNumber].ApicId = GetApicId (); CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId (); } } } } SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished); } } if (CpuMpData->ApLoopMode == ApInHltLoop) { // // Save AP volatile registers // SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters); } // // AP finished executing C code // InterlockedIncrement ((UINT32 *)&CpuMpData->FinishedCount); if (CpuMpData->InitFlag == ApInitConfig) { // // Delay decrementing the APs executing count when SEV-ES is enabled // to allow the APs to issue an AP_RESET_HOLD before the BSP possibly // performs another INIT-SIPI-SIPI sequence. // if (!CpuMpData->UseSevEsAPMethod) { InterlockedDecrement ((UINT32 *)&CpuMpData->MpCpuExchangeInfo->NumApsExecuting); } } // // Place AP is specified loop mode // if (CpuMpData->ApLoopMode == ApInHltLoop) { PlaceAPInHltLoop (CpuMpData); // // Never run here // } else { PlaceAPInMwaitLoopOrRunLoop (CpuMpData->ApLoopMode, ApStartupSignalBuffer, CpuMpData->ApTargetCState); } } } /** This function serves as the entry point for APs when they are awakened by the stores in the memory address indicated by the MP_HANDOFF_INFO structure. @param[in] CpuMpData Pointer to PEI CPU MP Data **/ VOID EFIAPI DxeApEntryPoint ( CPU_MP_DATA *CpuMpData ) { UINTN ProcessorNumber; MSR_IA32_EFER_REGISTER EferMsr; GetProcessorNumber (CpuMpData, &ProcessorNumber); if (CpuMpData->EnableExecuteDisableForSwitchContext) { EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER); EferMsr.Bits.NXE = 1; AsmWriteMsr64 (MSR_IA32_EFER, EferMsr.Uint64); } RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE); InterlockedIncrement ((UINT32 *)&CpuMpData->FinishedCount); PlaceAPInMwaitLoopOrRunLoop ( CpuMpData->ApLoopMode, CpuMpData->CpuData[ProcessorNumber].StartupApSignal, CpuMpData->ApTargetCState ); ApWakeupFunction (CpuMpData, ProcessorNumber); } /** Wait for AP wakeup and write AP start-up signal till AP is waken up. @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal **/ VOID WaitApWakeup ( IN volatile UINT32 *ApStartupSignalBuffer ) { // // If AP is waken up, StartupApSignal should be cleared. // Otherwise, write StartupApSignal again till AP waken up. // while (InterlockedCompareExchange32 ( (UINT32 *)ApStartupSignalBuffer, WAKEUP_AP_SIGNAL, WAKEUP_AP_SIGNAL ) != 0) { CpuPause (); } } /** Calculate the size of the reset vector. @param[in] AddressMap The pointer to Address Map structure. @param[out] SizeBelow1Mb Return the size of below 1MB memory for AP reset area. @param[out] SizeAbove1Mb Return the size of abvoe 1MB memory for AP reset area. **/ STATIC VOID GetApResetVectorSize ( IN MP_ASSEMBLY_ADDRESS_MAP *AddressMap, OUT UINTN *SizeBelow1Mb OPTIONAL, OUT UINTN *SizeAbove1Mb OPTIONAL ) { if (SizeBelow1Mb != NULL) { *SizeBelow1Mb = AddressMap->ModeTransitionOffset + sizeof (MP_CPU_EXCHANGE_INFO); } if (SizeAbove1Mb != NULL) { *SizeAbove1Mb = AddressMap->RendezvousFunnelSize - AddressMap->ModeTransitionOffset; } } /** This function will fill the exchange info structure. @param[in] CpuMpData Pointer to CPU MP Data **/ VOID FillExchangeInfoData ( IN CPU_MP_DATA *CpuMpData ) { volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo; UINTN Size; IA32_SEGMENT_DESCRIPTOR *Selector; IA32_CR4 Cr4; ExchangeInfo = CpuMpData->MpCpuExchangeInfo; ExchangeInfo->StackStart = CpuMpData->Buffer; ExchangeInfo->StackSize = CpuMpData->CpuApStackSize; ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer; ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset; ExchangeInfo->CodeSegment = AsmReadCs (); ExchangeInfo->DataSegment = AsmReadDs (); ExchangeInfo->Cr3 = AsmReadCr3 (); ExchangeInfo->CFunction = (UINTN)ApWakeupFunction; ExchangeInfo->ApIndex = 0; ExchangeInfo->NumApsExecuting = 0; ExchangeInfo->InitFlag = (UINTN)CpuMpData->InitFlag; ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; ExchangeInfo->CpuMpData = CpuMpData; ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled (); ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits; // // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12] // to determin whether 5-Level Paging is enabled. // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows // current system setting. // Using latter way is simpler because it also eliminates the needs to // check whether platform wants to enable it. // Cr4.UintN = AsmReadCr4 (); ExchangeInfo->Enable5LevelPaging = (BOOLEAN)(Cr4.Bits.LA57 == 1); DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging)); ExchangeInfo->SevEsIsEnabled = CpuMpData->SevEsIsEnabled; ExchangeInfo->SevSnpIsEnabled = CpuMpData->SevSnpIsEnabled; ExchangeInfo->GhcbBase = (UINTN)CpuMpData->GhcbBase; // // Populate SEV-ES specific exchange data. // if (ExchangeInfo->SevSnpIsEnabled) { FillExchangeInfoDataSevEs (ExchangeInfo); } // // Get the BSP's data of GDT and IDT // AsmReadGdtr ((IA32_DESCRIPTOR *)&ExchangeInfo->GdtrProfile); AsmReadIdtr ((IA32_DESCRIPTOR *)&ExchangeInfo->IdtrProfile); // // Find a 32-bit code segment // Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base; Size = ExchangeInfo->GdtrProfile.Limit + 1; while (Size > 0) { if ((Selector->Bits.L == 0) && (Selector->Bits.Type >= 8)) { ExchangeInfo->ModeTransitionSegment = (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base); break; } Selector += 1; Size -= sizeof (IA32_SEGMENT_DESCRIPTOR); } ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh; ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory + (UINT32)ExchangeInfo->ModeOffset - (UINT32)CpuMpData->AddressMap.ModeTransitionOffset; ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment; } /** Helper function that waits until the finished AP count reaches the specified limit, or the specified timeout elapses (whichever comes first). @param[in] CpuMpData Pointer to CPU MP Data. @param[in] FinishedApLimit The number of finished APs to wait for. @param[in] TimeLimit The number of microseconds to wait for. **/ VOID TimedWaitForApFinish ( IN CPU_MP_DATA *CpuMpData, IN UINT32 FinishedApLimit, IN UINT32 TimeLimit ); /** Get available system memory below 1MB by specified size. @param[in] CpuMpData The pointer to CPU MP Data structure. **/ VOID BackupAndPrepareWakeupBuffer ( IN CPU_MP_DATA *CpuMpData ) { CopyMem ( (VOID *)CpuMpData->BackupBuffer, (VOID *)CpuMpData->WakeupBuffer, CpuMpData->BackupBufferSize ); CopyMem ( (VOID *)CpuMpData->WakeupBuffer, (VOID *)CpuMpData->AddressMap.RendezvousFunnelAddress, CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO) ); } /** Restore wakeup buffer data. @param[in] CpuMpData The pointer to CPU MP Data structure. **/ VOID RestoreWakeupBuffer ( IN CPU_MP_DATA *CpuMpData ) { CopyMem ( (VOID *)CpuMpData->WakeupBuffer, (VOID *)CpuMpData->BackupBuffer, CpuMpData->BackupBufferSize ); } /** Allocate reset vector buffer. @param[in, out] CpuMpData The pointer to CPU MP Data structure. **/ VOID AllocateResetVectorBelow1Mb ( IN OUT CPU_MP_DATA *CpuMpData ) { UINTN ApResetStackSize; if (CpuMpData->WakeupBuffer == (UINTN)-1) { CpuMpData->WakeupBuffer = GetWakeupBuffer (CpuMpData->BackupBufferSize); CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *)(UINTN) (CpuMpData->WakeupBuffer + CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO)); DEBUG (( DEBUG_INFO, "AP Vector: 16-bit = %p/%x, ExchangeInfo = %p/%x\n", CpuMpData->WakeupBuffer, CpuMpData->BackupBufferSize - sizeof (MP_CPU_EXCHANGE_INFO), CpuMpData->MpCpuExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO) )); // // The AP reset stack is only used by SEV-ES guests. Do not allocate it // if SEV-ES is not enabled. An SEV-SNP guest is also considered // an SEV-ES guest, but uses a different method of AP startup, eliminating // the need for the allocation. // if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) && !ConfidentialComputingGuestHas (CCAttrAmdSevSnp)) { // // Stack location is based on ProcessorNumber, so use the total number // of processors for calculating the total stack area. // ApResetStackSize = (AP_RESET_STACK_SIZE * PcdGet32 (PcdCpuMaxLogicalProcessorNumber)); // // Invoke GetWakeupBuffer a second time to allocate the stack area // below 1MB. The returned buffer will be page aligned and sized and // below the previously allocated buffer. // CpuMpData->SevEsAPResetStackStart = GetWakeupBuffer (ApResetStackSize); // // Check to be sure that the "allocate below" behavior hasn't changed. // This will also catch a failed allocation, as "-1" is returned on // failure. // if (CpuMpData->SevEsAPResetStackStart >= CpuMpData->WakeupBuffer) { DEBUG (( DEBUG_ERROR, "SEV-ES AP reset stack is not below wakeup buffer\n" )); ASSERT (FALSE); CpuDeadLoop (); } } } BackupAndPrepareWakeupBuffer (CpuMpData); } /** Free AP reset vector buffer. @param[in] CpuMpData The pointer to CPU MP Data structure. **/ VOID FreeResetVector ( IN CPU_MP_DATA *CpuMpData ) { // // If SEV-ES is enabled, the reset area is needed for AP parking and // and AP startup in the OS, so the reset area is reserved. Do not // perform the restore as this will overwrite memory which has data // needed by SEV-ES. // if (!CpuMpData->UseSevEsAPMethod) { RestoreWakeupBuffer (CpuMpData); } } /** This function will be called by BSP to wakeup AP. @param[in] CpuMpData Pointer to CPU MP Data @param[in] Broadcast TRUE: Send broadcast IPI to all APs FALSE: Send IPI to AP by ApicId @param[in] ProcessorNumber The handle number of specified processor @param[in] Procedure The function to be invoked by AP @param[in] ProcedureArgument The argument to be passed into AP function @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode. **/ VOID WakeUpAP ( IN CPU_MP_DATA *CpuMpData, IN BOOLEAN Broadcast, IN UINTN ProcessorNumber, IN EFI_AP_PROCEDURE Procedure OPTIONAL, IN VOID *ProcedureArgument OPTIONAL, IN BOOLEAN WakeUpDisabledAps ) { volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo; UINTN Index; CPU_AP_DATA *CpuData; BOOLEAN ResetVectorRequired; CPU_INFO_IN_HOB *CpuInfoInHob; CpuMpData->FinishedCount = 0; ResetVectorRequired = FALSE; if (CpuMpData->WakeUpByInitSipiSipi || (CpuMpData->InitFlag != ApInitDone)) { ResetVectorRequired = TRUE; AllocateResetVectorBelow1Mb (CpuMpData); AllocateSevEsAPMemory (CpuMpData); FillExchangeInfoData (CpuMpData); SaveLocalApicTimerSetting (CpuMpData); } if (CpuMpData->ApLoopMode == ApInMwaitLoop) { // // Get AP target C-state each time when waking up AP, // for it maybe updated by platform again // CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate); } ExchangeInfo = CpuMpData->MpCpuExchangeInfo; if (Broadcast) { for (Index = 0; Index < CpuMpData->CpuCount; Index++) { if (Index != CpuMpData->BspNumber) { CpuData = &CpuMpData->CpuData[Index]; // // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but // the AP procedure will be skipped for disabled AP because AP state // is not CpuStateReady. // if ((GetApState (CpuData) == CpuStateDisabled) && !WakeUpDisabledAps) { continue; } CpuData->ApFunction = (UINTN)Procedure; CpuData->ApFunctionArgument = (UINTN)ProcedureArgument; SetApState (CpuData, CpuStateReady); if (CpuMpData->InitFlag != ApInitConfig) { *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL; } } } if (ResetVectorRequired) { // // For SEV-ES and SEV-SNP, the initial AP boot address will be defined by // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address // from the original INIT-SIPI-SIPI. // if (CpuMpData->SevEsIsEnabled) { SetSevEsJumpTable (ExchangeInfo->BufferStart); } // // Wakeup all APs // Must use the INIT-SIPI-SIPI method for initial configuration in // order to obtain the APIC ID. // if (CpuMpData->SevSnpIsEnabled && (CpuMpData->InitFlag != ApInitConfig)) { SevSnpCreateAP (CpuMpData, -1); } else { if ((CpuMpData->InitFlag == ApInitConfig) && FixedPcdGetBool (PcdFirstTimeWakeUpAPsBySipi)) { // // SIPI can be used for the first time wake up after reset to reduce boot time. // SendStartupIpiAllExcludingSelf ((UINT32)ExchangeInfo->BufferStart); } else { SendInitSipiSipiAllExcludingSelf ((UINT32)ExchangeInfo->BufferStart); } } } if (CpuMpData->InitFlag == ApInitConfig) { if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) { // // The AP enumeration algorithm below is suitable only when the // platform can tell us the *exact* boot CPU count in advance. // // The wait below finishes only when the detected AP count reaches // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that // takes. If at least one AP fails to check in (meaning a platform // hardware bug), the detection hangs forever, by design. If the actual // boot CPU count in the system is higher than // PcdCpuBootLogicalProcessorNumber (meaning a platform // misconfiguration), then some APs may complete initialization after // the wait finishes, and cause undefined behavior. // TimedWaitForApFinish ( CpuMpData, PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1, MAX_UINT32 // approx. 71 minutes ); } else { // // The AP enumeration algorithm below is suitable for two use cases. // // (1) The check-in time for an individual AP is bounded, and APs run // through their initialization routines strongly concurrently. In // particular, the number of concurrently running APs // ("NumApsExecuting") is never expected to fall to zero // *temporarily* -- it is expected to fall to zero only when all // APs have checked-in. // // In this case, the platform is supposed to set // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long // enough for one AP to start initialization). The timeout will be // reached soon, and remaining APs are collected by watching // NumApsExecuting fall to zero. If NumApsExecuting falls to zero // mid-process, while some APs have not completed initialization, // the behavior is undefined. // // (2) The check-in time for an individual AP is unbounded, and/or APs // may complete their initializations widely spread out. In // particular, some APs may finish initialization before some APs // even start. // // In this case, the platform is supposed to set // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP // enumeration will always take that long (except when the boot CPU // count happens to be maximal, that is, // PcdCpuMaxLogicalProcessorNumber). All APs are expected to // check-in before the timeout, and NumApsExecuting is assumed zero // at timeout. APs that miss the time-out may cause undefined // behavior. // TimedWaitForApFinish ( CpuMpData, PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1, PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds) ); while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) { CpuPause (); } } } else { // // Wait all APs waken up if this is not the 1st broadcast of SIPI // for (Index = 0; Index < CpuMpData->CpuCount; Index++) { CpuData = &CpuMpData->CpuData[Index]; if (Index != CpuMpData->BspNumber) { WaitApWakeup (CpuData->StartupApSignal); } } } } else { CpuData = &CpuMpData->CpuData[ProcessorNumber]; CpuData->ApFunction = (UINTN)Procedure; CpuData->ApFunctionArgument = (UINTN)ProcedureArgument; SetApState (CpuData, CpuStateReady); // // Wakeup specified AP // ASSERT (CpuMpData->InitFlag != ApInitConfig); *(UINT32 *)CpuData->StartupApSignal = WAKEUP_AP_SIGNAL; if (ResetVectorRequired) { CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; // // For SEV-ES and SEV-SNP, the initial AP boot address will be defined by // PcdSevEsWorkAreaBase. The Segment/Rip must be the jump address // from the original INIT-SIPI-SIPI. // if (CpuMpData->SevEsIsEnabled) { SetSevEsJumpTable (ExchangeInfo->BufferStart); } if (CpuMpData->SevSnpIsEnabled && (CpuMpData->InitFlag != ApInitConfig)) { SevSnpCreateAP (CpuMpData, (INTN)ProcessorNumber); } else { SendInitSipiSipi ( CpuInfoInHob[ProcessorNumber].ApicId, (UINT32)ExchangeInfo->BufferStart ); } } // // Wait specified AP waken up // WaitApWakeup (CpuData->StartupApSignal); } if (ResetVectorRequired) { FreeResetVector (CpuMpData); } // // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by // S3SmmInitDone Ppi. // CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop); } /** Calculate timeout value and return the current performance counter value. Calculate the number of performance counter ticks required for a timeout. If TimeoutInMicroseconds is 0, return value is also 0, which is recognized as infinity. @param[in] TimeoutInMicroseconds Timeout value in microseconds. @param[out] CurrentTime Returns the current value of the performance counter. @return Expected time stamp counter for timeout. If TimeoutInMicroseconds is 0, return value is also 0, which is recognized as infinity. **/ UINT64 CalculateTimeout ( IN UINTN TimeoutInMicroseconds, OUT UINT64 *CurrentTime ) { UINT64 TimeoutInSeconds; UINT64 TimestampCounterFreq; // // Read the current value of the performance counter // *CurrentTime = GetPerformanceCounter (); // // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized // as infinity. // if (TimeoutInMicroseconds == 0) { return 0; } // // GetPerformanceCounterProperties () returns the timestamp counter's frequency // in Hz. // TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL); // // Check the potential overflow before calculate the number of ticks for the timeout value. // if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) { // // Convert microseconds into seconds if direct multiplication overflows // TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000); // // Assertion if the final tick count exceeds MAX_UINT64 // ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq); return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds); } else { // // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide // it by 1,000,000, to get the number of ticks for the timeout value. // return DivU64x32 ( MultU64x64 ( TimestampCounterFreq, TimeoutInMicroseconds ), 1000000 ); } } /** Switch Context for each AP. **/ VOID EFIAPI SwitchContextPerAp ( VOID ) { UINTN ProcessorNumber; CPU_MP_DATA *CpuMpData; CPU_INFO_IN_HOB *CpuInfoInHob; CpuMpData = GetCpuMpData (); CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; GetProcessorNumber (CpuMpData, &ProcessorNumber); SwitchStack ( (SWITCH_STACK_ENTRY_POINT)(UINTN)DxeApEntryPoint, (VOID *)(UINTN)CpuMpData, NULL, (VOID *)((UINTN)CpuInfoInHob[ProcessorNumber].ApTopOfStack) ); } /** Checks whether timeout expires. Check whether the number of elapsed performance counter ticks required for a timeout condition has been reached. If Timeout is zero, which means infinity, return value is always FALSE. @param[in, out] PreviousTime On input, the value of the performance counter when it was last read. On output, the current value of the performance counter @param[in] TotalTime The total amount of elapsed time in performance counter ticks. @param[in] Timeout The number of performance counter ticks required to reach a timeout condition. @retval TRUE A timeout condition has been reached. @retval FALSE A timeout condition has not been reached. **/ BOOLEAN CheckTimeout ( IN OUT UINT64 *PreviousTime, IN UINT64 *TotalTime, IN UINT64 Timeout ) { UINT64 Start; UINT64 End; UINT64 CurrentTime; INT64 Delta; INT64 Cycle; if (Timeout == 0) { return FALSE; } GetPerformanceCounterProperties (&Start, &End); Cycle = End - Start; if (Cycle < 0) { Cycle = -Cycle; } Cycle++; CurrentTime = GetPerformanceCounter (); Delta = (INT64)(CurrentTime - *PreviousTime); if (Start > End) { Delta = -Delta; } if (Delta < 0) { Delta += Cycle; } *TotalTime += Delta; *PreviousTime = CurrentTime; if (*TotalTime > Timeout) { return TRUE; } return FALSE; } /** Helper function that waits until the finished AP count reaches the specified limit, or the specified timeout elapses (whichever comes first). @param[in] CpuMpData Pointer to CPU MP Data. @param[in] FinishedApLimit The number of finished APs to wait for. @param[in] TimeLimit The number of microseconds to wait for. **/ VOID TimedWaitForApFinish ( IN CPU_MP_DATA *CpuMpData, IN UINT32 FinishedApLimit, IN UINT32 TimeLimit ) { // // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0 // "infinity", so check for (TimeLimit == 0) explicitly. // if (TimeLimit == 0) { return; } CpuMpData->TotalTime = 0; CpuMpData->ExpectedTime = CalculateTimeout ( TimeLimit, &CpuMpData->CurrentTime ); while (CpuMpData->FinishedCount < FinishedApLimit && !CheckTimeout ( &CpuMpData->CurrentTime, &CpuMpData->TotalTime, CpuMpData->ExpectedTime )) { CpuPause (); } if (CpuMpData->FinishedCount >= FinishedApLimit) { DEBUG (( DEBUG_VERBOSE, "%a: reached FinishedApLimit=%u in %Lu microseconds\n", __func__, FinishedApLimit, DivU64x64Remainder ( MultU64x32 (CpuMpData->TotalTime, 1000000), GetPerformanceCounterProperties (NULL, NULL), NULL ) )); } } /** Reset an AP to Idle state. Any task being executed by the AP will be aborted and the AP will be waiting for a new task in Wait-For-SIPI state. @param[in] ProcessorNumber The handle number of processor. **/ VOID ResetProcessorToIdleState ( IN UINTN ProcessorNumber ) { CPU_MP_DATA *CpuMpData; CpuMpData = GetCpuMpData (); CpuMpData->InitFlag = ApInitReconfig; WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE); while (CpuMpData->FinishedCount < 1) { CpuPause (); } CpuMpData->InitFlag = ApInitDone; SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle); } /** Searches for the next waiting AP. Search for the next AP that is put in waiting state by single-threaded StartupAllAPs(). @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP. @retval EFI_SUCCESS The next waiting AP has been found. @retval EFI_NOT_FOUND No waiting AP exists. **/ EFI_STATUS GetNextWaitingProcessorNumber ( OUT UINTN *NextProcessorNumber ) { UINTN ProcessorNumber; CPU_MP_DATA *CpuMpData; CpuMpData = GetCpuMpData (); for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) { if (CpuMpData->CpuData[ProcessorNumber].Waiting) { *NextProcessorNumber = ProcessorNumber; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** Checks status of specified AP. This function checks whether the specified AP has finished the task assigned by StartupThisAP(), and whether timeout expires. @param[in] ProcessorNumber The handle number of processor. @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs(). @retval EFI_TIMEOUT The timeout expires. @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired. **/ EFI_STATUS CheckThisAP ( IN UINTN ProcessorNumber ) { CPU_MP_DATA *CpuMpData; CPU_AP_DATA *CpuData; CpuMpData = GetCpuMpData (); CpuData = &CpuMpData->CpuData[ProcessorNumber]; // // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task. // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value. // // // If the AP finishes for StartupThisAP(), return EFI_SUCCESS. // if (GetApState (CpuData) == CpuStateFinished) { if (CpuData->Finished != NULL) { *(CpuData->Finished) = TRUE; } SetApState (CpuData, CpuStateIdle); return EFI_SUCCESS; } else { // // If timeout expires for StartupThisAP(), report timeout. // if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) { if (CpuData->Finished != NULL) { *(CpuData->Finished) = FALSE; } // // Reset failed AP to idle state // ResetProcessorToIdleState (ProcessorNumber); return EFI_TIMEOUT; } } return EFI_NOT_READY; } /** Checks status of all APs. This function checks whether all APs have finished task assigned by StartupAllAPs(), and whether timeout expires. @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs(). @retval EFI_TIMEOUT The timeout expires. @retval EFI_NOT_READY APs have not finished task and timeout has not expired. **/ EFI_STATUS CheckAllAPs ( VOID ) { UINTN ProcessorNumber; UINTN NextProcessorNumber; UINTN ListIndex; EFI_STATUS Status; CPU_MP_DATA *CpuMpData; CPU_AP_DATA *CpuData; CpuMpData = GetCpuMpData (); NextProcessorNumber = 0; // // Go through all APs that are responsible for the StartupAllAPs(). // for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) { if (!CpuMpData->CpuData[ProcessorNumber].Waiting) { continue; } CpuData = &CpuMpData->CpuData[ProcessorNumber]; // // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task. // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value. // if (GetApState (CpuData) == CpuStateFinished) { CpuMpData->RunningCount--; CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE; SetApState (CpuData, CpuStateIdle); // // If in Single Thread mode, then search for the next waiting AP for execution. // if (CpuMpData->SingleThread) { Status = GetNextWaitingProcessorNumber (&NextProcessorNumber); if (!EFI_ERROR (Status)) { WakeUpAP ( CpuMpData, FALSE, (UINT32)NextProcessorNumber, CpuMpData->Procedure, CpuMpData->ProcArguments, TRUE ); } } } } // // If all APs finish, return EFI_SUCCESS. // if (CpuMpData->RunningCount == 0) { return EFI_SUCCESS; } // // If timeout expires, report timeout. // if (CheckTimeout ( &CpuMpData->CurrentTime, &CpuMpData->TotalTime, CpuMpData->ExpectedTime ) ) { // // If FailedCpuList is not NULL, record all failed APs in it. // if (CpuMpData->FailedCpuList != NULL) { *CpuMpData->FailedCpuList = AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN)); ASSERT (*CpuMpData->FailedCpuList != NULL); } ListIndex = 0; for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) { // // Check whether this processor is responsible for StartupAllAPs(). // if (CpuMpData->CpuData[ProcessorNumber].Waiting) { // // Reset failed APs to idle state // ResetProcessorToIdleState (ProcessorNumber); CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE; if (CpuMpData->FailedCpuList != NULL) { (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber; } } } if (CpuMpData->FailedCpuList != NULL) { (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST; } return EFI_TIMEOUT; } return EFI_NOT_READY; } /** This function Get BspNumber. @param[in] FirstMpHandOff Pointer to first MpHandOff HOB body. @return BspNumber **/ UINT32 GetBspNumber ( IN CONST MP_HAND_OFF *FirstMpHandOff ) { UINT32 ApicId; UINT32 Index; CONST MP_HAND_OFF *MpHandOff; // // Get the processor number for the BSP // ApicId = GetInitialApicId (); for (MpHandOff = FirstMpHandOff; MpHandOff != NULL; MpHandOff = GetNextMpHandOffHob (MpHandOff)) { for (Index = 0; Index < MpHandOff->CpuCount; Index++) { if (MpHandOff->Info[Index].ApicId == ApicId) { return MpHandOff->ProcessorIndex + Index; } } } ASSERT_EFI_ERROR (EFI_NOT_FOUND); return 0; } /** This function is intended to be invoked by the BSP in order to wake up the AP. The BSP accomplishes this by triggering a start-up signal, which in turn causes any APs that are currently in a loop on the PEI-prepared memory to awaken and begin running the procedure called SwitchContextPerAp. This procedure allows the AP to switch to another section of memory and continue its loop there. @param[in] FirstMpHandOff Pointer to first MP hand-off HOB body. **/ VOID SwitchApContext ( IN CONST MP_HAND_OFF *FirstMpHandOff ) { UINTN Index; UINT32 BspNumber; CONST MP_HAND_OFF *MpHandOff; BspNumber = GetBspNumber (FirstMpHandOff); for (MpHandOff = FirstMpHandOff; MpHandOff != NULL; MpHandOff = GetNextMpHandOffHob (MpHandOff)) { for (Index = 0; Index < MpHandOff->CpuCount; Index++) { if (MpHandOff->ProcessorIndex + Index != BspNumber) { *(UINTN *)(UINTN)MpHandOff->Info[Index].StartupProcedureAddress = (UINTN)SwitchContextPerAp; *(UINT32 *)(UINTN)MpHandOff->Info[Index].StartupSignalAddress = MpHandOff->StartupSignalValue; } } } // // Wait all APs waken up if this is not the 1st broadcast of SIPI // for (MpHandOff = FirstMpHandOff; MpHandOff != NULL; MpHandOff = GetNextMpHandOffHob (MpHandOff)) { for (Index = 0; Index < MpHandOff->CpuCount; Index++) { if (MpHandOff->ProcessorIndex + Index != BspNumber) { WaitApWakeup ((UINT32 *)(UINTN)(MpHandOff->Info[Index].StartupSignalAddress)); } } } } /** Get pointer to next MP_HAND_OFF GUIDed HOB body. @param[in] MpHandOff Previous HOB body. Pass NULL to get the first HOB. @return The pointer to MP_HAND_OFF structure. **/ MP_HAND_OFF * GetNextMpHandOffHob ( IN CONST MP_HAND_OFF *MpHandOff ) { EFI_HOB_GUID_TYPE *GuidHob; if (MpHandOff == NULL) { GuidHob = GetFirstGuidHob (&mMpHandOffGuid); } else { GuidHob = (VOID *)(((UINT8 *)MpHandOff) - sizeof (EFI_HOB_GUID_TYPE)); GuidHob = GetNextGuidHob (&mMpHandOffGuid, GET_NEXT_HOB (GuidHob)); } if (GuidHob == NULL) { return NULL; } return (MP_HAND_OFF *)GET_GUID_HOB_DATA (GuidHob); } /** MP Initialize Library initialization. This service will allocate AP reset vector and wakeup all APs to do APs initialization. This service must be invoked before all other MP Initialize Library service are invoked. @retval EFI_SUCCESS MP initialization succeeds. @retval Others MP initialization fails. **/ EFI_STATUS EFIAPI MpInitLibInitialize ( VOID ) { MP_HAND_OFF *FirstMpHandOff; MP_HAND_OFF *MpHandOff; CPU_INFO_IN_HOB *CpuInfoInHob; UINT32 MaxLogicalProcessorNumber; UINT32 ApStackSize; MP_ASSEMBLY_ADDRESS_MAP AddressMap; CPU_VOLATILE_REGISTERS VolatileRegisters; UINTN BufferSize; UINT32 MonitorFilterSize; VOID *MpBuffer; UINTN Buffer; CPU_MP_DATA *CpuMpData; UINT8 ApLoopMode; UINT8 *MonitorBuffer; UINT32 Index, HobIndex; UINTN ApResetVectorSizeBelow1Mb; UINTN ApResetVectorSizeAbove1Mb; UINTN BackupBufferAddr; UINTN ApIdtBase; FirstMpHandOff = GetNextMpHandOffHob (NULL); if (FirstMpHandOff != NULL) { MaxLogicalProcessorNumber = 0; for (MpHandOff = FirstMpHandOff; MpHandOff != NULL; MpHandOff = GetNextMpHandOffHob (MpHandOff)) { DEBUG (( DEBUG_INFO, "%a: ProcessorIndex=%u CpuCount=%u\n", __func__, MpHandOff->ProcessorIndex, MpHandOff->CpuCount )); ASSERT (MaxLogicalProcessorNumber == MpHandOff->ProcessorIndex); MaxLogicalProcessorNumber += MpHandOff->CpuCount; } } else { MaxLogicalProcessorNumber = PcdGet32 (PcdCpuMaxLogicalProcessorNumber); } ASSERT (MaxLogicalProcessorNumber != 0); AsmGetAddressMap (&AddressMap); GetApResetVectorSize (&AddressMap, &ApResetVectorSizeBelow1Mb, &ApResetVectorSizeAbove1Mb); ApStackSize = PcdGet32 (PcdCpuApStackSize); // // ApStackSize must be power of 2 // ASSERT ((ApStackSize & (ApStackSize - 1)) == 0); ApLoopMode = GetApLoopMode (&MonitorFilterSize); // // Save BSP's Control registers for APs. // SaveVolatileRegisters (&VolatileRegisters); BufferSize = ApStackSize * MaxLogicalProcessorNumber; // // Allocate extra ApStackSize to let AP stack align on ApStackSize bounday // BufferSize += ApStackSize; BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber; BufferSize += ApResetVectorSizeBelow1Mb; BufferSize = ALIGN_VALUE (BufferSize, 8); BufferSize += VolatileRegisters.Idtr.Limit + 1; BufferSize += sizeof (CPU_MP_DATA); BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber; MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize)); ASSERT (MpBuffer != NULL); ZeroMem (MpBuffer, BufferSize); Buffer = ALIGN_VALUE ((UINTN)MpBuffer, ApStackSize); // // The layout of the Buffer is as below (lower address on top): // // +--------------------+ <-- Buffer (Pointer of CpuMpData is stored in the top of each AP's stack.) // AP Stacks (N) (StackTop = (RSP + ApStackSize) & ~ApStackSize)) // +--------------------+ <-- MonitorBuffer // AP Monitor Filters (N) // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer) // Backup Buffer // +--------------------+ // Padding // +--------------------+ <-- ApIdtBase (8-byte boundary) // AP IDT All APs share one separate IDT. // +--------------------+ <-- CpuMpData // CPU_MP_DATA // +--------------------+ <-- CpuMpData->CpuData // CPU_AP_DATA (N) // +--------------------+ <-- CpuMpData->CpuInfoInHob // CPU_INFO_IN_HOB (N) // +--------------------+ // MonitorBuffer = (UINT8 *)(Buffer + ApStackSize * MaxLogicalProcessorNumber); BackupBufferAddr = (UINTN)MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber; ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSizeBelow1Mb, 8); CpuMpData = (CPU_MP_DATA *)(ApIdtBase + VolatileRegisters.Idtr.Limit + 1); CpuMpData->Buffer = Buffer; CpuMpData->CpuApStackSize = ApStackSize; CpuMpData->BackupBuffer = BackupBufferAddr; CpuMpData->BackupBufferSize = ApResetVectorSizeBelow1Mb; CpuMpData->WakeupBuffer = (UINTN)-1; CpuMpData->CpuCount = 1; CpuMpData->BspNumber = 0; CpuMpData->WaitEvent = NULL; CpuMpData->SwitchBspFlag = FALSE; CpuMpData->CpuData = (CPU_AP_DATA *)(CpuMpData + 1); CpuMpData->CpuInfoInHob = (UINT64)(UINTN)(CpuMpData->CpuData + MaxLogicalProcessorNumber); InitializeSpinLock (&CpuMpData->MpLock); CpuMpData->SevEsIsEnabled = ConfidentialComputingGuestHas (CCAttrAmdSevEs); CpuMpData->SevSnpIsEnabled = ConfidentialComputingGuestHas (CCAttrAmdSevSnp); CpuMpData->SevEsAPBuffer = (UINTN)-1; CpuMpData->GhcbBase = PcdGet64 (PcdGhcbBase); CpuMpData->UseSevEsAPMethod = CpuMpData->SevEsIsEnabled && !CpuMpData->SevSnpIsEnabled; if (CpuMpData->SevSnpIsEnabled) { ASSERT ((PcdGet64 (PcdGhcbHypervisorFeatures) & GHCB_HV_FEATURES_SNP_AP_CREATE) == GHCB_HV_FEATURES_SNP_AP_CREATE); } // // Make sure no memory usage outside of the allocated buffer. // (ApStackSize - (Buffer - (UINTN)MpBuffer)) is the redundant caused by alignment // ASSERT ( (CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) == (UINTN)MpBuffer + BufferSize - (ApStackSize - Buffer + (UINTN)MpBuffer) ); // // Duplicate BSP's IDT to APs. // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1 // CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1); VolatileRegisters.Idtr.Base = ApIdtBase; // // Don't pass BSP's TR to APs to avoid AP init failure. // VolatileRegisters.Tr = 0; CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters)); // // Set BSP basic information // InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize); // // Save assembly code information // CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP)); // // Finally set AP loop mode // CpuMpData->ApLoopMode = ApLoopMode; DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode)); CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop); // // Set up APs wakeup signal buffer // for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) { CpuMpData->CpuData[Index].StartupApSignal = (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index); } // // Copy all 32-bit code and 64-bit code into memory with type of // EfiBootServicesCode to avoid page fault if NX memory protection is enabled. // CpuMpData->WakeupBufferHigh = AllocateCodeBuffer (ApResetVectorSizeAbove1Mb); CopyMem ( (VOID *)CpuMpData->WakeupBufferHigh, CpuMpData->AddressMap.RendezvousFunnelAddress + CpuMpData->AddressMap.ModeTransitionOffset, ApResetVectorSizeAbove1Mb ); DEBUG ((DEBUG_INFO, "AP Vector: non-16-bit = %p/%x\n", CpuMpData->WakeupBufferHigh, ApResetVectorSizeAbove1Mb)); // // Enable the local APIC for Virtual Wire Mode. // ProgramVirtualWireMode (); if (FirstMpHandOff == NULL) { if (MaxLogicalProcessorNumber > 1) { // // Wakeup all APs and calculate the processor count in system // CollectProcessorCount (CpuMpData); } } else { // // APs have been wakeup before, just get the CPU Information // from HOB // if (CpuMpData->UseSevEsAPMethod) { AmdSevUpdateCpuMpData (CpuMpData); } CpuMpData->CpuCount = MaxLogicalProcessorNumber; CpuMpData->BspNumber = GetBspNumber (FirstMpHandOff); CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; for (MpHandOff = FirstMpHandOff; MpHandOff != NULL; MpHandOff = GetNextMpHandOffHob (MpHandOff)) { for (HobIndex = 0; HobIndex < MpHandOff->CpuCount; HobIndex++) { Index = MpHandOff->ProcessorIndex + HobIndex; InitializeSpinLock (&CpuMpData->CpuData[Index].ApLock); CpuMpData->CpuData[Index].CpuHealthy = (MpHandOff->Info[HobIndex].Health == 0) ? TRUE : FALSE; CpuMpData->CpuData[Index].ApFunction = 0; CpuInfoInHob[Index].InitialApicId = MpHandOff->Info[HobIndex].ApicId; CpuInfoInHob[Index].ApTopOfStack = CpuMpData->Buffer + (Index + 1) * CpuMpData->CpuApStackSize; CpuInfoInHob[Index].ApicId = MpHandOff->Info[HobIndex].ApicId; CpuInfoInHob[Index].Health = MpHandOff->Info[HobIndex].Health; } } DEBUG (( DEBUG_INFO, "FirstMpHandOff->WaitLoopExecutionMode: %04d, sizeof (VOID *): %04d\n", FirstMpHandOff->WaitLoopExecutionMode, sizeof (VOID *) )); if (FirstMpHandOff->WaitLoopExecutionMode == sizeof (VOID *)) { ASSERT (CpuMpData->ApLoopMode != ApInHltLoop); CpuMpData->FinishedCount = 0; CpuMpData->InitFlag = ApInitDone; CpuMpData->EnableExecuteDisableForSwitchContext = IsBspExecuteDisableEnabled (); SaveCpuMpData (CpuMpData); // // In scenarios where both the PEI and DXE phases run in the same // execution mode (32bit or 64bit), the BSP triggers // a start-up signal during the DXE phase to wake up the APs. This causes any // APs that are currently in a loop on the memory prepared during the PEI // phase to awaken and run the SwitchContextPerAp procedure. This procedure // enables the APs to switch to a different memory section and continue their // looping process there. // SwitchApContext (FirstMpHandOff); // // Wait for all APs finished initialization // while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) { CpuPause (); } // // Set Apstate as Idle, otherwise Aps cannot be waken-up again. // If any enabled AP is not idle, return EFI_NOT_READY during waken-up. // for (Index = 0; Index < CpuMpData->CpuCount; Index++) { SetApState (&CpuMpData->CpuData[Index], CpuStateIdle); } // // Initialize global data for MP support // InitMpGlobalData (CpuMpData); return EFI_SUCCESS; } } if (!GetMicrocodePatchInfoFromHob ( &CpuMpData->MicrocodePatchAddress, &CpuMpData->MicrocodePatchRegionSize )) { // // The microcode patch information cache HOB does not exist, which means // the microcode patches data has not been loaded into memory yet // ShadowMicrocodeUpdatePatch (CpuMpData); } // // Detect and apply Microcode on BSP // MicrocodeDetect (CpuMpData, CpuMpData->BspNumber); // // Store BSP's MTRR setting // MtrrGetAllMtrrs (&CpuMpData->MtrrTable); // // Wakeup APs to do some AP initialize sync (Microcode & MTRR) // if (CpuMpData->CpuCount > 1) { if (FirstMpHandOff != NULL) { // // Only needs to use this flag for DXE phase to update the wake up // buffer. Wakeup buffer allocated in PEI phase is no longer valid // in DXE. // CpuMpData->InitFlag = ApInitReconfig; } WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE); // // Wait for all APs finished initialization // while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) { CpuPause (); } if (FirstMpHandOff != NULL) { CpuMpData->InitFlag = ApInitDone; } for (Index = 0; Index < CpuMpData->CpuCount; Index++) { SetApState (&CpuMpData->CpuData[Index], CpuStateIdle); } } // // Dump the microcode revision for each core. // DEBUG_CODE_BEGIN (); UINT32 ThreadId; UINT32 ExpectedMicrocodeRevision; CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; for (Index = 0; Index < CpuMpData->CpuCount; Index++) { GetProcessorLocationByApicId (CpuInfoInHob[Index].InitialApicId, NULL, NULL, &ThreadId); if (ThreadId == 0) { // // MicrocodeDetect() loads microcode in first thread of each core, so, // CpuMpData->CpuData[Index].MicrocodeEntryAddr is initialized only for first thread of each core. // ExpectedMicrocodeRevision = 0; if (CpuMpData->CpuData[Index].MicrocodeEntryAddr != 0) { ExpectedMicrocodeRevision = ((CPU_MICROCODE_HEADER *)(UINTN)CpuMpData->CpuData[Index].MicrocodeEntryAddr)->UpdateRevision; } DEBUG (( DEBUG_INFO, "CPU[%04d]: Microcode revision = %08x, expected = %08x\n", Index, CpuMpData->CpuData[Index].MicrocodeRevision, ExpectedMicrocodeRevision )); } } DEBUG_CODE_END (); // // Initialize global data for MP support // InitMpGlobalData (CpuMpData); return EFI_SUCCESS; } /** Gets detailed MP-related information on the requested processor at the instant this call is made. This service may only be called from the BSP. @param[in] ProcessorNumber The handle number of processor. Lower 24 bits contains the actual processor number. BIT24 indicates if the EXTENDED_PROCESSOR_INFORMATION will be retrived. @param[out] ProcessorInfoBuffer A pointer to the buffer where information for the requested processor is deposited. @param[out] HealthData Return processor health data. @retval EFI_SUCCESS Processor information was returned. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL. @retval EFI_NOT_FOUND The processor with the handle specified by ProcessorNumber does not exist in the platform. @retval EFI_NOT_READY MP Initialize Library is not initialized. **/ EFI_STATUS EFIAPI MpInitLibGetProcessorInfo ( IN UINTN ProcessorNumber, OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer, OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL ) { CPU_MP_DATA *CpuMpData; UINTN CallerNumber; CPU_INFO_IN_HOB *CpuInfoInHob; UINTN OriginalProcessorNumber; CpuMpData = GetCpuMpData (); CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob; // // Lower 24 bits contains the actual processor number. // OriginalProcessorNumber = ProcessorNumber; ProcessorNumber &= BIT24 - 1; // // Check whether caller processor is BSP // MpInitLibWhoAmI (&CallerNumber); if (CallerNumber != CpuMpData->BspNumber) { return EFI_DEVICE_ERROR; } if (ProcessorInfoBuffer == NULL) { return EFI_INVALID_PARAMETER; } if (ProcessorNumber >= CpuMpData->CpuCount) { return EFI_NOT_FOUND; } ProcessorInfoBuffer->ProcessorId = (UINT64)CpuInfoInHob[ProcessorNumber].ApicId; ProcessorInfoBuffer->StatusFlag = 0; if (ProcessorNumber == CpuMpData->BspNumber) { ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT; } if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) { ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT; } if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) { ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT; } else { ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT; } // // Get processor location information // GetProcessorLocationByApicId ( CpuInfoInHob[ProcessorNumber].ApicId, &ProcessorInfoBuffer->Location.Package, &ProcessorInfoBuffer->Location.Core, &ProcessorInfoBuffer->Location.Thread ); if ((OriginalProcessorNumber & CPU_V2_EXTENDED_TOPOLOGY) != 0) { GetProcessorLocation2ByApicId ( CpuInfoInHob[ProcessorNumber].ApicId, &ProcessorInfoBuffer->ExtendedInformation.Location2.Package, &ProcessorInfoBuffer->ExtendedInformation.Location2.Die, &ProcessorInfoBuffer->ExtendedInformation.Location2.Tile, &ProcessorInfoBuffer->ExtendedInformation.Location2.Module, &ProcessorInfoBuffer->ExtendedInformation.Location2.Core, &ProcessorInfoBuffer->ExtendedInformation.Location2.Thread ); } if (HealthData != NULL) { HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health; } return EFI_SUCCESS; } /** Worker function to switch the requested AP to be the BSP from that point onward. @param[in] ProcessorNumber The handle number of AP that is to become the new BSP. @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an enabled AP. Otherwise, it will be disabled. @retval EFI_SUCCESS BSP successfully switched. @retval others Failed to switch BSP. **/ EFI_STATUS SwitchBSPWorker ( IN UINTN ProcessorNumber, IN BOOLEAN EnableOldBSP ) { CPU_MP_DATA *CpuMpData; UINTN CallerNumber; CPU_STATE State; MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr; BOOLEAN OldInterruptState; BOOLEAN OldTimerInterruptState; // // Save and Disable Local APIC timer interrupt // OldTimerInterruptState = GetApicTimerInterruptState (); DisableApicTimerInterrupt (); // // Before send both BSP and AP to a procedure to exchange their roles, // interrupt must be disabled. This is because during the exchange role // process, 2 CPU may use 1 stack. If interrupt happens, the stack will // be corrupted, since interrupt return address will be pushed to stack // by hardware. // OldInterruptState = SaveAndDisableInterrupts (); // // Mask LINT0 & LINT1 for the old BSP // DisableLvtInterrupts (); CpuMpData = GetCpuMpData (); // // Check whether caller processor is BSP // MpInitLibWhoAmI (&CallerNumber); if (CallerNumber != CpuMpData->BspNumber) { return EFI_DEVICE_ERROR; } if (ProcessorNumber >= CpuMpData->CpuCount) { return EFI_NOT_FOUND; } // // Check whether specified AP is disabled // State = GetApState (&CpuMpData->CpuData[ProcessorNumber]); if (State == CpuStateDisabled) { return EFI_INVALID_PARAMETER; } // // Check whether ProcessorNumber specifies the current BSP // if (ProcessorNumber == CpuMpData->BspNumber) { return EFI_INVALID_PARAMETER; } // // Check whether specified AP is busy // if (State == CpuStateBusy) { return EFI_NOT_READY; } CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE; CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE; CpuMpData->SwitchBspFlag = TRUE; CpuMpData->NewBspNumber = ProcessorNumber; // // Clear the BSP bit of MSR_IA32_APIC_BASE // ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE); ApicBaseMsr.Bits.BSP = 0; AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64); // // Need to wakeUp AP (future BSP). // WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE); // // Save and restore volatile registers when switch BSP // SaveVolatileRegisters (&CpuMpData->BSPInfo.VolatileRegisters); AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo); RestoreVolatileRegisters (&CpuMpData->BSPInfo.VolatileRegisters, FALSE); // // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP // ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE); ApicBaseMsr.Bits.BSP = 1; AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64); ProgramVirtualWireMode (); // // Wait for old BSP finished AP task // while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) { CpuPause (); } CpuMpData->SwitchBspFlag = FALSE; // // Set old BSP enable state // if (!EnableOldBSP) { SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled); } else { SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle); } // // Save new BSP number // CpuMpData->BspNumber = (UINT32)ProcessorNumber; // // Restore interrupt state. // SetInterruptState (OldInterruptState); if (OldTimerInterruptState) { EnableApicTimerInterrupt (); } return EFI_SUCCESS; } /** Worker function to let the caller enable or disable an AP from this point onward. This service may only be called from the BSP. @param[in] ProcessorNumber The handle number of AP. @param[in] EnableAP Specifies the new state for the processor for enabled, FALSE for disabled. @param[in] HealthFlag If not NULL, a pointer to a value that specifies the new health status of the AP. @retval EFI_SUCCESS The specified AP was enabled or disabled successfully. @retval others Failed to Enable/Disable AP. **/ EFI_STATUS EnableDisableApWorker ( IN UINTN ProcessorNumber, IN BOOLEAN EnableAP, IN UINT32 *HealthFlag OPTIONAL ) { CPU_MP_DATA *CpuMpData; UINTN CallerNumber; CpuMpData = GetCpuMpData (); // // Check whether caller processor is BSP // MpInitLibWhoAmI (&CallerNumber); if (CallerNumber != CpuMpData->BspNumber) { return EFI_DEVICE_ERROR; } if (ProcessorNumber == CpuMpData->BspNumber) { return EFI_INVALID_PARAMETER; } if (ProcessorNumber >= CpuMpData->CpuCount) { return EFI_NOT_FOUND; } if (!EnableAP) { SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled); } else { ResetProcessorToIdleState (ProcessorNumber); } if (HealthFlag != NULL) { CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BOOLEAN)((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0); } return EFI_SUCCESS; } /** This return the handle number for the calling processor. This service may be called from the BSP and APs. @param[out] ProcessorNumber Pointer to the handle number of AP. The range is from 0 to the total number of logical processors minus 1. The total number of logical processors can be retrieved by MpInitLibGetNumberOfProcessors(). @retval EFI_SUCCESS The current processor handle number was returned in ProcessorNumber. @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL. @retval EFI_NOT_READY MP Initialize Library is not initialized. **/ EFI_STATUS EFIAPI MpInitLibWhoAmI ( OUT UINTN *ProcessorNumber ) { CPU_MP_DATA *CpuMpData; if (ProcessorNumber == NULL) { return EFI_INVALID_PARAMETER; } CpuMpData = GetCpuMpData (); return GetProcessorNumber (CpuMpData, ProcessorNumber); } /** Retrieves the number of logical processor in the platform and the number of those logical processors that are enabled on this boot. This service may only be called from the BSP. @param[out] NumberOfProcessors Pointer to the total number of logical processors in the system, including the BSP and disabled APs. @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical processors that exist in system, including the BSP. @retval EFI_SUCCESS The number of logical processors and enabled logical processors was retrieved. @retval EFI_DEVICE_ERROR The calling processor is an AP. @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors is NULL. @retval EFI_NOT_READY MP Initialize Library is not initialized. **/ EFI_STATUS EFIAPI MpInitLibGetNumberOfProcessors ( OUT UINTN *NumberOfProcessors OPTIONAL, OUT UINTN *NumberOfEnabledProcessors OPTIONAL ) { CPU_MP_DATA *CpuMpData; UINTN CallerNumber; UINTN ProcessorNumber; UINTN EnabledProcessorNumber; UINTN Index; CpuMpData = GetCpuMpData (); if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) { return EFI_INVALID_PARAMETER; } // // Check whether caller processor is BSP // MpInitLibWhoAmI (&CallerNumber); if (CallerNumber != CpuMpData->BspNumber) { return EFI_DEVICE_ERROR; } ProcessorNumber = CpuMpData->CpuCount; EnabledProcessorNumber = 0; for (Index = 0; Index < ProcessorNumber; Index++) { if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) { EnabledProcessorNumber++; } } if (NumberOfProcessors != NULL) { *NumberOfProcessors = ProcessorNumber; } if (NumberOfEnabledProcessors != NULL) { *NumberOfEnabledProcessors = EnabledProcessorNumber; } return EFI_SUCCESS; } /** Worker function to execute a caller provided function on all enabled APs. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. @param[in] SingleThread If TRUE, then all the enabled APs execute the function specified by Procedure one by one, in ascending order of processor handle number. If FALSE, then all the enabled APs execute the function specified by Procedure simultaneously. @param[in] ExcludeBsp Whether let BSP also trig this task. @param[in] WaitEvent The event created by the caller with CreateEvent() service. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] FailedCpuList If all APs finish successfully, then its content is set to NULL. If not all APs finish before timeout expires, then its content is set to address of the buffer holding handle numbers of the failed APs. @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired. @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs. @retval others Failed to Startup all APs. **/ EFI_STATUS StartupAllCPUsWorker ( IN EFI_AP_PROCEDURE Procedure, IN BOOLEAN SingleThread, IN BOOLEAN ExcludeBsp, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT UINTN **FailedCpuList OPTIONAL ) { EFI_STATUS Status; CPU_MP_DATA *CpuMpData; UINTN ProcessorCount; UINTN ProcessorNumber; UINTN CallerNumber; CPU_AP_DATA *CpuData; BOOLEAN HasEnabledAp; CPU_STATE ApState; CpuMpData = GetCpuMpData (); if (FailedCpuList != NULL) { *FailedCpuList = NULL; } if ((CpuMpData->CpuCount == 1) && ExcludeBsp) { return EFI_NOT_STARTED; } if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } // // Check whether caller processor is BSP // MpInitLibWhoAmI (&CallerNumber); if (CallerNumber != CpuMpData->BspNumber) { return EFI_DEVICE_ERROR; } // // Update AP state // CheckAndUpdateApsStatus (); ProcessorCount = CpuMpData->CpuCount; HasEnabledAp = FALSE; // // Check whether all enabled APs are idle. // If any enabled AP is not idle, return EFI_NOT_READY. // for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) { CpuData = &CpuMpData->CpuData[ProcessorNumber]; if (ProcessorNumber != CpuMpData->BspNumber) { ApState = GetApState (CpuData); if (ApState != CpuStateDisabled) { HasEnabledAp = TRUE; if (ApState != CpuStateIdle) { // // If any enabled APs are busy, return EFI_NOT_READY. // return EFI_NOT_READY; } } } } if (!HasEnabledAp && ExcludeBsp) { // // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED. // return EFI_NOT_STARTED; } CpuMpData->RunningCount = 0; for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) { CpuData = &CpuMpData->CpuData[ProcessorNumber]; CpuData->Waiting = FALSE; if (ProcessorNumber != CpuMpData->BspNumber) { if (CpuData->State == CpuStateIdle) { // // Mark this processor as responsible for current calling. // CpuData->Waiting = TRUE; CpuMpData->RunningCount++; } } } CpuMpData->Procedure = Procedure; CpuMpData->ProcArguments = ProcedureArgument; CpuMpData->SingleThread = SingleThread; CpuMpData->FinishedCount = 0; CpuMpData->FailedCpuList = FailedCpuList; CpuMpData->ExpectedTime = CalculateTimeout ( TimeoutInMicroseconds, &CpuMpData->CurrentTime ); CpuMpData->TotalTime = 0; CpuMpData->WaitEvent = WaitEvent; if (!SingleThread) { WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE); } else { for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) { if (ProcessorNumber == CallerNumber) { continue; } if (CpuMpData->CpuData[ProcessorNumber].Waiting) { WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE); break; } } } if (!ExcludeBsp) { // // Start BSP. // Procedure (ProcedureArgument); } Status = EFI_SUCCESS; if (WaitEvent == NULL) { do { Status = CheckAllAPs (); } while (Status == EFI_NOT_READY); } return Status; } /** Worker function to let the caller get one enabled AP to execute a caller-provided function. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. @param[in] ProcessorNumber The handle number of the AP. @param[in] WaitEvent The event created by the caller with CreateEvent() service. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @param[out] Finished If AP returns from Procedure before the timeout expires, its content is set to TRUE. Otherwise, the value is set to FALSE. @retval EFI_SUCCESS In blocking mode, specified AP finished before the timeout expires. @retval others Failed to Startup AP. **/ EFI_STATUS StartupThisAPWorker ( IN EFI_AP_PROCEDURE Procedure, IN UINTN ProcessorNumber, IN EFI_EVENT WaitEvent OPTIONAL, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL, OUT BOOLEAN *Finished OPTIONAL ) { EFI_STATUS Status; CPU_MP_DATA *CpuMpData; CPU_AP_DATA *CpuData; UINTN CallerNumber; CpuMpData = GetCpuMpData (); if (Finished != NULL) { *Finished = FALSE; } // // Check whether caller processor is BSP // MpInitLibWhoAmI (&CallerNumber); if (CallerNumber != CpuMpData->BspNumber) { return EFI_DEVICE_ERROR; } // // Check whether processor with the handle specified by ProcessorNumber exists // if (ProcessorNumber >= CpuMpData->CpuCount) { return EFI_NOT_FOUND; } // // Check whether specified processor is BSP // if (ProcessorNumber == CpuMpData->BspNumber) { return EFI_INVALID_PARAMETER; } // // Check parameter Procedure // if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } // // Update AP state // CheckAndUpdateApsStatus (); // // Check whether specified AP is disabled // if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) { return EFI_INVALID_PARAMETER; } // // If WaitEvent is not NULL, execute in non-blocking mode. // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS. // CheckAPsStatus() will check completion and timeout periodically. // CpuData = &CpuMpData->CpuData[ProcessorNumber]; CpuData->WaitEvent = WaitEvent; CpuData->Finished = Finished; CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime); CpuData->TotalTime = 0; WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE); // // If WaitEvent is NULL, execute in blocking mode. // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires. // Status = EFI_SUCCESS; if (WaitEvent == NULL) { do { Status = CheckThisAP (ProcessorNumber); } while (Status == EFI_NOT_READY); } return Status; } /** Get pointer to CPU MP Data structure from GUIDed HOB. @return The pointer to CPU MP Data structure. **/ CPU_MP_DATA * GetCpuMpDataFromGuidedHob ( VOID ) { EFI_HOB_GUID_TYPE *GuidHob; VOID *DataInHob; CPU_MP_DATA *CpuMpData; CpuMpData = NULL; GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid); if (GuidHob != NULL) { DataInHob = GET_GUID_HOB_DATA (GuidHob); CpuMpData = (CPU_MP_DATA *)(*(UINTN *)DataInHob); } return CpuMpData; } /** This service executes a caller provided function on all enabled CPUs. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. See type EFI_AP_PROCEDURE. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. Zero means infinity. TimeoutInMicroseconds is ignored for BSP. @param[in] ProcedureArgument The parameter passed into Procedure for all APs. @retval EFI_SUCCESS In blocking mode, all CPUs have finished before the timeout expired. @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled CPUs. @retval EFI_DEVICE_ERROR Caller processor is AP. @retval EFI_NOT_READY Any enabled APs are busy. @retval EFI_NOT_READY MP Initialize Library is not initialized. @retval EFI_TIMEOUT In blocking mode, the timeout expired before all enabled APs have finished. @retval EFI_INVALID_PARAMETER Procedure is NULL. **/ EFI_STATUS EFIAPI MpInitLibStartupAllCPUs ( IN EFI_AP_PROCEDURE Procedure, IN UINTN TimeoutInMicroseconds, IN VOID *ProcedureArgument OPTIONAL ) { return StartupAllCPUsWorker ( Procedure, FALSE, FALSE, NULL, TimeoutInMicroseconds, ProcedureArgument, NULL ); } /** The function check if the specified Attr is set. @param[in] CurrentAttr The current attribute. @param[in] Attr The attribute to check. @retval TRUE The specified Attr is set. @retval FALSE The specified Attr is not set. **/ STATIC BOOLEAN AmdMemEncryptionAttrCheck ( IN UINT64 CurrentAttr, IN CONFIDENTIAL_COMPUTING_GUEST_ATTR Attr ) { switch (Attr) { case CCAttrAmdSev: // // SEV is automatically enabled if SEV-ES or SEV-SNP is active. // return CurrentAttr >= CCAttrAmdSev; case CCAttrAmdSevEs: // // SEV-ES is automatically enabled if SEV-SNP is active. // return CurrentAttr >= CCAttrAmdSevEs; case CCAttrAmdSevSnp: return CurrentAttr == CCAttrAmdSevSnp; default: return FALSE; } } /** Check if the specified confidential computing attribute is active. @param[in] Attr The attribute to check. @retval TRUE The specified Attr is active. @retval FALSE The specified Attr is not active. **/ BOOLEAN EFIAPI ConfidentialComputingGuestHas ( IN CONFIDENTIAL_COMPUTING_GUEST_ATTR Attr ) { UINT64 CurrentAttr; // // Get the current CC attribute. // CurrentAttr = PcdGet64 (PcdConfidentialComputingGuestAttr); // // If attr is for the AMD group then call AMD specific checks. // if (((RShiftU64 (CurrentAttr, 8)) & 0xff) == 1) { return AmdMemEncryptionAttrCheck (CurrentAttr, Attr); } return (CurrentAttr == Attr); }