/** @file MTRR setting library @par Note: Most of services in this library instance are suggested to be invoked by BSP only, except for MtrrSetAllMtrrs() which is used to sync BSP's MTRR setting to APs. Copyright (c) 2008 - 2020, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include #include #include #define OR_SEED 0x0101010101010101ull #define CLEAR_SEED 0xFFFFFFFFFFFFFFFFull #define MAX_WEIGHT MAX_UINT8 #define SCRATCH_BUFFER_SIZE (4 * SIZE_4KB) #define MTRR_LIB_ASSERT_ALIGNED(B, L) ASSERT ((B & ~(L - 1)) == B); #define M(x, y) ((x) * VertexCount + (y)) #define O(x, y) ((y) * VertexCount + (x)) // // Context to save and restore when MTRRs are programmed // typedef struct { UINTN Cr4; BOOLEAN InterruptState; } MTRR_CONTEXT; typedef struct { UINT64 Address; UINT64 Alignment; UINT64 Length; MTRR_MEMORY_CACHE_TYPE Type : 7; // // Temprary use for calculating the best MTRR settings. // BOOLEAN Visited : 1; UINT8 Weight; UINT16 Previous; } MTRR_LIB_ADDRESS; // // This table defines the offset, base and length of the fixed MTRRs // CONST FIXED_MTRR mMtrrLibFixedMtrrTable[] = { { MSR_IA32_MTRR_FIX64K_00000, 0, SIZE_64KB }, { MSR_IA32_MTRR_FIX16K_80000, 0x80000, SIZE_16KB }, { MSR_IA32_MTRR_FIX16K_A0000, 0xA0000, SIZE_16KB }, { MSR_IA32_MTRR_FIX4K_C0000, 0xC0000, SIZE_4KB }, { MSR_IA32_MTRR_FIX4K_C8000, 0xC8000, SIZE_4KB }, { MSR_IA32_MTRR_FIX4K_D0000, 0xD0000, SIZE_4KB }, { MSR_IA32_MTRR_FIX4K_D8000, 0xD8000, SIZE_4KB }, { MSR_IA32_MTRR_FIX4K_E0000, 0xE0000, SIZE_4KB }, { MSR_IA32_MTRR_FIX4K_E8000, 0xE8000, SIZE_4KB }, { MSR_IA32_MTRR_FIX4K_F0000, 0xF0000, SIZE_4KB }, { MSR_IA32_MTRR_FIX4K_F8000, 0xF8000, SIZE_4KB } }; // // Lookup table used to print MTRRs // GLOBAL_REMOVE_IF_UNREFERENCED CONST CHAR8 *mMtrrMemoryCacheTypeShortName[] = { "UC", // CacheUncacheable "WC", // CacheWriteCombining "R*", // Invalid "R*", // Invalid "WT", // CacheWriteThrough "WP", // CacheWriteProtected "WB", // CacheWriteBack "R*" // Invalid }; /** Worker function prints all MTRRs for debugging. If MtrrSetting is not NULL, print MTRR settings from input MTRR settings buffer. If MtrrSetting is NULL, print MTRR settings from MTRRs. @param MtrrSetting A buffer holding all MTRRs content. **/ VOID MtrrDebugPrintAllMtrrsWorker ( IN MTRR_SETTINGS *MtrrSetting ); /** Worker function returns the variable MTRR count for the CPU. @return Variable MTRR count **/ UINT32 GetVariableMtrrCountWorker ( VOID ) { MSR_IA32_MTRRCAP_REGISTER MtrrCap; MtrrCap.Uint64 = AsmReadMsr64 (MSR_IA32_MTRRCAP); ASSERT (MtrrCap.Bits.VCNT <= ARRAY_SIZE (((MTRR_VARIABLE_SETTINGS *)0)->Mtrr)); return MtrrCap.Bits.VCNT; } /** Returns the variable MTRR count for the CPU. @return Variable MTRR count **/ UINT32 EFIAPI GetVariableMtrrCount ( VOID ) { if (!IsMtrrSupported ()) { return 0; } return GetVariableMtrrCountWorker (); } /** Worker function returns the firmware usable variable MTRR count for the CPU. @return Firmware usable variable MTRR count **/ UINT32 GetFirmwareVariableMtrrCountWorker ( VOID ) { UINT32 VariableMtrrCount; UINT32 ReservedMtrrNumber; VariableMtrrCount = GetVariableMtrrCountWorker (); ReservedMtrrNumber = PcdGet32 (PcdCpuNumberOfReservedVariableMtrrs); if (VariableMtrrCount < ReservedMtrrNumber) { return 0; } return VariableMtrrCount - ReservedMtrrNumber; } /** Returns the firmware usable variable MTRR count for the CPU. @return Firmware usable variable MTRR count **/ UINT32 EFIAPI GetFirmwareVariableMtrrCount ( VOID ) { if (!IsMtrrSupported ()) { return 0; } return GetFirmwareVariableMtrrCountWorker (); } /** Worker function returns the default MTRR cache type for the system. If MtrrSetting is not NULL, returns the default MTRR cache type from input MTRR settings buffer. If MtrrSetting is NULL, returns the default MTRR cache type from MSR. @param[in] MtrrSetting A buffer holding all MTRRs content. @return The default MTRR cache type. **/ MTRR_MEMORY_CACHE_TYPE MtrrGetDefaultMemoryTypeWorker ( IN MTRR_SETTINGS *MtrrSetting ) { MSR_IA32_MTRR_DEF_TYPE_REGISTER DefType; if (MtrrSetting == NULL) { DefType.Uint64 = AsmReadMsr64 (MSR_IA32_MTRR_DEF_TYPE); } else { DefType.Uint64 = MtrrSetting->MtrrDefType; } return (MTRR_MEMORY_CACHE_TYPE)DefType.Bits.Type; } /** Returns the default MTRR cache type for the system. @return The default MTRR cache type. **/ MTRR_MEMORY_CACHE_TYPE EFIAPI MtrrGetDefaultMemoryType ( VOID ) { if (!IsMtrrSupported ()) { return CacheUncacheable; } return MtrrGetDefaultMemoryTypeWorker (NULL); } /** Preparation before programming MTRR. This function will do some preparation for programming MTRRs: disable cache, invalid cache and disable MTRR caching functionality @param[out] MtrrContext Pointer to context to save **/ VOID MtrrLibPreMtrrChange ( OUT MTRR_CONTEXT *MtrrContext ) { MSR_IA32_MTRR_DEF_TYPE_REGISTER DefType; // // Disable interrupts and save current interrupt state // MtrrContext->InterruptState = SaveAndDisableInterrupts (); // // Enter no fill cache mode, CD=1(Bit30), NW=0 (Bit29) // AsmDisableCache (); // // Save original CR4 value and clear PGE flag (Bit 7) // MtrrContext->Cr4 = AsmReadCr4 (); AsmWriteCr4 (MtrrContext->Cr4 & (~BIT7)); // // Flush all TLBs // CpuFlushTlb (); // // Disable MTRRs // DefType.Uint64 = AsmReadMsr64 (MSR_IA32_MTRR_DEF_TYPE); DefType.Bits.E = 0; AsmWriteMsr64 (MSR_IA32_MTRR_DEF_TYPE, DefType.Uint64); } /** Cleaning up after programming MTRRs. This function will do some clean up after programming MTRRs: Flush all TLBs, re-enable caching, restore CR4. @param[in] MtrrContext Pointer to context to restore **/ VOID MtrrLibPostMtrrChangeEnableCache ( IN MTRR_CONTEXT *MtrrContext ) { // // Flush all TLBs // CpuFlushTlb (); // // Enable Normal Mode caching CD=NW=0, CD(Bit30), NW(Bit29) // AsmEnableCache (); // // Restore original CR4 value // AsmWriteCr4 (MtrrContext->Cr4); // // Restore original interrupt state // SetInterruptState (MtrrContext->InterruptState); } /** Cleaning up after programming MTRRs. This function will do some clean up after programming MTRRs: enable MTRR caching functionality, and enable cache @param[in] MtrrContext Pointer to context to restore **/ VOID MtrrLibPostMtrrChange ( IN MTRR_CONTEXT *MtrrContext ) { MSR_IA32_MTRR_DEF_TYPE_REGISTER DefType; // // Enable Cache MTRR // DefType.Uint64 = AsmReadMsr64 (MSR_IA32_MTRR_DEF_TYPE); DefType.Bits.E = 1; DefType.Bits.FE = 1; AsmWriteMsr64 (MSR_IA32_MTRR_DEF_TYPE, DefType.Uint64); MtrrLibPostMtrrChangeEnableCache (MtrrContext); } /** Worker function gets the content in fixed MTRRs @param[out] FixedSettings A buffer to hold fixed MTRRs content. @retval The pointer of FixedSettings **/ MTRR_FIXED_SETTINGS * MtrrGetFixedMtrrWorker ( OUT MTRR_FIXED_SETTINGS *FixedSettings ) { UINT32 Index; for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { FixedSettings->Mtrr[Index] = AsmReadMsr64 (mMtrrLibFixedMtrrTable[Index].Msr); } return FixedSettings; } /** This function gets the content in fixed MTRRs @param[out] FixedSettings A buffer to hold fixed MTRRs content. @retval The pointer of FixedSettings **/ MTRR_FIXED_SETTINGS * EFIAPI MtrrGetFixedMtrr ( OUT MTRR_FIXED_SETTINGS *FixedSettings ) { if (!IsMtrrSupported ()) { return FixedSettings; } return MtrrGetFixedMtrrWorker (FixedSettings); } /** Worker function will get the raw value in variable MTRRs If MtrrSetting is not NULL, gets the variable MTRRs raw value from input MTRR settings buffer. If MtrrSetting is NULL, gets the variable MTRRs raw value from MTRRs. @param[in] MtrrSetting A buffer holding all MTRRs content. @param[in] VariableMtrrCount Number of variable MTRRs. @param[out] VariableSettings A buffer to hold variable MTRRs content. @return The VariableSettings input pointer **/ MTRR_VARIABLE_SETTINGS * MtrrGetVariableMtrrWorker ( IN MTRR_SETTINGS *MtrrSetting, IN UINT32 VariableMtrrCount, OUT MTRR_VARIABLE_SETTINGS *VariableSettings ) { UINT32 Index; ASSERT (VariableMtrrCount <= ARRAY_SIZE (VariableSettings->Mtrr)); for (Index = 0; Index < VariableMtrrCount; Index++) { if (MtrrSetting == NULL) { VariableSettings->Mtrr[Index].Base = AsmReadMsr64 (MSR_IA32_MTRR_PHYSBASE0 + (Index << 1)); VariableSettings->Mtrr[Index].Mask = AsmReadMsr64 (MSR_IA32_MTRR_PHYSMASK0 + (Index << 1)); } else { VariableSettings->Mtrr[Index].Base = MtrrSetting->Variables.Mtrr[Index].Base; VariableSettings->Mtrr[Index].Mask = MtrrSetting->Variables.Mtrr[Index].Mask; } } return VariableSettings; } /** Programs fixed MTRRs registers. @param[in] Type The memory type to set. @param[in, out] Base The base address of memory range. @param[in, out] Length The length of memory range. @param[in, out] LastMsrIndex On input, the last index of the fixed MTRR MSR to program. On return, the current index of the fixed MTRR MSR to program. @param[out] ClearMask The bits to clear in the fixed MTRR MSR. @param[out] OrMask The bits to set in the fixed MTRR MSR. @retval RETURN_SUCCESS The cache type was updated successfully @retval RETURN_UNSUPPORTED The requested range or cache type was invalid for the fixed MTRRs. **/ RETURN_STATUS MtrrLibProgramFixedMtrr ( IN MTRR_MEMORY_CACHE_TYPE Type, IN OUT UINT64 *Base, IN OUT UINT64 *Length, IN OUT UINT32 *LastMsrIndex, OUT UINT64 *ClearMask, OUT UINT64 *OrMask ) { UINT32 MsrIndex; UINT32 LeftByteShift; UINT32 RightByteShift; UINT64 SubLength; // // Find the fixed MTRR index to be programmed // for (MsrIndex = *LastMsrIndex + 1; MsrIndex < ARRAY_SIZE (mMtrrLibFixedMtrrTable); MsrIndex++) { if ((*Base >= mMtrrLibFixedMtrrTable[MsrIndex].BaseAddress) && (*Base < ( mMtrrLibFixedMtrrTable[MsrIndex].BaseAddress + (8 * mMtrrLibFixedMtrrTable[MsrIndex].Length) ) ) ) { break; } } ASSERT (MsrIndex != ARRAY_SIZE (mMtrrLibFixedMtrrTable)); // // Find the begin offset in fixed MTRR and calculate byte offset of left shift // if ((((UINT32)*Base - mMtrrLibFixedMtrrTable[MsrIndex].BaseAddress) % mMtrrLibFixedMtrrTable[MsrIndex].Length) != 0) { // // Base address should be aligned to the begin of a certain Fixed MTRR range. // return RETURN_UNSUPPORTED; } LeftByteShift = ((UINT32)*Base - mMtrrLibFixedMtrrTable[MsrIndex].BaseAddress) / mMtrrLibFixedMtrrTable[MsrIndex].Length; ASSERT (LeftByteShift < 8); // // Find the end offset in fixed MTRR and calculate byte offset of right shift // SubLength = mMtrrLibFixedMtrrTable[MsrIndex].Length * (8 - LeftByteShift); if (*Length >= SubLength) { RightByteShift = 0; } else { if (((UINT32)(*Length) % mMtrrLibFixedMtrrTable[MsrIndex].Length) != 0) { // // Length should be aligned to the end of a certain Fixed MTRR range. // return RETURN_UNSUPPORTED; } RightByteShift = 8 - LeftByteShift - (UINT32)(*Length) / mMtrrLibFixedMtrrTable[MsrIndex].Length; // // Update SubLength by actual length // SubLength = *Length; } *ClearMask = CLEAR_SEED; *OrMask = MultU64x32 (OR_SEED, (UINT32)Type); if (LeftByteShift != 0) { // // Clear the low bits by LeftByteShift // *ClearMask &= LShiftU64 (*ClearMask, LeftByteShift * 8); *OrMask &= LShiftU64 (*OrMask, LeftByteShift * 8); } if (RightByteShift != 0) { // // Clear the high bits by RightByteShift // *ClearMask &= RShiftU64 (*ClearMask, RightByteShift * 8); *OrMask &= RShiftU64 (*OrMask, RightByteShift * 8); } *Length -= SubLength; *Base += SubLength; *LastMsrIndex = MsrIndex; return RETURN_SUCCESS; } /** Worker function gets the attribute of variable MTRRs. This function shadows the content of variable MTRRs into an internal array: VariableMtrr. @param[in] VariableSettings The variable MTRR values to shadow @param[in] VariableMtrrCount The number of variable MTRRs @param[in] MtrrValidBitsMask The mask for the valid bit of the MTRR @param[in] MtrrValidAddressMask The valid address mask for MTRR @param[out] VariableMtrr The array to shadow variable MTRRs content @return Number of MTRRs which has been used. **/ UINT32 MtrrGetMemoryAttributeInVariableMtrrWorker ( IN MTRR_VARIABLE_SETTINGS *VariableSettings, IN UINTN VariableMtrrCount, IN UINT64 MtrrValidBitsMask, IN UINT64 MtrrValidAddressMask, OUT VARIABLE_MTRR *VariableMtrr ) { UINTN Index; UINT32 UsedMtrr; ZeroMem (VariableMtrr, sizeof (VARIABLE_MTRR) * ARRAY_SIZE (VariableSettings->Mtrr)); for (Index = 0, UsedMtrr = 0; Index < VariableMtrrCount; Index++) { if (((MSR_IA32_MTRR_PHYSMASK_REGISTER *)&VariableSettings->Mtrr[Index].Mask)->Bits.V != 0) { VariableMtrr[Index].Msr = (UINT32)Index; VariableMtrr[Index].BaseAddress = (VariableSettings->Mtrr[Index].Base & MtrrValidAddressMask); VariableMtrr[Index].Length = ((~(VariableSettings->Mtrr[Index].Mask & MtrrValidAddressMask)) & MtrrValidBitsMask) + 1; VariableMtrr[Index].Type = (VariableSettings->Mtrr[Index].Base & 0x0ff); VariableMtrr[Index].Valid = TRUE; VariableMtrr[Index].Used = TRUE; UsedMtrr++; } } return UsedMtrr; } /** Convert variable MTRRs to a RAW MTRR_MEMORY_RANGE array. One MTRR_MEMORY_RANGE element is created for each MTRR setting. The routine doesn't remove the overlap or combine the near-by region. @param[in] VariableSettings The variable MTRR values to shadow @param[in] VariableMtrrCount The number of variable MTRRs @param[in] MtrrValidBitsMask The mask for the valid bit of the MTRR @param[in] MtrrValidAddressMask The valid address mask for MTRR @param[out] VariableMtrr The array to shadow variable MTRRs content @return Number of MTRRs which has been used. **/ UINT32 MtrrLibGetRawVariableRanges ( IN MTRR_VARIABLE_SETTINGS *VariableSettings, IN UINTN VariableMtrrCount, IN UINT64 MtrrValidBitsMask, IN UINT64 MtrrValidAddressMask, OUT MTRR_MEMORY_RANGE *VariableMtrr ) { UINTN Index; UINT32 UsedMtrr; ZeroMem (VariableMtrr, sizeof (MTRR_MEMORY_RANGE) * ARRAY_SIZE (VariableSettings->Mtrr)); for (Index = 0, UsedMtrr = 0; Index < VariableMtrrCount; Index++) { if (((MSR_IA32_MTRR_PHYSMASK_REGISTER *)&VariableSettings->Mtrr[Index].Mask)->Bits.V != 0) { VariableMtrr[Index].BaseAddress = (VariableSettings->Mtrr[Index].Base & MtrrValidAddressMask); VariableMtrr[Index].Length = ((~(VariableSettings->Mtrr[Index].Mask & MtrrValidAddressMask)) & MtrrValidBitsMask) + 1; VariableMtrr[Index].Type = (MTRR_MEMORY_CACHE_TYPE)(VariableSettings->Mtrr[Index].Base & 0x0ff); UsedMtrr++; } } return UsedMtrr; } /** Gets the attribute of variable MTRRs. This function shadows the content of variable MTRRs into an internal array: VariableMtrr. @param[in] MtrrValidBitsMask The mask for the valid bit of the MTRR @param[in] MtrrValidAddressMask The valid address mask for MTRR @param[out] VariableMtrr The array to shadow variable MTRRs content @return The return value of this parameter indicates the number of MTRRs which has been used. **/ UINT32 EFIAPI MtrrGetMemoryAttributeInVariableMtrr ( IN UINT64 MtrrValidBitsMask, IN UINT64 MtrrValidAddressMask, OUT VARIABLE_MTRR *VariableMtrr ) { MTRR_VARIABLE_SETTINGS VariableSettings; if (!IsMtrrSupported ()) { return 0; } MtrrGetVariableMtrrWorker ( NULL, GetVariableMtrrCountWorker (), &VariableSettings ); return MtrrGetMemoryAttributeInVariableMtrrWorker ( &VariableSettings, GetFirmwareVariableMtrrCountWorker (), MtrrValidBitsMask, MtrrValidAddressMask, VariableMtrr ); } /** Return the biggest alignment (lowest set bit) of address. The function is equivalent to: 1 << LowBitSet64 (Address). @param Address The address to return the alignment. @param Alignment0 The alignment to return when Address is 0. @return The least alignment of the Address. **/ UINT64 MtrrLibBiggestAlignment ( UINT64 Address, UINT64 Alignment0 ) { if (Address == 0) { return Alignment0; } return Address & ((~Address) + 1); } /** Return whether the left MTRR type precedes the right MTRR type. The MTRR type precedence rules are: 1. UC precedes any other type 2. WT precedes WB For further details, please refer the IA32 Software Developer's Manual, Volume 3, Section "MTRR Precedences". @param Left The left MTRR type. @param Right The right MTRR type. @retval TRUE Left precedes Right. @retval FALSE Left doesn't precede Right. **/ BOOLEAN MtrrLibTypeLeftPrecedeRight ( IN MTRR_MEMORY_CACHE_TYPE Left, IN MTRR_MEMORY_CACHE_TYPE Right ) { return (BOOLEAN)(Left == CacheUncacheable || (Left == CacheWriteThrough && Right == CacheWriteBack)); } /** Initializes the valid bits mask and valid address mask for MTRRs. This function initializes the valid bits mask and valid address mask for MTRRs. @param[out] MtrrValidBitsMask The mask for the valid bit of the MTRR @param[out] MtrrValidAddressMask The valid address mask for the MTRR **/ VOID MtrrLibInitializeMtrrMask ( OUT UINT64 *MtrrValidBitsMask, OUT UINT64 *MtrrValidAddressMask ) { UINT32 MaxExtendedFunction; CPUID_VIR_PHY_ADDRESS_SIZE_EAX VirPhyAddressSize; UINT32 MaxFunction; CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX ExtendedFeatureFlagsEcx; MSR_IA32_TME_ACTIVATE_REGISTER TmeActivate; AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedFunction, NULL, NULL, NULL); if (MaxExtendedFunction >= CPUID_VIR_PHY_ADDRESS_SIZE) { AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &VirPhyAddressSize.Uint32, NULL, NULL, NULL); } else { VirPhyAddressSize.Bits.PhysicalAddressBits = 36; } // // CPUID enumeration of MAX_PA is unaffected by TME-MK activation and will continue // to report the maximum physical address bits available for software to use, // irrespective of the number of KeyID bits. // So, we need to check if TME is enabled and adjust the PA size accordingly. // AsmCpuid (CPUID_SIGNATURE, &MaxFunction, NULL, NULL, NULL); if (MaxFunction >= CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS) { AsmCpuidEx (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, 0, NULL, NULL, &ExtendedFeatureFlagsEcx.Uint32, NULL); if (ExtendedFeatureFlagsEcx.Bits.TME_EN == 1) { TmeActivate.Uint64 = AsmReadMsr64 (MSR_IA32_TME_ACTIVATE); if (TmeActivate.Bits.TmeEnable == 1) { VirPhyAddressSize.Bits.PhysicalAddressBits -= TmeActivate.Bits.MkTmeKeyidBits; } } } *MtrrValidBitsMask = LShiftU64 (1, VirPhyAddressSize.Bits.PhysicalAddressBits) - 1; *MtrrValidAddressMask = *MtrrValidBitsMask & 0xfffffffffffff000ULL; } /** Determines the real attribute of a memory range. This function is to arbitrate the real attribute of the memory when there are 2 MTRRs covers the same memory range. For further details, please refer the IA32 Software Developer's Manual, Volume 3, Section "MTRR Precedences". @param[in] MtrrType1 The first kind of Memory type @param[in] MtrrType2 The second kind of memory type **/ MTRR_MEMORY_CACHE_TYPE MtrrLibPrecedence ( IN MTRR_MEMORY_CACHE_TYPE MtrrType1, IN MTRR_MEMORY_CACHE_TYPE MtrrType2 ) { if (MtrrType1 == MtrrType2) { return MtrrType1; } ASSERT ( MtrrLibTypeLeftPrecedeRight (MtrrType1, MtrrType2) || MtrrLibTypeLeftPrecedeRight (MtrrType2, MtrrType1) ); if (MtrrLibTypeLeftPrecedeRight (MtrrType1, MtrrType2)) { return MtrrType1; } else { return MtrrType2; } } /** Worker function will get the memory cache type of the specific address. If MtrrSetting is not NULL, gets the memory cache type from input MTRR settings buffer. If MtrrSetting is NULL, gets the memory cache type from MTRRs. @param[in] MtrrSetting A buffer holding all MTRRs content. @param[in] Address The specific address @return Memory cache type of the specific address **/ MTRR_MEMORY_CACHE_TYPE MtrrGetMemoryAttributeByAddressWorker ( IN MTRR_SETTINGS *MtrrSetting, IN PHYSICAL_ADDRESS Address ) { MSR_IA32_MTRR_DEF_TYPE_REGISTER DefType; UINT64 FixedMtrr; UINTN Index; UINTN SubIndex; MTRR_MEMORY_CACHE_TYPE MtrrType; MTRR_MEMORY_RANGE VariableMtrr[ARRAY_SIZE (MtrrSetting->Variables.Mtrr)]; UINT64 MtrrValidBitsMask; UINT64 MtrrValidAddressMask; UINT32 VariableMtrrCount; MTRR_VARIABLE_SETTINGS VariableSettings; // // Check if MTRR is enabled, if not, return UC as attribute // if (MtrrSetting == NULL) { DefType.Uint64 = AsmReadMsr64 (MSR_IA32_MTRR_DEF_TYPE); } else { DefType.Uint64 = MtrrSetting->MtrrDefType; } if (DefType.Bits.E == 0) { return CacheUncacheable; } // // If address is less than 1M, then try to go through the fixed MTRR // if (Address < BASE_1MB) { if (DefType.Bits.FE != 0) { // // Go through the fixed MTRR // for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { if ((Address >= mMtrrLibFixedMtrrTable[Index].BaseAddress) && (Address < mMtrrLibFixedMtrrTable[Index].BaseAddress + (mMtrrLibFixedMtrrTable[Index].Length * 8))) { SubIndex = ((UINTN)Address - mMtrrLibFixedMtrrTable[Index].BaseAddress) / mMtrrLibFixedMtrrTable[Index].Length; if (MtrrSetting == NULL) { FixedMtrr = AsmReadMsr64 (mMtrrLibFixedMtrrTable[Index].Msr); } else { FixedMtrr = MtrrSetting->Fixed.Mtrr[Index]; } return (MTRR_MEMORY_CACHE_TYPE)(RShiftU64 (FixedMtrr, SubIndex * 8) & 0xFF); } } } } VariableMtrrCount = GetVariableMtrrCountWorker (); ASSERT (VariableMtrrCount <= ARRAY_SIZE (MtrrSetting->Variables.Mtrr)); MtrrGetVariableMtrrWorker (MtrrSetting, VariableMtrrCount, &VariableSettings); MtrrLibInitializeMtrrMask (&MtrrValidBitsMask, &MtrrValidAddressMask); MtrrLibGetRawVariableRanges ( &VariableSettings, VariableMtrrCount, MtrrValidBitsMask, MtrrValidAddressMask, VariableMtrr ); // // Go through the variable MTRR // MtrrType = CacheInvalid; for (Index = 0; Index < VariableMtrrCount; Index++) { if (VariableMtrr[Index].Length != 0) { if ((Address >= VariableMtrr[Index].BaseAddress) && (Address < VariableMtrr[Index].BaseAddress + VariableMtrr[Index].Length)) { if (MtrrType == CacheInvalid) { MtrrType = (MTRR_MEMORY_CACHE_TYPE)VariableMtrr[Index].Type; } else { MtrrType = MtrrLibPrecedence (MtrrType, (MTRR_MEMORY_CACHE_TYPE)VariableMtrr[Index].Type); } } } } // // If there is no MTRR which covers the Address, use the default MTRR type. // if (MtrrType == CacheInvalid) { MtrrType = (MTRR_MEMORY_CACHE_TYPE)DefType.Bits.Type; } return MtrrType; } /** This function will get the memory cache type of the specific address. This function is mainly for debug purpose. @param[in] Address The specific address @return Memory cache type of the specific address **/ MTRR_MEMORY_CACHE_TYPE EFIAPI MtrrGetMemoryAttribute ( IN PHYSICAL_ADDRESS Address ) { if (!IsMtrrSupported ()) { return CacheUncacheable; } return MtrrGetMemoryAttributeByAddressWorker (NULL, Address); } /** Update the Ranges array to change the specified range identified by BaseAddress and Length to Type. @param Ranges Array holding memory type settings for all memory regions. @param Capacity The maximum count of memory ranges the array can hold. @param Count Return the new memory range count in the array. @param BaseAddress The base address of the memory range to change type. @param Length The length of the memory range to change type. @param Type The new type of the specified memory range. @retval RETURN_SUCCESS The type of the specified memory range is changed successfully. @retval RETURN_ALREADY_STARTED The type of the specified memory range equals to the desired type. @retval RETURN_OUT_OF_RESOURCES The new type set causes the count of memory range exceeds capacity. **/ RETURN_STATUS MtrrLibSetMemoryType ( IN MTRR_MEMORY_RANGE *Ranges, IN UINTN Capacity, IN OUT UINTN *Count, IN UINT64 BaseAddress, IN UINT64 Length, IN MTRR_MEMORY_CACHE_TYPE Type ) { UINTN Index; UINT64 Limit; UINT64 LengthLeft; UINT64 LengthRight; UINTN StartIndex; UINTN EndIndex; UINTN DeltaCount; LengthRight = 0; LengthLeft = 0; Limit = BaseAddress + Length; StartIndex = *Count; EndIndex = *Count; for (Index = 0; Index < *Count; Index++) { if ((StartIndex == *Count) && (Ranges[Index].BaseAddress <= BaseAddress) && (BaseAddress < Ranges[Index].BaseAddress + Ranges[Index].Length)) { StartIndex = Index; LengthLeft = BaseAddress - Ranges[Index].BaseAddress; } if ((EndIndex == *Count) && (Ranges[Index].BaseAddress < Limit) && (Limit <= Ranges[Index].BaseAddress + Ranges[Index].Length)) { EndIndex = Index; LengthRight = Ranges[Index].BaseAddress + Ranges[Index].Length - Limit; break; } } ASSERT (StartIndex != *Count && EndIndex != *Count); if ((StartIndex == EndIndex) && (Ranges[StartIndex].Type == Type)) { return RETURN_ALREADY_STARTED; } // // The type change may cause merging with previous range or next range. // Update the StartIndex, EndIndex, BaseAddress, Length so that following // logic doesn't need to consider merging. // if (StartIndex != 0) { if ((LengthLeft == 0) && (Ranges[StartIndex - 1].Type == Type)) { StartIndex--; Length += Ranges[StartIndex].Length; BaseAddress -= Ranges[StartIndex].Length; } } if (EndIndex != (*Count) - 1) { if ((LengthRight == 0) && (Ranges[EndIndex + 1].Type == Type)) { EndIndex++; Length += Ranges[EndIndex].Length; } } // // |- 0 -|- 1 -|- 2 -|- 3 -| StartIndex EndIndex DeltaCount Count (Count = 4) // |++++++++++++++++++| 0 3 1=3-0-2 3 // |+++++++| 0 1 -1=1-0-2 5 // |+| 0 0 -2=0-0-2 6 // |+++| 0 0 -1=0-0-2+1 5 // // DeltaCount = EndIndex - StartIndex - 2; if (LengthLeft == 0) { DeltaCount++; } if (LengthRight == 0) { DeltaCount++; } if (*Count - DeltaCount > Capacity) { return RETURN_OUT_OF_RESOURCES; } // // Reserve (-DeltaCount) space // CopyMem (&Ranges[EndIndex + 1 - DeltaCount], &Ranges[EndIndex + 1], (*Count - EndIndex - 1) * sizeof (Ranges[0])); *Count -= DeltaCount; if (LengthLeft != 0) { Ranges[StartIndex].Length = LengthLeft; StartIndex++; } if (LengthRight != 0) { Ranges[EndIndex - DeltaCount].BaseAddress = BaseAddress + Length; Ranges[EndIndex - DeltaCount].Length = LengthRight; Ranges[EndIndex - DeltaCount].Type = Ranges[EndIndex].Type; } Ranges[StartIndex].BaseAddress = BaseAddress; Ranges[StartIndex].Length = Length; Ranges[StartIndex].Type = Type; return RETURN_SUCCESS; } /** Return the number of memory types in range [BaseAddress, BaseAddress + Length). @param Ranges Array holding memory type settings for all memory regions. @param RangeCount The count of memory ranges the array holds. @param BaseAddress Base address. @param Length Length. @param Types Return bit mask to indicate all memory types in the specified range. @retval Number of memory types. **/ UINT8 MtrrLibGetNumberOfTypes ( IN CONST MTRR_MEMORY_RANGE *Ranges, IN UINTN RangeCount, IN UINT64 BaseAddress, IN UINT64 Length, IN OUT UINT8 *Types OPTIONAL ) { UINTN Index; UINT8 TypeCount; UINT8 LocalTypes; TypeCount = 0; LocalTypes = 0; for (Index = 0; Index < RangeCount; Index++) { if ((Ranges[Index].BaseAddress <= BaseAddress) && (BaseAddress < Ranges[Index].BaseAddress + Ranges[Index].Length) ) { if ((LocalTypes & (1 << Ranges[Index].Type)) == 0) { LocalTypes |= (UINT8)(1 << Ranges[Index].Type); TypeCount++; } if (BaseAddress + Length > Ranges[Index].BaseAddress + Ranges[Index].Length) { Length -= Ranges[Index].BaseAddress + Ranges[Index].Length - BaseAddress; BaseAddress = Ranges[Index].BaseAddress + Ranges[Index].Length; } else { break; } } } if (Types != NULL) { *Types = LocalTypes; } return TypeCount; } /** Calculate the least MTRR number from vertex Start to Stop and update the Previous of all vertices from Start to Stop is updated to reflect how the memory range is covered by MTRR. @param VertexCount The count of vertices in the graph. @param Vertices Array holding all vertices. @param Weight 2-dimention array holding weights between vertices. @param Start Start vertex. @param Stop Stop vertex. @param IncludeOptional TRUE to count the optional weight. **/ VOID MtrrLibCalculateLeastMtrrs ( IN UINT16 VertexCount, IN MTRR_LIB_ADDRESS *Vertices, IN OUT CONST UINT8 *Weight, IN UINT16 Start, IN UINT16 Stop, IN BOOLEAN IncludeOptional ) { UINT16 Index; UINT8 MinWeight; UINT16 MinI; UINT8 Mandatory; UINT8 Optional; for (Index = Start; Index <= Stop; Index++) { Vertices[Index].Visited = FALSE; Mandatory = Weight[M (Start, Index)]; Vertices[Index].Weight = Mandatory; if (Mandatory != MAX_WEIGHT) { Optional = IncludeOptional ? Weight[O (Start, Index)] : 0; Vertices[Index].Weight += Optional; ASSERT (Vertices[Index].Weight >= Optional); } } MinI = Start; MinWeight = 0; while (!Vertices[Stop].Visited) { // // Update the weight from the shortest vertex to other unvisited vertices // for (Index = Start + 1; Index <= Stop; Index++) { if (!Vertices[Index].Visited) { Mandatory = Weight[M (MinI, Index)]; if (Mandatory != MAX_WEIGHT) { Optional = IncludeOptional ? Weight[O (MinI, Index)] : 0; if (MinWeight + Mandatory + Optional <= Vertices[Index].Weight) { Vertices[Index].Weight = MinWeight + Mandatory + Optional; Vertices[Index].Previous = MinI; // Previous is Start based. } } } } // // Find the shortest vertex from Start // MinI = VertexCount; MinWeight = MAX_WEIGHT; for (Index = Start + 1; Index <= Stop; Index++) { if (!Vertices[Index].Visited && (MinWeight > Vertices[Index].Weight)) { MinI = Index; MinWeight = Vertices[Index].Weight; } } // // Mark the shortest vertex from Start as visited // Vertices[MinI].Visited = TRUE; } } /** Append the MTRR setting to MTRR setting array. @param Mtrrs Array holding all MTRR settings. @param MtrrCapacity Capacity of the MTRR array. @param MtrrCount The count of MTRR settings in array. @param BaseAddress Base address. @param Length Length. @param Type Memory type. @retval RETURN_SUCCESS MTRR setting is appended to array. @retval RETURN_OUT_OF_RESOURCES Array is full. **/ RETURN_STATUS MtrrLibAppendVariableMtrr ( IN OUT MTRR_MEMORY_RANGE *Mtrrs, IN UINT32 MtrrCapacity, IN OUT UINT32 *MtrrCount, IN UINT64 BaseAddress, IN UINT64 Length, IN MTRR_MEMORY_CACHE_TYPE Type ) { if (*MtrrCount == MtrrCapacity) { return RETURN_OUT_OF_RESOURCES; } Mtrrs[*MtrrCount].BaseAddress = BaseAddress; Mtrrs[*MtrrCount].Length = Length; Mtrrs[*MtrrCount].Type = Type; (*MtrrCount)++; return RETURN_SUCCESS; } /** Return the memory type that has the least precedence. @param TypeBits Bit mask of memory type. @retval Memory type that has the least precedence. **/ MTRR_MEMORY_CACHE_TYPE MtrrLibLowestType ( IN UINT8 TypeBits ) { INT8 Type; ASSERT (TypeBits != 0); for (Type = 7; (INT8)TypeBits > 0; Type--, TypeBits <<= 1) { } return (MTRR_MEMORY_CACHE_TYPE)Type; } /** Calculate the subtractive path from vertex Start to Stop. @param DefaultType Default memory type. @param A0 Alignment to use when base address is 0. @param Ranges Array holding memory type settings for all memory regions. @param RangeCount The count of memory ranges the array holds. @param VertexCount The count of vertices in the graph. @param Vertices Array holding all vertices. @param Weight 2-dimention array holding weights between vertices. @param Start Start vertex. @param Stop Stop vertex. @param Types Type bit mask of memory range from Start to Stop. @param TypeCount Number of different memory types from Start to Stop. @param Mtrrs Array holding all MTRR settings. @param MtrrCapacity Capacity of the MTRR array. @param MtrrCount The count of MTRR settings in array. @retval RETURN_SUCCESS The subtractive path is calculated successfully. @retval RETURN_OUT_OF_RESOURCES The MTRR setting array is full. **/ RETURN_STATUS MtrrLibCalculateSubtractivePath ( IN MTRR_MEMORY_CACHE_TYPE DefaultType, IN UINT64 A0, IN CONST MTRR_MEMORY_RANGE *Ranges, IN UINTN RangeCount, IN UINT16 VertexCount, IN MTRR_LIB_ADDRESS *Vertices, IN OUT UINT8 *Weight, IN UINT16 Start, IN UINT16 Stop, IN UINT8 Types, IN UINT8 TypeCount, IN OUT MTRR_MEMORY_RANGE *Mtrrs OPTIONAL, IN UINT32 MtrrCapacity OPTIONAL, IN OUT UINT32 *MtrrCount OPTIONAL ) { RETURN_STATUS Status; UINT64 Base; UINT64 Length; UINT8 PrecedentTypes; UINTN Index; UINT64 HBase; UINT64 HLength; UINT64 SubLength; UINT16 SubStart; UINT16 SubStop; UINT16 Cur; UINT16 Pre; MTRR_MEMORY_CACHE_TYPE LowestType; MTRR_MEMORY_CACHE_TYPE LowestPrecedentType; Base = Vertices[Start].Address; Length = Vertices[Stop].Address - Base; LowestType = MtrrLibLowestType (Types); // // Clear the lowest type (highest bit) to get the precedent types // PrecedentTypes = ~(1 << LowestType) & Types; LowestPrecedentType = MtrrLibLowestType (PrecedentTypes); if (Mtrrs == NULL) { Weight[M (Start, Stop)] = ((LowestType == DefaultType) ? 0 : 1); Weight[O (Start, Stop)] = ((LowestType == DefaultType) ? 1 : 0); } // Add all high level ranges HBase = MAX_UINT64; HLength = 0; for (Index = 0; Index < RangeCount; Index++) { if (Length == 0) { break; } if ((Base < Ranges[Index].BaseAddress) || (Ranges[Index].BaseAddress + Ranges[Index].Length <= Base)) { continue; } // // Base is in the Range[Index] // if (Base + Length > Ranges[Index].BaseAddress + Ranges[Index].Length) { SubLength = Ranges[Index].BaseAddress + Ranges[Index].Length - Base; } else { SubLength = Length; } if (((1 << Ranges[Index].Type) & PrecedentTypes) != 0) { // // Meet a range whose types take precedence. // Update the [HBase, HBase + HLength) to include the range, // [HBase, HBase + HLength) may contain sub ranges with 2 different types, and both take precedence. // if (HBase == MAX_UINT64) { HBase = Base; } HLength += SubLength; } Base += SubLength; Length -= SubLength; if (HLength == 0) { continue; } if ((Ranges[Index].Type == LowestType) || (Length == 0)) { // meet low type or end // // Add the MTRRs for each high priority type range // the range[HBase, HBase + HLength) contains only two types. // We might use positive or subtractive, depending on which way uses less MTRR // for (SubStart = Start; SubStart <= Stop; SubStart++) { if (Vertices[SubStart].Address == HBase) { break; } } for (SubStop = SubStart; SubStop <= Stop; SubStop++) { if (Vertices[SubStop].Address == HBase + HLength) { break; } } ASSERT (Vertices[SubStart].Address == HBase); ASSERT (Vertices[SubStop].Address == HBase + HLength); if ((TypeCount == 2) || (SubStart == SubStop - 1)) { // // add subtractive MTRRs for [HBase, HBase + HLength) // [HBase, HBase + HLength) contains only one type. // while - loop is to split the range to MTRR - compliant aligned range. // if (Mtrrs == NULL) { Weight[M (Start, Stop)] += (UINT8)(SubStop - SubStart); } else { while (SubStart != SubStop) { Status = MtrrLibAppendVariableMtrr ( Mtrrs, MtrrCapacity, MtrrCount, Vertices[SubStart].Address, Vertices[SubStart].Length, Vertices[SubStart].Type ); if (RETURN_ERROR (Status)) { return Status; } SubStart++; } } } else { ASSERT (TypeCount == 3); MtrrLibCalculateLeastMtrrs (VertexCount, Vertices, Weight, SubStart, SubStop, TRUE); if (Mtrrs == NULL) { Weight[M (Start, Stop)] += Vertices[SubStop].Weight; } else { // When we need to collect the optimal path from SubStart to SubStop while (SubStop != SubStart) { Cur = SubStop; Pre = Vertices[Cur].Previous; SubStop = Pre; if (Weight[M (Pre, Cur)] + Weight[O (Pre, Cur)] != 0) { Status = MtrrLibAppendVariableMtrr ( Mtrrs, MtrrCapacity, MtrrCount, Vertices[Pre].Address, Vertices[Cur].Address - Vertices[Pre].Address, (Pre != Cur - 1) ? LowestPrecedentType : Vertices[Pre].Type ); if (RETURN_ERROR (Status)) { return Status; } } if (Pre != Cur - 1) { Status = MtrrLibCalculateSubtractivePath ( DefaultType, A0, Ranges, RangeCount, VertexCount, Vertices, Weight, Pre, Cur, PrecedentTypes, 2, Mtrrs, MtrrCapacity, MtrrCount ); if (RETURN_ERROR (Status)) { return Status; } } } } } // // Reset HBase, HLength // HBase = MAX_UINT64; HLength = 0; } } return RETURN_SUCCESS; } /** Calculate MTRR settings to cover the specified memory ranges. @param DefaultType Default memory type. @param A0 Alignment to use when base address is 0. @param Ranges Memory range array holding the memory type settings for all memory address. @param RangeCount Count of memory ranges. @param Scratch A temporary scratch buffer that is used to perform the calculation. This is an optional parameter that may be NULL. @param ScratchSize Pointer to the size in bytes of the scratch buffer. It may be updated to the actual required size when the calculation needs more scratch buffer. @param Mtrrs Array holding all MTRR settings. @param MtrrCapacity Capacity of the MTRR array. @param MtrrCount The count of MTRR settings in array. @retval RETURN_SUCCESS Variable MTRRs are allocated successfully. @retval RETURN_OUT_OF_RESOURCES Count of variable MTRRs exceeds capacity. @retval RETURN_BUFFER_TOO_SMALL The scratch buffer is too small for MTRR calculation. **/ RETURN_STATUS MtrrLibCalculateMtrrs ( IN MTRR_MEMORY_CACHE_TYPE DefaultType, IN UINT64 A0, IN CONST MTRR_MEMORY_RANGE *Ranges, IN UINTN RangeCount, IN VOID *Scratch, IN OUT UINTN *ScratchSize, IN OUT MTRR_MEMORY_RANGE *Mtrrs, IN UINT32 MtrrCapacity, IN OUT UINT32 *MtrrCount ) { UINT64 Base0; UINT64 Base1; UINTN Index; UINT64 Base; UINT64 Length; UINT64 Alignment; UINT64 SubLength; MTRR_LIB_ADDRESS *Vertices; UINT8 *Weight; UINT32 VertexIndex; UINT32 VertexCount; UINTN RequiredScratchSize; UINT8 TypeCount; UINT16 Start; UINT16 Stop; UINT8 Type; RETURN_STATUS Status; Base0 = Ranges[0].BaseAddress; Base1 = Ranges[RangeCount - 1].BaseAddress + Ranges[RangeCount - 1].Length; MTRR_LIB_ASSERT_ALIGNED (Base0, Base1 - Base0); // // Count the number of vertices. // Vertices = (MTRR_LIB_ADDRESS *)Scratch; for (VertexIndex = 0, Index = 0; Index < RangeCount; Index++) { Base = Ranges[Index].BaseAddress; Length = Ranges[Index].Length; while (Length != 0) { Alignment = MtrrLibBiggestAlignment (Base, A0); SubLength = Alignment; if (SubLength > Length) { SubLength = GetPowerOfTwo64 (Length); } if (VertexIndex < *ScratchSize / sizeof (*Vertices)) { Vertices[VertexIndex].Address = Base; Vertices[VertexIndex].Alignment = Alignment; Vertices[VertexIndex].Type = Ranges[Index].Type; Vertices[VertexIndex].Length = SubLength; } Base += SubLength; Length -= SubLength; VertexIndex++; } } // // Vertices[VertexIndex] = Base1, so whole vertex count is (VertexIndex + 1). // VertexCount = VertexIndex + 1; DEBUG (( DEBUG_CACHE, " Count of vertices (%016llx - %016llx) = %d\n", Ranges[0].BaseAddress, Ranges[RangeCount - 1].BaseAddress + Ranges[RangeCount - 1].Length, VertexCount )); ASSERT (VertexCount < MAX_UINT16); RequiredScratchSize = VertexCount * sizeof (*Vertices) + VertexCount * VertexCount * sizeof (*Weight); if (*ScratchSize < RequiredScratchSize) { *ScratchSize = RequiredScratchSize; return RETURN_BUFFER_TOO_SMALL; } Vertices[VertexCount - 1].Address = Base1; Weight = (UINT8 *)&Vertices[VertexCount]; for (VertexIndex = 0; VertexIndex < VertexCount; VertexIndex++) { // // Set optional weight between vertices and self->self to 0 // SetMem (&Weight[M (VertexIndex, 0)], VertexIndex + 1, 0); // // Set mandatory weight between vertices to MAX_WEIGHT // SetMem (&Weight[M (VertexIndex, VertexIndex + 1)], VertexCount - VertexIndex - 1, MAX_WEIGHT); // Final result looks like: // 00 FF FF FF // 00 00 FF FF // 00 00 00 FF // 00 00 00 00 } // // Set mandatory weight and optional weight for adjacent vertices // for (VertexIndex = 0; VertexIndex < VertexCount - 1; VertexIndex++) { if (Vertices[VertexIndex].Type != DefaultType) { Weight[M (VertexIndex, VertexIndex + 1)] = 1; Weight[O (VertexIndex, VertexIndex + 1)] = 0; } else { Weight[M (VertexIndex, VertexIndex + 1)] = 0; Weight[O (VertexIndex, VertexIndex + 1)] = 1; } } for (TypeCount = 2; TypeCount <= 3; TypeCount++) { for (Start = 0; Start < VertexCount; Start++) { for (Stop = Start + 2; Stop < VertexCount; Stop++) { ASSERT (Vertices[Stop].Address > Vertices[Start].Address); Length = Vertices[Stop].Address - Vertices[Start].Address; if (Length > Vertices[Start].Alignment) { // // Pickup a new Start when [Start, Stop) cannot be described by one MTRR. // break; } if ((Weight[M (Start, Stop)] == MAX_WEIGHT) && IS_POW2 (Length)) { if (MtrrLibGetNumberOfTypes ( Ranges, RangeCount, Vertices[Start].Address, Vertices[Stop].Address - Vertices[Start].Address, &Type ) == TypeCount) { // // Update the Weight[Start, Stop] using subtractive path. // MtrrLibCalculateSubtractivePath ( DefaultType, A0, Ranges, RangeCount, (UINT16)VertexCount, Vertices, Weight, Start, Stop, Type, TypeCount, NULL, 0, NULL ); } else if (TypeCount == 2) { // // Pick up a new Start when we expect 2-type range, but 3-type range is met. // Because no matter how Stop is increased, we always meet 3-type range. // break; } } } } } Status = RETURN_SUCCESS; MtrrLibCalculateLeastMtrrs ((UINT16)VertexCount, Vertices, Weight, 0, (UINT16)VertexCount - 1, FALSE); Stop = (UINT16)VertexCount - 1; while (Stop != 0) { Start = Vertices[Stop].Previous; TypeCount = MAX_UINT8; Type = 0; if (Weight[M (Start, Stop)] != 0) { TypeCount = MtrrLibGetNumberOfTypes (Ranges, RangeCount, Vertices[Start].Address, Vertices[Stop].Address - Vertices[Start].Address, &Type); Status = MtrrLibAppendVariableMtrr ( Mtrrs, MtrrCapacity, MtrrCount, Vertices[Start].Address, Vertices[Stop].Address - Vertices[Start].Address, MtrrLibLowestType (Type) ); if (RETURN_ERROR (Status)) { break; } } if (Start != Stop - 1) { // // substractive path // if (TypeCount == MAX_UINT8) { TypeCount = MtrrLibGetNumberOfTypes ( Ranges, RangeCount, Vertices[Start].Address, Vertices[Stop].Address - Vertices[Start].Address, &Type ); } Status = MtrrLibCalculateSubtractivePath ( DefaultType, A0, Ranges, RangeCount, (UINT16)VertexCount, Vertices, Weight, Start, Stop, Type, TypeCount, Mtrrs, MtrrCapacity, MtrrCount ); if (RETURN_ERROR (Status)) { break; } } Stop = Start; } return Status; } /** Apply the fixed MTRR settings to memory range array. @param Fixed The fixed MTRR settings. @param Ranges Return the memory range array holding memory type settings for all memory address. @param RangeCapacity The capacity of memory range array. @param RangeCount Return the count of memory range. @retval RETURN_SUCCESS The memory range array is returned successfully. @retval RETURN_OUT_OF_RESOURCES The count of memory ranges exceeds capacity. **/ RETURN_STATUS MtrrLibApplyFixedMtrrs ( IN MTRR_FIXED_SETTINGS *Fixed, IN OUT MTRR_MEMORY_RANGE *Ranges, IN UINTN RangeCapacity, IN OUT UINTN *RangeCount ) { RETURN_STATUS Status; UINTN MsrIndex; UINTN Index; MTRR_MEMORY_CACHE_TYPE MemoryType; UINT64 Base; Base = 0; for (MsrIndex = 0; MsrIndex < ARRAY_SIZE (mMtrrLibFixedMtrrTable); MsrIndex++) { ASSERT (Base == mMtrrLibFixedMtrrTable[MsrIndex].BaseAddress); for (Index = 0; Index < sizeof (UINT64); Index++) { MemoryType = (MTRR_MEMORY_CACHE_TYPE)((UINT8 *)(&Fixed->Mtrr[MsrIndex]))[Index]; Status = MtrrLibSetMemoryType ( Ranges, RangeCapacity, RangeCount, Base, mMtrrLibFixedMtrrTable[MsrIndex].Length, MemoryType ); if (Status == RETURN_OUT_OF_RESOURCES) { return Status; } Base += mMtrrLibFixedMtrrTable[MsrIndex].Length; } } ASSERT (Base == BASE_1MB); return RETURN_SUCCESS; } /** Apply the variable MTRR settings to memory range array. @param VariableMtrr The variable MTRR array. @param VariableMtrrCount The count of variable MTRRs. @param Ranges Return the memory range array with new MTRR settings applied. @param RangeCapacity The capacity of memory range array. @param RangeCount Return the count of memory range. @retval RETURN_SUCCESS The memory range array is returned successfully. @retval RETURN_OUT_OF_RESOURCES The count of memory ranges exceeds capacity. **/ RETURN_STATUS MtrrLibApplyVariableMtrrs ( IN CONST MTRR_MEMORY_RANGE *VariableMtrr, IN UINT32 VariableMtrrCount, IN OUT MTRR_MEMORY_RANGE *Ranges, IN UINTN RangeCapacity, IN OUT UINTN *RangeCount ) { RETURN_STATUS Status; UINTN Index; // // WT > WB // UC > * // UC > * (except WB, UC) > WB // // // 1. Set WB // for (Index = 0; Index < VariableMtrrCount; Index++) { if ((VariableMtrr[Index].Length != 0) && (VariableMtrr[Index].Type == CacheWriteBack)) { Status = MtrrLibSetMemoryType ( Ranges, RangeCapacity, RangeCount, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, VariableMtrr[Index].Type ); if (Status == RETURN_OUT_OF_RESOURCES) { return Status; } } } // // 2. Set other types than WB or UC // for (Index = 0; Index < VariableMtrrCount; Index++) { if ((VariableMtrr[Index].Length != 0) && (VariableMtrr[Index].Type != CacheWriteBack) && (VariableMtrr[Index].Type != CacheUncacheable)) { Status = MtrrLibSetMemoryType ( Ranges, RangeCapacity, RangeCount, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, VariableMtrr[Index].Type ); if (Status == RETURN_OUT_OF_RESOURCES) { return Status; } } } // // 3. Set UC // for (Index = 0; Index < VariableMtrrCount; Index++) { if ((VariableMtrr[Index].Length != 0) && (VariableMtrr[Index].Type == CacheUncacheable)) { Status = MtrrLibSetMemoryType ( Ranges, RangeCapacity, RangeCount, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, VariableMtrr[Index].Type ); if (Status == RETURN_OUT_OF_RESOURCES) { return Status; } } } return RETURN_SUCCESS; } /** Return the memory type bit mask that's compatible to first type in the Ranges. @param Ranges Memory range array holding the memory type settings for all memory address. @param RangeCount Count of memory ranges. @return Compatible memory type bit mask. **/ UINT8 MtrrLibGetCompatibleTypes ( IN CONST MTRR_MEMORY_RANGE *Ranges, IN UINTN RangeCount ) { ASSERT (RangeCount != 0); switch (Ranges[0].Type) { case CacheWriteBack: case CacheWriteThrough: return (1 << CacheWriteBack) | (1 << CacheWriteThrough) | (1 << CacheUncacheable); break; case CacheWriteCombining: case CacheWriteProtected: return (1 << Ranges[0].Type) | (1 << CacheUncacheable); break; case CacheUncacheable: if (RangeCount == 1) { return (1 << CacheUncacheable); } return MtrrLibGetCompatibleTypes (&Ranges[1], RangeCount - 1); break; case CacheInvalid: default: ASSERT (FALSE); break; } return 0; } /** Overwrite the destination MTRR settings with the source MTRR settings. This routine is to make sure the modification to destination MTRR settings is as small as possible. @param DstMtrrs Destination MTRR settings. @param DstMtrrCount Count of destination MTRR settings. @param SrcMtrrs Source MTRR settings. @param SrcMtrrCount Count of source MTRR settings. @param Modified Flag array to indicate which destination MTRR setting is modified. **/ VOID MtrrLibMergeVariableMtrr ( MTRR_MEMORY_RANGE *DstMtrrs, UINT32 DstMtrrCount, MTRR_MEMORY_RANGE *SrcMtrrs, UINT32 SrcMtrrCount, BOOLEAN *Modified ) { UINT32 DstIndex; UINT32 SrcIndex; ASSERT (SrcMtrrCount <= DstMtrrCount); for (DstIndex = 0; DstIndex < DstMtrrCount; DstIndex++) { Modified[DstIndex] = FALSE; if (DstMtrrs[DstIndex].Length == 0) { continue; } for (SrcIndex = 0; SrcIndex < SrcMtrrCount; SrcIndex++) { if ((DstMtrrs[DstIndex].BaseAddress == SrcMtrrs[SrcIndex].BaseAddress) && (DstMtrrs[DstIndex].Length == SrcMtrrs[SrcIndex].Length) && (DstMtrrs[DstIndex].Type == SrcMtrrs[SrcIndex].Type)) { break; } } if (SrcIndex == SrcMtrrCount) { // // Remove the one from DstMtrrs which is not in SrcMtrrs // DstMtrrs[DstIndex].Length = 0; Modified[DstIndex] = TRUE; } else { // // Remove the one from SrcMtrrs which is also in DstMtrrs // SrcMtrrs[SrcIndex].Length = 0; } } // // Now valid MTRR only exists in either DstMtrrs or SrcMtrrs. // Merge MTRRs from SrcMtrrs to DstMtrrs // DstIndex = 0; for (SrcIndex = 0; SrcIndex < SrcMtrrCount; SrcIndex++) { if (SrcMtrrs[SrcIndex].Length != 0) { // // Find the empty slot in DstMtrrs // while (DstIndex < DstMtrrCount) { if (DstMtrrs[DstIndex].Length == 0) { break; } DstIndex++; } ASSERT (DstIndex < DstMtrrCount); CopyMem (&DstMtrrs[DstIndex], &SrcMtrrs[SrcIndex], sizeof (SrcMtrrs[0])); Modified[DstIndex] = TRUE; } } } /** Calculate the variable MTRR settings for all memory ranges. @param DefaultType Default memory type. @param A0 Alignment to use when base address is 0. @param Ranges Memory range array holding the memory type settings for all memory address. @param RangeCount Count of memory ranges. @param Scratch Scratch buffer to be used in MTRR calculation. @param ScratchSize Pointer to the size of scratch buffer. @param VariableMtrr Array holding all MTRR settings. @param VariableMtrrCapacity Capacity of the MTRR array. @param VariableMtrrCount The count of MTRR settings in array. @retval RETURN_SUCCESS Variable MTRRs are allocated successfully. @retval RETURN_OUT_OF_RESOURCES Count of variable MTRRs exceeds capacity. @retval RETURN_BUFFER_TOO_SMALL The scratch buffer is too small for MTRR calculation. The required scratch buffer size is returned through ScratchSize. **/ RETURN_STATUS MtrrLibSetMemoryRanges ( IN MTRR_MEMORY_CACHE_TYPE DefaultType, IN UINT64 A0, IN MTRR_MEMORY_RANGE *Ranges, IN UINTN RangeCount, IN VOID *Scratch, IN OUT UINTN *ScratchSize, OUT MTRR_MEMORY_RANGE *VariableMtrr, IN UINT32 VariableMtrrCapacity, OUT UINT32 *VariableMtrrCount ) { RETURN_STATUS Status; UINT32 Index; UINT64 Base0; UINT64 Base1; UINT64 Alignment; UINT8 CompatibleTypes; UINT64 Length; UINT32 End; UINTN ActualScratchSize; UINTN BiggestScratchSize; *VariableMtrrCount = 0; // // Since the whole ranges need multiple calls of MtrrLibCalculateMtrrs(). // Each call needs different scratch buffer size. // When the provided scratch buffer size is not sufficient in any call, // set the GetActualScratchSize to TRUE, and following calls will only // calculate the actual scratch size for the caller. // BiggestScratchSize = 0; for (Index = 0; Index < RangeCount;) { Base0 = Ranges[Index].BaseAddress; // // Full step is optimal // while (Index < RangeCount) { ASSERT (Ranges[Index].BaseAddress == Base0); Alignment = MtrrLibBiggestAlignment (Base0, A0); while (Base0 + Alignment <= Ranges[Index].BaseAddress + Ranges[Index].Length) { if ((BiggestScratchSize <= *ScratchSize) && (Ranges[Index].Type != DefaultType)) { Status = MtrrLibAppendVariableMtrr ( VariableMtrr, VariableMtrrCapacity, VariableMtrrCount, Base0, Alignment, Ranges[Index].Type ); if (RETURN_ERROR (Status)) { return Status; } } Base0 += Alignment; Alignment = MtrrLibBiggestAlignment (Base0, A0); } // // Remove the above range from Ranges[Index] // Ranges[Index].Length -= Base0 - Ranges[Index].BaseAddress; Ranges[Index].BaseAddress = Base0; if (Ranges[Index].Length != 0) { break; } else { Index++; } } if (Index == RangeCount) { break; } // // Find continous ranges [Base0, Base1) which could be combined by MTRR. // Per SDM, the compatible types between[B0, B1) are: // UC, * // WB, WT // UC, WB, WT // CompatibleTypes = MtrrLibGetCompatibleTypes (&Ranges[Index], RangeCount - Index); End = Index; // End points to last one that matches the CompatibleTypes. while (End + 1 < RangeCount) { if (((1 << Ranges[End + 1].Type) & CompatibleTypes) == 0) { break; } End++; } Alignment = MtrrLibBiggestAlignment (Base0, A0); Length = GetPowerOfTwo64 (Ranges[End].BaseAddress + Ranges[End].Length - Base0); Base1 = Base0 + MIN (Alignment, Length); // // Base1 may not in Ranges[End]. Update End to the range Base1 belongs to. // End = Index; while (End + 1 < RangeCount) { if (Base1 <= Ranges[End + 1].BaseAddress) { break; } End++; } Length = Ranges[End].Length; Ranges[End].Length = Base1 - Ranges[End].BaseAddress; ActualScratchSize = *ScratchSize; Status = MtrrLibCalculateMtrrs ( DefaultType, A0, &Ranges[Index], End + 1 - Index, Scratch, &ActualScratchSize, VariableMtrr, VariableMtrrCapacity, VariableMtrrCount ); if (Status == RETURN_BUFFER_TOO_SMALL) { BiggestScratchSize = MAX (BiggestScratchSize, ActualScratchSize); // // Ignore this error, because we need to calculate the biggest // scratch buffer size. // Status = RETURN_SUCCESS; } if (RETURN_ERROR (Status)) { return Status; } if (Length != Ranges[End].Length) { Ranges[End].BaseAddress = Base1; Ranges[End].Length = Length - Ranges[End].Length; Index = End; } else { Index = End + 1; } } if (*ScratchSize < BiggestScratchSize) { *ScratchSize = BiggestScratchSize; return RETURN_BUFFER_TOO_SMALL; } return RETURN_SUCCESS; } /** Set the below-1MB memory attribute to fixed MTRR buffer. Modified flag array indicates which fixed MTRR is modified. @param [in, out] ClearMasks The bits (when set) to clear in the fixed MTRR MSR. @param [in, out] OrMasks The bits to set in the fixed MTRR MSR. @param [in] BaseAddress Base address. @param [in] Length Length. @param [in] Type Memory type. @retval RETURN_SUCCESS The memory attribute is set successfully. @retval RETURN_UNSUPPORTED The requested range or cache type was invalid for the fixed MTRRs. **/ RETURN_STATUS MtrrLibSetBelow1MBMemoryAttribute ( IN OUT UINT64 *ClearMasks, IN OUT UINT64 *OrMasks, IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN MTRR_MEMORY_CACHE_TYPE Type ) { RETURN_STATUS Status; UINT32 MsrIndex; UINT64 ClearMask; UINT64 OrMask; ASSERT (BaseAddress < BASE_1MB); MsrIndex = (UINT32)-1; while ((BaseAddress < BASE_1MB) && (Length != 0)) { Status = MtrrLibProgramFixedMtrr (Type, &BaseAddress, &Length, &MsrIndex, &ClearMask, &OrMask); if (RETURN_ERROR (Status)) { return Status; } ClearMasks[MsrIndex] = ClearMasks[MsrIndex] | ClearMask; OrMasks[MsrIndex] = (OrMasks[MsrIndex] & ~ClearMask) | OrMask; } return RETURN_SUCCESS; } /** This function attempts to set the attributes into MTRR setting buffer for multiple memory ranges. @param[in, out] MtrrSetting MTRR setting buffer to be set. @param[in] Scratch A temporary scratch buffer that is used to perform the calculation. @param[in, out] ScratchSize Pointer to the size in bytes of the scratch buffer. It may be updated to the actual required size when the calculation needs more scratch buffer. @param[in] Ranges Pointer to an array of MTRR_MEMORY_RANGE. When range overlap happens, the last one takes higher priority. When the function returns, either all the attributes are set successfully, or none of them is set. @param[in] RangeCount Count of MTRR_MEMORY_RANGE. @retval RETURN_SUCCESS The attributes were set for all the memory ranges. @retval RETURN_INVALID_PARAMETER Length in any range is zero. @retval RETURN_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length in any range. @retval RETURN_UNSUPPORTED The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length in any range. @retval RETURN_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource ranges. @retval RETURN_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval RETURN_BUFFER_TOO_SMALL The scratch buffer is too small for MTRR calculation. **/ RETURN_STATUS EFIAPI MtrrSetMemoryAttributesInMtrrSettings ( IN OUT MTRR_SETTINGS *MtrrSetting, IN VOID *Scratch, IN OUT UINTN *ScratchSize, IN CONST MTRR_MEMORY_RANGE *Ranges, IN UINTN RangeCount ) { RETURN_STATUS Status; UINT32 Index; UINT64 BaseAddress; UINT64 Length; BOOLEAN Above1MbExist; UINT64 MtrrValidBitsMask; UINT64 MtrrValidAddressMask; MTRR_MEMORY_CACHE_TYPE DefaultType; MTRR_VARIABLE_SETTINGS VariableSettings; MTRR_MEMORY_RANGE WorkingRanges[2 * ARRAY_SIZE (MtrrSetting->Variables.Mtrr) + 2]; UINTN WorkingRangeCount; BOOLEAN Modified; MTRR_VARIABLE_SETTING VariableSetting; UINT32 OriginalVariableMtrrCount; UINT32 FirmwareVariableMtrrCount; UINT32 WorkingVariableMtrrCount; MTRR_MEMORY_RANGE OriginalVariableMtrr[ARRAY_SIZE (MtrrSetting->Variables.Mtrr)]; MTRR_MEMORY_RANGE WorkingVariableMtrr[ARRAY_SIZE (MtrrSetting->Variables.Mtrr)]; BOOLEAN VariableSettingModified[ARRAY_SIZE (MtrrSetting->Variables.Mtrr)]; UINT64 ClearMasks[ARRAY_SIZE (mMtrrLibFixedMtrrTable)]; UINT64 OrMasks[ARRAY_SIZE (mMtrrLibFixedMtrrTable)]; MTRR_CONTEXT MtrrContext; BOOLEAN MtrrContextValid; Status = RETURN_SUCCESS; MtrrLibInitializeMtrrMask (&MtrrValidBitsMask, &MtrrValidAddressMask); // // TRUE indicating the accordingly Variable setting needs modificaiton in OriginalVariableMtrr. // SetMem (VariableSettingModified, ARRAY_SIZE (VariableSettingModified), FALSE); // // TRUE indicating the caller requests to set variable MTRRs. // Above1MbExist = FALSE; OriginalVariableMtrrCount = 0; // // 0. Dump the requests. // DEBUG_CODE_BEGIN (); DEBUG (( DEBUG_CACHE, "Mtrr: Set Mem Attribute to %a, ScratchSize = %x%a", (MtrrSetting == NULL) ? "Hardware" : "Buffer", *ScratchSize, (RangeCount <= 1) ? "," : "\n" )); for (Index = 0; Index < RangeCount; Index++) { DEBUG (( DEBUG_CACHE, " %a: [%016lx, %016lx)\n", mMtrrMemoryCacheTypeShortName[MIN (Ranges[Index].Type, CacheInvalid)], Ranges[Index].BaseAddress, Ranges[Index].BaseAddress + Ranges[Index].Length )); } DEBUG_CODE_END (); // // 1. Validate the parameters. // if (!IsMtrrSupported ()) { Status = RETURN_UNSUPPORTED; goto Exit; } for (Index = 0; Index < RangeCount; Index++) { if (Ranges[Index].Length == 0) { Status = RETURN_INVALID_PARAMETER; goto Exit; } if (((Ranges[Index].BaseAddress & ~MtrrValidAddressMask) != 0) || ((((Ranges[Index].BaseAddress + Ranges[Index].Length) & ~MtrrValidAddressMask) != 0) && ((Ranges[Index].BaseAddress + Ranges[Index].Length) != MtrrValidBitsMask + 1)) ) { // // Either the BaseAddress or the Limit doesn't follow the alignment requirement. // Note: It's still valid if Limit doesn't follow the alignment requirement but equals to MAX Address. // Status = RETURN_UNSUPPORTED; goto Exit; } if ((Ranges[Index].Type != CacheUncacheable) && (Ranges[Index].Type != CacheWriteCombining) && (Ranges[Index].Type != CacheWriteThrough) && (Ranges[Index].Type != CacheWriteProtected) && (Ranges[Index].Type != CacheWriteBack)) { Status = RETURN_INVALID_PARAMETER; goto Exit; } if (Ranges[Index].BaseAddress + Ranges[Index].Length > BASE_1MB) { Above1MbExist = TRUE; } } // // 2. Apply the above-1MB memory attribute settings. // if (Above1MbExist) { // // 2.1. Read all variable MTRRs and convert to Ranges. // OriginalVariableMtrrCount = GetVariableMtrrCountWorker (); MtrrGetVariableMtrrWorker (MtrrSetting, OriginalVariableMtrrCount, &VariableSettings); MtrrLibGetRawVariableRanges ( &VariableSettings, OriginalVariableMtrrCount, MtrrValidBitsMask, MtrrValidAddressMask, OriginalVariableMtrr ); DefaultType = MtrrGetDefaultMemoryTypeWorker (MtrrSetting); WorkingRangeCount = 1; WorkingRanges[0].BaseAddress = 0; WorkingRanges[0].Length = MtrrValidBitsMask + 1; WorkingRanges[0].Type = DefaultType; Status = MtrrLibApplyVariableMtrrs ( OriginalVariableMtrr, OriginalVariableMtrrCount, WorkingRanges, ARRAY_SIZE (WorkingRanges), &WorkingRangeCount ); ASSERT_RETURN_ERROR (Status); ASSERT (OriginalVariableMtrrCount >= PcdGet32 (PcdCpuNumberOfReservedVariableMtrrs)); FirmwareVariableMtrrCount = OriginalVariableMtrrCount - PcdGet32 (PcdCpuNumberOfReservedVariableMtrrs); ASSERT (WorkingRangeCount <= 2 * FirmwareVariableMtrrCount + 1); // // 2.2. Force [0, 1M) to UC, so that it doesn't impact subtraction algorithm. // Status = MtrrLibSetMemoryType ( WorkingRanges, ARRAY_SIZE (WorkingRanges), &WorkingRangeCount, 0, SIZE_1MB, CacheUncacheable ); ASSERT (Status != RETURN_OUT_OF_RESOURCES); // // 2.3. Apply the new memory attribute settings to Ranges. // Modified = FALSE; for (Index = 0; Index < RangeCount; Index++) { BaseAddress = Ranges[Index].BaseAddress; Length = Ranges[Index].Length; if (BaseAddress < BASE_1MB) { if (Length <= BASE_1MB - BaseAddress) { continue; } Length -= BASE_1MB - BaseAddress; BaseAddress = BASE_1MB; } Status = MtrrLibSetMemoryType ( WorkingRanges, ARRAY_SIZE (WorkingRanges), &WorkingRangeCount, BaseAddress, Length, Ranges[Index].Type ); if (Status == RETURN_ALREADY_STARTED) { Status = RETURN_SUCCESS; } else if (Status == RETURN_OUT_OF_RESOURCES) { goto Exit; } else { ASSERT_RETURN_ERROR (Status); Modified = TRUE; } } if (Modified) { // // 2.4. Calculate the Variable MTRR settings based on the Ranges. // Buffer Too Small may be returned if the scratch buffer size is insufficient. // Status = MtrrLibSetMemoryRanges ( DefaultType, LShiftU64 (1, (UINTN)HighBitSet64 (MtrrValidBitsMask)), WorkingRanges, WorkingRangeCount, Scratch, ScratchSize, WorkingVariableMtrr, FirmwareVariableMtrrCount + 1, &WorkingVariableMtrrCount ); if (RETURN_ERROR (Status)) { goto Exit; } // // 2.5. Remove the [0, 1MB) MTRR if it still exists (not merged with other range) // for (Index = 0; Index < WorkingVariableMtrrCount; Index++) { if ((WorkingVariableMtrr[Index].BaseAddress == 0) && (WorkingVariableMtrr[Index].Length == SIZE_1MB)) { ASSERT (WorkingVariableMtrr[Index].Type == CacheUncacheable); WorkingVariableMtrrCount--; CopyMem ( &WorkingVariableMtrr[Index], &WorkingVariableMtrr[Index + 1], (WorkingVariableMtrrCount - Index) * sizeof (WorkingVariableMtrr[0]) ); break; } } if (WorkingVariableMtrrCount > FirmwareVariableMtrrCount) { Status = RETURN_OUT_OF_RESOURCES; goto Exit; } // // 2.6. Merge the WorkingVariableMtrr to OriginalVariableMtrr // Make sure least modification is made to OriginalVariableMtrr. // MtrrLibMergeVariableMtrr ( OriginalVariableMtrr, OriginalVariableMtrrCount, WorkingVariableMtrr, WorkingVariableMtrrCount, VariableSettingModified ); } } // // 3. Apply the below-1MB memory attribute settings. // // (Value & ~0 | 0) still equals to (Value) // ZeroMem (ClearMasks, sizeof (ClearMasks)); ZeroMem (OrMasks, sizeof (OrMasks)); for (Index = 0; Index < RangeCount; Index++) { if (Ranges[Index].BaseAddress >= BASE_1MB) { continue; } Status = MtrrLibSetBelow1MBMemoryAttribute ( ClearMasks, OrMasks, Ranges[Index].BaseAddress, Ranges[Index].Length, Ranges[Index].Type ); if (RETURN_ERROR (Status)) { goto Exit; } } MtrrContextValid = FALSE; // // 4. Write fixed MTRRs that have been modified // for (Index = 0; Index < ARRAY_SIZE (ClearMasks); Index++) { if (ClearMasks[Index] != 0) { if (MtrrSetting != NULL) { MtrrSetting->Fixed.Mtrr[Index] = (MtrrSetting->Fixed.Mtrr[Index] & ~ClearMasks[Index]) | OrMasks[Index]; } else { if (!MtrrContextValid) { MtrrLibPreMtrrChange (&MtrrContext); MtrrContextValid = TRUE; } AsmMsrAndThenOr64 (mMtrrLibFixedMtrrTable[Index].Msr, ~ClearMasks[Index], OrMasks[Index]); } } } // // 5. Write variable MTRRs that have been modified // for (Index = 0; Index < OriginalVariableMtrrCount; Index++) { if (VariableSettingModified[Index]) { if (OriginalVariableMtrr[Index].Length != 0) { VariableSetting.Base = (OriginalVariableMtrr[Index].BaseAddress & MtrrValidAddressMask) | (UINT8)OriginalVariableMtrr[Index].Type; VariableSetting.Mask = ((~(OriginalVariableMtrr[Index].Length - 1)) & MtrrValidAddressMask) | BIT11; } else { VariableSetting.Base = 0; VariableSetting.Mask = 0; } if (MtrrSetting != NULL) { CopyMem (&MtrrSetting->Variables.Mtrr[Index], &VariableSetting, sizeof (VariableSetting)); } else { if (!MtrrContextValid) { MtrrLibPreMtrrChange (&MtrrContext); MtrrContextValid = TRUE; } AsmWriteMsr64 ( MSR_IA32_MTRR_PHYSBASE0 + (Index << 1), VariableSetting.Base ); AsmWriteMsr64 ( MSR_IA32_MTRR_PHYSMASK0 + (Index << 1), VariableSetting.Mask ); } } } if (MtrrSetting != NULL) { ((MSR_IA32_MTRR_DEF_TYPE_REGISTER *)&MtrrSetting->MtrrDefType)->Bits.E = 1; ((MSR_IA32_MTRR_DEF_TYPE_REGISTER *)&MtrrSetting->MtrrDefType)->Bits.FE = 1; } else { if (MtrrContextValid) { MtrrLibPostMtrrChange (&MtrrContext); } } Exit: DEBUG ((DEBUG_CACHE, " Result = %r\n", Status)); if (!RETURN_ERROR (Status)) { MtrrDebugPrintAllMtrrsWorker (MtrrSetting); } return Status; } /** This function attempts to set the attributes into MTRR setting buffer for a memory range. @param[in, out] MtrrSetting MTRR setting buffer to be set. @param[in] BaseAddress The physical address that is the start address of a memory range. @param[in] Length The size in bytes of the memory range. @param[in] Attribute The bit mask of attributes to set for the memory range. @retval RETURN_SUCCESS The attributes were set for the memory range. @retval RETURN_INVALID_PARAMETER Length is zero. @retval RETURN_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. @retval RETURN_UNSUPPORTED The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. @retval RETURN_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval RETURN_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. Multiple memory range attributes setting by calling this API multiple times may fail with status RETURN_OUT_OF_RESOURCES. It may not mean the number of CPU MTRRs are too small to set such memory attributes. Pass the multiple memory range attributes to one call of MtrrSetMemoryAttributesInMtrrSettings() may succeed. @retval RETURN_BUFFER_TOO_SMALL The fixed internal scratch buffer is too small for MTRR calculation. Caller should use MtrrSetMemoryAttributesInMtrrSettings() to specify external scratch buffer. **/ RETURN_STATUS EFIAPI MtrrSetMemoryAttributeInMtrrSettings ( IN OUT MTRR_SETTINGS *MtrrSetting, IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN MTRR_MEMORY_CACHE_TYPE Attribute ) { UINT8 Scratch[SCRATCH_BUFFER_SIZE]; UINTN ScratchSize; MTRR_MEMORY_RANGE Range; Range.BaseAddress = BaseAddress; Range.Length = Length; Range.Type = Attribute; ScratchSize = sizeof (Scratch); return MtrrSetMemoryAttributesInMtrrSettings (MtrrSetting, Scratch, &ScratchSize, &Range, 1); } /** This function attempts to set the attributes for a memory range. @param[in] BaseAddress The physical address that is the start address of a memory range. @param[in] Length The size in bytes of the memory range. @param[in] Attributes The bit mask of attributes to set for the memory range. @retval RETURN_SUCCESS The attributes were set for the memory range. @retval RETURN_INVALID_PARAMETER Length is zero. @retval RETURN_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. @retval RETURN_UNSUPPORTED The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. @retval RETURN_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval RETURN_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. Multiple memory range attributes setting by calling this API multiple times may fail with status RETURN_OUT_OF_RESOURCES. It may not mean the number of CPU MTRRs are too small to set such memory attributes. Pass the multiple memory range attributes to one call of MtrrSetMemoryAttributesInMtrrSettings() may succeed. @retval RETURN_BUFFER_TOO_SMALL The fixed internal scratch buffer is too small for MTRR calculation. Caller should use MtrrSetMemoryAttributesInMtrrSettings() to specify external scratch buffer. **/ RETURN_STATUS EFIAPI MtrrSetMemoryAttribute ( IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN MTRR_MEMORY_CACHE_TYPE Attribute ) { return MtrrSetMemoryAttributeInMtrrSettings (NULL, BaseAddress, Length, Attribute); } /** Worker function setting variable MTRRs @param[in] VariableSettings A buffer to hold variable MTRRs content. **/ VOID MtrrSetVariableMtrrWorker ( IN MTRR_VARIABLE_SETTINGS *VariableSettings ) { UINT32 Index; UINT32 VariableMtrrCount; VariableMtrrCount = GetVariableMtrrCountWorker (); ASSERT (VariableMtrrCount <= ARRAY_SIZE (VariableSettings->Mtrr)); for (Index = 0; Index < VariableMtrrCount; Index++) { AsmWriteMsr64 ( MSR_IA32_MTRR_PHYSBASE0 + (Index << 1), VariableSettings->Mtrr[Index].Base ); AsmWriteMsr64 ( MSR_IA32_MTRR_PHYSMASK0 + (Index << 1), VariableSettings->Mtrr[Index].Mask ); } } /** Worker function setting fixed MTRRs @param[in] FixedSettings A buffer to hold fixed MTRRs content. **/ VOID MtrrSetFixedMtrrWorker ( IN MTRR_FIXED_SETTINGS *FixedSettings ) { UINT32 Index; for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { AsmWriteMsr64 ( mMtrrLibFixedMtrrTable[Index].Msr, FixedSettings->Mtrr[Index] ); } } /** This function gets the content in all MTRRs (variable and fixed) @param[out] MtrrSetting A buffer to hold all MTRRs content. @retval the pointer of MtrrSetting **/ MTRR_SETTINGS * EFIAPI MtrrGetAllMtrrs ( OUT MTRR_SETTINGS *MtrrSetting ) { if (!IsMtrrSupported ()) { return MtrrSetting; } // // Get fixed MTRRs // MtrrGetFixedMtrrWorker (&MtrrSetting->Fixed); // // Get variable MTRRs // MtrrGetVariableMtrrWorker ( NULL, GetVariableMtrrCountWorker (), &MtrrSetting->Variables ); // // Get MTRR_DEF_TYPE value // MtrrSetting->MtrrDefType = AsmReadMsr64 (MSR_IA32_MTRR_DEF_TYPE); return MtrrSetting; } /** This function sets all MTRRs (variable and fixed) @param[in] MtrrSetting A buffer holding all MTRRs content. @retval The pointer of MtrrSetting **/ MTRR_SETTINGS * EFIAPI MtrrSetAllMtrrs ( IN MTRR_SETTINGS *MtrrSetting ) { MTRR_CONTEXT MtrrContext; if (!IsMtrrSupported ()) { return MtrrSetting; } MtrrLibPreMtrrChange (&MtrrContext); // // Set fixed MTRRs // MtrrSetFixedMtrrWorker (&MtrrSetting->Fixed); // // Set variable MTRRs // MtrrSetVariableMtrrWorker (&MtrrSetting->Variables); // // Set MTRR_DEF_TYPE value // AsmWriteMsr64 (MSR_IA32_MTRR_DEF_TYPE, MtrrSetting->MtrrDefType); MtrrLibPostMtrrChangeEnableCache (&MtrrContext); return MtrrSetting; } /** Checks if MTRR is supported. @retval TRUE MTRR is supported. @retval FALSE MTRR is not supported. **/ BOOLEAN EFIAPI IsMtrrSupported ( VOID ) { CPUID_VERSION_INFO_EDX Edx; MSR_IA32_MTRRCAP_REGISTER MtrrCap; // // Check CPUID(1).EDX[12] for MTRR capability // AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &Edx.Uint32); if (Edx.Bits.MTRR == 0) { return FALSE; } // // Check number of variable MTRRs and fixed MTRRs existence. // If number of variable MTRRs is zero, or fixed MTRRs do not // exist, return false. // MtrrCap.Uint64 = AsmReadMsr64 (MSR_IA32_MTRRCAP); if ((MtrrCap.Bits.VCNT == 0) || (MtrrCap.Bits.FIX == 0)) { return FALSE; } return TRUE; } /** Worker function prints all MTRRs for debugging. If MtrrSetting is not NULL, print MTRR settings from input MTRR settings buffer. If MtrrSetting is NULL, print MTRR settings from MTRRs. @param MtrrSetting A buffer holding all MTRRs content. **/ VOID MtrrDebugPrintAllMtrrsWorker ( IN MTRR_SETTINGS *MtrrSetting ) { DEBUG_CODE_BEGIN (); MTRR_SETTINGS LocalMtrrs; MTRR_SETTINGS *Mtrrs; UINTN Index; UINTN RangeCount; UINT64 MtrrValidBitsMask; UINT64 MtrrValidAddressMask; UINT32 VariableMtrrCount; BOOLEAN ContainVariableMtrr; MTRR_MEMORY_RANGE Ranges[ ARRAY_SIZE (mMtrrLibFixedMtrrTable) * sizeof (UINT64) + 2 * ARRAY_SIZE (Mtrrs->Variables.Mtrr) + 1 ]; MTRR_MEMORY_RANGE RawVariableRanges[ARRAY_SIZE (Mtrrs->Variables.Mtrr)]; if (!IsMtrrSupported ()) { return; } VariableMtrrCount = GetVariableMtrrCountWorker (); if (MtrrSetting != NULL) { Mtrrs = MtrrSetting; } else { MtrrGetAllMtrrs (&LocalMtrrs); Mtrrs = &LocalMtrrs; } // // Dump RAW MTRR contents // DEBUG ((DEBUG_CACHE, "MTRR Settings:\n")); DEBUG ((DEBUG_CACHE, "=============\n")); DEBUG ((DEBUG_CACHE, "MTRR Default Type: %016lx\n", Mtrrs->MtrrDefType)); for (Index = 0; Index < ARRAY_SIZE (mMtrrLibFixedMtrrTable); Index++) { DEBUG ((DEBUG_CACHE, "Fixed MTRR[%02d] : %016lx\n", Index, Mtrrs->Fixed.Mtrr[Index])); } ContainVariableMtrr = FALSE; for (Index = 0; Index < VariableMtrrCount; Index++) { if ((Mtrrs->Variables.Mtrr[Index].Mask & BIT11) == 0) { // // If mask is not valid, then do not display range // continue; } ContainVariableMtrr = TRUE; DEBUG (( DEBUG_CACHE, "Variable MTRR[%02d]: Base=%016lx Mask=%016lx\n", Index, Mtrrs->Variables.Mtrr[Index].Base, Mtrrs->Variables.Mtrr[Index].Mask )); } if (!ContainVariableMtrr) { DEBUG ((DEBUG_CACHE, "Variable MTRR : None.\n")); } DEBUG ((DEBUG_CACHE, "\n")); // // Dump MTRR setting in ranges // DEBUG ((DEBUG_CACHE, "Memory Ranges:\n")); DEBUG ((DEBUG_CACHE, "====================================\n")); MtrrLibInitializeMtrrMask (&MtrrValidBitsMask, &MtrrValidAddressMask); Ranges[0].BaseAddress = 0; Ranges[0].Length = MtrrValidBitsMask + 1; Ranges[0].Type = MtrrGetDefaultMemoryTypeWorker (Mtrrs); RangeCount = 1; MtrrLibGetRawVariableRanges ( &Mtrrs->Variables, VariableMtrrCount, MtrrValidBitsMask, MtrrValidAddressMask, RawVariableRanges ); MtrrLibApplyVariableMtrrs ( RawVariableRanges, VariableMtrrCount, Ranges, ARRAY_SIZE (Ranges), &RangeCount ); MtrrLibApplyFixedMtrrs (&Mtrrs->Fixed, Ranges, ARRAY_SIZE (Ranges), &RangeCount); for (Index = 0; Index < RangeCount; Index++) { DEBUG (( DEBUG_CACHE, "%a:%016lx-%016lx\n", mMtrrMemoryCacheTypeShortName[Ranges[Index].Type], Ranges[Index].BaseAddress, Ranges[Index].BaseAddress + Ranges[Index].Length - 1 )); } DEBUG_CODE_END (); } /** This function prints all MTRRs for debugging. **/ VOID EFIAPI MtrrDebugPrintAllMtrrs ( VOID ) { MtrrDebugPrintAllMtrrsWorker (NULL); }