/** @file SMM MP service implementation Copyright (c) 2009 - 2024, Intel Corporation. All rights reserved.
Copyright (c) 2017, AMD Incorporated. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "PiSmmCpuDxeSmm.h" // // Slots for all MTRR( FIXED MTRR + VARIABLE MTRR + MTRR_LIB_IA32_MTRR_DEF_TYPE) // MTRR_SETTINGS gSmiMtrrs; UINT64 gPhyMask; SMM_DISPATCHER_MP_SYNC_DATA *mSmmMpSyncData = NULL; UINTN mSmmMpSyncDataSize; SMM_CPU_SEMAPHORES mSmmCpuSemaphores; UINTN mSemaphoreSize; SPIN_LOCK *mPFLock = NULL; SMM_CPU_SYNC_MODE mCpuSmmSyncMode; BOOLEAN mMachineCheckSupported = FALSE; MM_COMPLETION mSmmStartupThisApToken; // // Processor specified by mPackageFirstThreadIndex[PackageIndex] will do the package-scope register check. // UINT32 *mPackageFirstThreadIndex = NULL; /** Used for BSP to release all APs. Performs an atomic compare exchange operation to release semaphore for each AP. **/ VOID ReleaseAllAPs ( VOID ) { UINTN Index; for (Index = 0; Index < mMaxNumberOfCpus; Index++) { if (IsPresentAp (Index)) { SmmCpuSyncReleaseOneAp (mSmmMpSyncData->SyncContext, Index, gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu); } } } /** Check whether the index of CPU perform the package level register programming during System Management Mode initialization. The index of Processor specified by mPackageFirstThreadIndex[PackageIndex] will do the package-scope register programming. @param[in] CpuIndex Processor Index. @retval TRUE Perform the package level register programming. @retval FALSE Don't perform the package level register programming. **/ BOOLEAN IsPackageFirstThread ( IN UINTN CpuIndex ) { UINT32 PackageIndex; PackageIndex = gSmmCpuPrivate->ProcessorInfo[CpuIndex].Location.Package; ASSERT (mPackageFirstThreadIndex != NULL); // // Set the value of mPackageFirstThreadIndex[PackageIndex]. // The package-scope register are checked by the first processor (CpuIndex) in Package. // // If mPackageFirstThreadIndex[PackageIndex] equals to (UINT32)-1, then update // to current CpuIndex. If it doesn't equal to (UINT32)-1, don't change it. // if (mPackageFirstThreadIndex[PackageIndex] == (UINT32)-1) { mPackageFirstThreadIndex[PackageIndex] = (UINT32)CpuIndex; } return (BOOLEAN)(mPackageFirstThreadIndex[PackageIndex] == CpuIndex); } /** Returns the Number of SMM Delayed & Blocked & Disabled Thread Count. @param[in,out] DelayedCount The Number of SMM Delayed Thread Count. @param[in,out] BlockedCount The Number of SMM Blocked Thread Count. @param[in,out] DisabledCount The Number of SMM Disabled Thread Count. **/ VOID GetSmmDelayedBlockedDisabledCount ( IN OUT UINT32 *DelayedCount, IN OUT UINT32 *BlockedCount, IN OUT UINT32 *DisabledCount ) { UINTN Index; for (Index = 0; Index < mNumberOfCpus; Index++) { if (IsPackageFirstThread (Index)) { if (DelayedCount != NULL) { *DelayedCount += (UINT32)SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmDelayed); } if (BlockedCount != NULL) { *BlockedCount += (UINT32)SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmBlocked); } if (DisabledCount != NULL) { *DisabledCount += (UINT32)SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmEnable); } } } } /** Checks if all CPUs (except Blocked & Disabled) have checked in for this SMI run @retval TRUE if all CPUs the have checked in. @retval FALSE if at least one Normal AP hasn't checked in. **/ BOOLEAN AllCpusInSmmExceptBlockedDisabled ( VOID ) { UINT32 BlockedCount; UINT32 DisabledCount; BlockedCount = 0; DisabledCount = 0; // // Check to make sure the CPU arrival count is valid and not locked. // ASSERT (SmmCpuSyncGetArrivedCpuCount (mSmmMpSyncData->SyncContext) <= mNumberOfCpus); // // Check whether all CPUs in SMM. // if (SmmCpuSyncGetArrivedCpuCount (mSmmMpSyncData->SyncContext) == mNumberOfCpus) { return TRUE; } // // Check for the Blocked & Disabled Exceptions Case. // GetSmmDelayedBlockedDisabledCount (NULL, &BlockedCount, &DisabledCount); // // The CPU arrival count might be updated by all APs concurrently. The value // can be dynamic changed. If some Aps enter the SMI after the BlockedCount & // DisabledCount check, then the CPU arrival count will be increased, thus // leading the retrieved CPU arrival count + BlockedCount + DisabledCount > mNumberOfCpus. // since the BlockedCount & DisabledCount are local variable, it's ok here only for // the checking of all CPUs In Smm. // if (SmmCpuSyncGetArrivedCpuCount (mSmmMpSyncData->SyncContext) + BlockedCount + DisabledCount >= mNumberOfCpus) { return TRUE; } return FALSE; } /** Has OS enabled Lmce in the MSR_IA32_MCG_EXT_CTL @retval TRUE Os enable lmce. @retval FALSE Os not enable lmce. **/ BOOLEAN IsLmceOsEnabled ( VOID ) { MSR_IA32_MCG_CAP_REGISTER McgCap; MSR_IA32_FEATURE_CONTROL_REGISTER FeatureCtrl; MSR_IA32_MCG_EXT_CTL_REGISTER McgExtCtrl; McgCap.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_CAP); if (McgCap.Bits.MCG_LMCE_P == 0) { return FALSE; } FeatureCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_FEATURE_CONTROL); if (FeatureCtrl.Bits.LmceOn == 0) { return FALSE; } McgExtCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_EXT_CTL); return (BOOLEAN)(McgExtCtrl.Bits.LMCE_EN == 1); } /** Return if Local machine check exception signaled. Indicates (when set) that a local machine check exception was generated. This indicates that the current machine-check event was delivered to only the logical processor. @retval TRUE LMCE was signaled. @retval FALSE LMCE was not signaled. **/ BOOLEAN IsLmceSignaled ( VOID ) { MSR_IA32_MCG_STATUS_REGISTER McgStatus; McgStatus.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_STATUS); return (BOOLEAN)(McgStatus.Bits.LMCE_S == 1); } /** Given timeout constraint, wait for all APs to arrive, and insure when this function returns, no AP will execute normal mode code before entering SMM, except SMI disabled APs. **/ VOID SmmWaitForApArrival ( VOID ) { UINT64 Timer; UINTN Index; BOOLEAN LmceEn; BOOLEAN LmceSignal; UINT32 DelayedCount; UINT32 BlockedCount; PERF_FUNCTION_BEGIN (); DelayedCount = 0; BlockedCount = 0; ASSERT (SmmCpuSyncGetArrivedCpuCount (mSmmMpSyncData->SyncContext) <= mNumberOfCpus); LmceEn = FALSE; LmceSignal = FALSE; if (mMachineCheckSupported) { LmceEn = IsLmceOsEnabled (); LmceSignal = IsLmceSignaled (); } // // Platform implementor should choose a timeout value appropriately: // - The timeout value should balance the SMM time constrains and the likelihood that delayed CPUs are excluded in the SMM run. Note // the SMI Handlers must ALWAYS take into account the cases that not all APs are available in an SMI run. // - The timeout value must, in the case of 2nd timeout, be at least long enough to give time for all APs to receive the SMI IPI // and either enter SMM or buffer the SMI, to insure there is no CPU running normal mode code when SMI handling starts. This will // be TRUE even if a blocked CPU is brought out of the blocked state by a normal mode CPU (before the normal mode CPU received the // SMI IPI), because with a buffered SMI, and CPU will enter SMM immediately after it is brought out of the blocked state. // - The timeout value must be longer than longest possible IO operation in the system // // // Sync with APs 1st timeout // for (Timer = StartSyncTimer (); !IsSyncTimerTimeout (Timer, mTimeoutTicker) && !(LmceEn && LmceSignal); ) { mSmmMpSyncData->AllApArrivedWithException = AllCpusInSmmExceptBlockedDisabled (); if (mSmmMpSyncData->AllApArrivedWithException) { break; } CpuPause (); } // // Not all APs have arrived, so we need 2nd round of timeout. IPIs should be sent to ALL none present APs, // because: // a) Delayed AP may have just come out of the delayed state. Blocked AP may have just been brought out of blocked state by some AP running // normal mode code. These APs need to be guaranteed to have an SMI pending to insure that once they are out of delayed / blocked state, they // enter SMI immediately without executing instructions in normal mode. Note traditional flow requires there are no APs doing normal mode // work while SMI handling is on-going. // b) As a consequence of SMI IPI sending, (spurious) SMI may occur after this SMM run. // c) ** NOTE **: Use SMI disabling feature VERY CAREFULLY (if at all) for traditional flow, because a processor in SMI-disabled state // will execute normal mode code, which breaks the traditional SMI handlers' assumption that no APs are doing normal // mode work while SMI handling is on-going. // d) We don't add code to check SMI disabling status to skip sending IPI to SMI disabled APs, because: // - In traditional flow, SMI disabling is discouraged. // - In relaxed flow, CheckApArrival() will check SMI disabling status before calling this function. // In both cases, adding SMI-disabling checking code increases overhead. // if (SmmCpuSyncGetArrivedCpuCount (mSmmMpSyncData->SyncContext) < mNumberOfCpus) { // // Send SMI IPIs to bring outside processors in // for (Index = 0; Index < mMaxNumberOfCpus; Index++) { if (!(*(mSmmMpSyncData->CpuData[Index].Present)) && (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID)) { SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId); } } // // Sync with APs 2nd timeout. // for (Timer = StartSyncTimer (); !IsSyncTimerTimeout (Timer, mTimeoutTicker2); ) { mSmmMpSyncData->AllApArrivedWithException = AllCpusInSmmExceptBlockedDisabled (); if (mSmmMpSyncData->AllApArrivedWithException) { break; } CpuPause (); } } if (!mSmmMpSyncData->AllApArrivedWithException) { // // Check for the Blocked & Delayed Case. // GetSmmDelayedBlockedDisabledCount (&DelayedCount, &BlockedCount, NULL); DEBUG ((DEBUG_INFO, "SmmWaitForApArrival: Delayed AP Count = %d, Blocked AP Count = %d\n", DelayedCount, BlockedCount)); } PERF_FUNCTION_END (); } /** Replace OS MTRR's with SMI MTRR's. @param CpuIndex Processor Index **/ VOID ReplaceOSMtrrs ( IN UINTN CpuIndex ) { SmmCpuFeaturesDisableSmrr (); // // Replace all MTRRs registers // MtrrSetAllMtrrs (&gSmiMtrrs); } /** Wheck whether task has been finished by all APs. @param BlockMode Whether did it in block mode or non-block mode. @retval TRUE Task has been finished by all APs. @retval FALSE Task not has been finished by all APs. **/ BOOLEAN WaitForAllAPsNotBusy ( IN BOOLEAN BlockMode ) { UINTN Index; for (Index = 0; Index < mMaxNumberOfCpus; Index++) { // // Ignore BSP and APs which not call in SMM. // if (!IsPresentAp (Index)) { continue; } if (BlockMode) { AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy); ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy); } else { if (AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[Index].Busy)) { ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy); } else { return FALSE; } } } return TRUE; } /** Check whether it is an present AP. @param CpuIndex The AP index which calls this function. @retval TRUE It's a present AP. @retval TRUE This is not an AP or it is not present. **/ BOOLEAN IsPresentAp ( IN UINTN CpuIndex ) { return ((CpuIndex != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) && *(mSmmMpSyncData->CpuData[CpuIndex].Present)); } /** Clean up the status flags used during executing the procedure. @param CpuIndex The AP index which calls this function. **/ VOID ReleaseToken ( IN UINTN CpuIndex ) { PROCEDURE_TOKEN *Token; Token = mSmmMpSyncData->CpuData[CpuIndex].Token; if (InterlockedDecrement (&Token->RunningApCount) == 0) { ReleaseSpinLock (Token->SpinLock); } mSmmMpSyncData->CpuData[CpuIndex].Token = NULL; } /** Free the tokens in the maintained list. **/ VOID ResetTokens ( VOID ) { // // Reset the FirstFreeToken to the beginning of token list upon exiting SMI. // gSmmCpuPrivate->FirstFreeToken = GetFirstNode (&gSmmCpuPrivate->TokenList); } /** SMI handler for BSP. @param CpuIndex BSP processor Index @param SyncMode SMM MP sync mode **/ VOID BSPHandler ( IN UINTN CpuIndex, IN SMM_CPU_SYNC_MODE SyncMode ) { UINTN CpuCount; UINTN Index; MTRR_SETTINGS Mtrrs; UINTN ApCount; BOOLEAN ClearTopLevelSmiResult; UINTN PresentCount; ASSERT (CpuIndex == mSmmMpSyncData->BspIndex); CpuCount = 0; ApCount = 0; PERF_FUNCTION_BEGIN (); // // Flag BSP's presence // *mSmmMpSyncData->InsideSmm = TRUE; if (mSmmDebugAgentSupport) { // // Initialize Debug Agent to start source level debug in BSP handler // InitializeDebugAgent (DEBUG_AGENT_INIT_ENTER_SMI, NULL, NULL); } // // Mark this processor's presence // *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE; // // Clear platform top level SMI status bit before calling SMI handlers. If // we cleared it after SMI handlers are run, we would miss the SMI that // occurs after SMI handlers are done and before SMI status bit is cleared. // ClearTopLevelSmiResult = ClearTopLevelSmiStatus (); ASSERT (ClearTopLevelSmiResult == TRUE); // // Set running processor index // gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu = CpuIndex; // // If Traditional Sync Mode or need to configure MTRRs: gather all available APs. // if ((SyncMode == SmmCpuSyncModeTradition) || SmmCpuFeaturesNeedConfigureMtrrs ()) { // // Wait for APs to arrive // SmmWaitForApArrival (); // // Lock door for late coming CPU checkin and retrieve the Arrived number of APs // *mSmmMpSyncData->AllCpusInSync = TRUE; SmmCpuSyncLockDoor (mSmmMpSyncData->SyncContext, CpuIndex, &CpuCount); ApCount = CpuCount - 1; // // Wait for all APs to get ready for programming MTRRs // SmmCpuSyncWaitForAPs (mSmmMpSyncData->SyncContext, ApCount, CpuIndex); if (SmmCpuFeaturesNeedConfigureMtrrs ()) { // // Signal all APs it's time for backup MTRRs // ReleaseAllAPs (); // // SmmCpuSyncWaitForAPs() may wait for ever if an AP happens to enter SMM at // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set // to a large enough value to avoid this situation. // Note: For HT capable CPUs, threads within a core share the same set of MTRRs. // We do the backup first and then set MTRR to avoid race condition for threads // in the same core. // MtrrGetAllMtrrs (&Mtrrs); // // Wait for all APs to complete their MTRR saving // SmmCpuSyncWaitForAPs (mSmmMpSyncData->SyncContext, ApCount, CpuIndex); // // Let all processors program SMM MTRRs together // ReleaseAllAPs (); // // SmmCpuSyncWaitForAPs() may wait for ever if an AP happens to enter SMM at // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set // to a large enough value to avoid this situation. // ReplaceOSMtrrs (CpuIndex); // // Wait for all APs to complete their MTRR programming // SmmCpuSyncWaitForAPs (mSmmMpSyncData->SyncContext, ApCount, CpuIndex); } } // // The BUSY lock is initialized to Acquired state // AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy); // // Perform the pre tasks // PerformPreTasks (); // // Invoke SMM Foundation EntryPoint with the processor information context. // gSmmCpuPrivate->SmmCoreEntry (&gSmmCpuPrivate->SmmCoreEntryContext); // // Make sure all APs have completed their pending none-block tasks // WaitForAllAPsNotBusy (TRUE); // // Perform the remaining tasks // PerformRemainingTasks (); // // If Relaxed-AP Sync Mode: gather all available APs after BSP SMM handlers are done, and // make those APs to exit SMI synchronously. APs which arrive later will be excluded and // will run through freely. // if ((SyncMode != SmmCpuSyncModeTradition) && !SmmCpuFeaturesNeedConfigureMtrrs ()) { // // Lock door for late coming CPU checkin and retrieve the Arrived number of APs // *mSmmMpSyncData->AllCpusInSync = TRUE; SmmCpuSyncLockDoor (mSmmMpSyncData->SyncContext, CpuIndex, &CpuCount); ApCount = CpuCount - 1; // // Make sure all APs have their Present flag set // while (TRUE) { PresentCount = 0; for (Index = 0; Index < mMaxNumberOfCpus; Index++) { if (*(mSmmMpSyncData->CpuData[Index].Present)) { PresentCount++; } } if (PresentCount > ApCount) { break; } } } // // Notify all APs to exit // *mSmmMpSyncData->InsideSmm = FALSE; ReleaseAllAPs (); if (SmmCpuFeaturesNeedConfigureMtrrs ()) { // // Wait for all APs the readiness to program MTRRs // SmmCpuSyncWaitForAPs (mSmmMpSyncData->SyncContext, ApCount, CpuIndex); // // Signal APs to restore MTRRs // ReleaseAllAPs (); // // Restore OS MTRRs // SmmCpuFeaturesReenableSmrr (); MtrrSetAllMtrrs (&Mtrrs); } if (SmmCpuFeaturesNeedConfigureMtrrs () || mSmmDebugAgentSupport) { // // Wait for all APs to complete their pending tasks including MTRR programming if needed. // SmmCpuSyncWaitForAPs (mSmmMpSyncData->SyncContext, ApCount, CpuIndex); // // Signal APs to Reset states/semaphore for this processor // ReleaseAllAPs (); } if (mSmmDebugAgentSupport) { // // Stop source level debug in BSP handler, the code below will not be // debugged. // InitializeDebugAgent (DEBUG_AGENT_INIT_EXIT_SMI, NULL, NULL); } // // Perform pending operations for hot-plug // SmmCpuUpdate (); // // Clear the Present flag of BSP // *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE; // // Gather APs to exit SMM synchronously. Note the Present flag is cleared by now but // WaitForAllAps does not depend on the Present flag. // SmmCpuSyncWaitForAPs (mSmmMpSyncData->SyncContext, ApCount, CpuIndex); // // At this point, all APs should have exited from APHandler(). // Migrate the SMM MP performance logging to standard SMM performance logging. // Any SMM MP performance logging after this point will be migrated in next SMI. // PERF_CODE ( MigrateMpPerf (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus, CpuIndex); ); // // Reset the tokens buffer. // ResetTokens (); // // Reset BspIndex to MAX_UINT32, meaning BSP has not been elected. // if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) { mSmmMpSyncData->BspIndex = MAX_UINT32; } // // Allow APs to check in from this point on // SmmCpuSyncContextReset (mSmmMpSyncData->SyncContext); *mSmmMpSyncData->AllCpusInSync = FALSE; mSmmMpSyncData->AllApArrivedWithException = FALSE; PERF_FUNCTION_END (); } /** SMI handler for AP. @param CpuIndex AP processor Index. @param ValidSmi Indicates that current SMI is a valid SMI or not. @param SyncMode SMM MP sync mode. **/ VOID APHandler ( IN UINTN CpuIndex, IN BOOLEAN ValidSmi, IN SMM_CPU_SYNC_MODE SyncMode ) { UINT64 Timer; UINTN BspIndex; MTRR_SETTINGS Mtrrs; EFI_STATUS ProcedureStatus; // // Timeout BSP // for (Timer = StartSyncTimer (); !IsSyncTimerTimeout (Timer, mTimeoutTicker) && !(*mSmmMpSyncData->InsideSmm); ) { CpuPause (); } if (!(*mSmmMpSyncData->InsideSmm)) { // // BSP timeout in the first round // if (mSmmMpSyncData->BspIndex != MAX_UINT32) { // // BSP Index is known // Existing AP is in SMI now but BSP not in, so, try bring BSP in SMM. // BspIndex = mSmmMpSyncData->BspIndex; ASSERT (CpuIndex != BspIndex); // // Send SMI IPI to bring BSP in // SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[BspIndex].ProcessorId); // // Now clock BSP for the 2nd time // for (Timer = StartSyncTimer (); !IsSyncTimerTimeout (Timer, mTimeoutTicker2) && !(*mSmmMpSyncData->InsideSmm); ) { CpuPause (); } if (!(*mSmmMpSyncData->InsideSmm)) { // // Give up since BSP is unable to enter SMM // and signal the completion of this AP // Reduce the CPU arrival count! // SmmCpuSyncCheckOutCpu (mSmmMpSyncData->SyncContext, CpuIndex); return; } } else { // // Don't know BSP index. Give up without sending IPI to BSP. // Reduce the CPU arrival count! // SmmCpuSyncCheckOutCpu (mSmmMpSyncData->SyncContext, CpuIndex); return; } } // // BSP is available // BspIndex = mSmmMpSyncData->BspIndex; ASSERT (CpuIndex != BspIndex); // // Mark this processor's presence // *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE; if ((SyncMode == SmmCpuSyncModeTradition) || SmmCpuFeaturesNeedConfigureMtrrs ()) { // // Notify BSP of arrival at this point // SmmCpuSyncReleaseBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); } if (SmmCpuFeaturesNeedConfigureMtrrs ()) { // // Wait for the signal from BSP to backup MTRRs // SmmCpuSyncWaitForBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); // // Backup OS MTRRs // MtrrGetAllMtrrs (&Mtrrs); // // Signal BSP the completion of this AP // SmmCpuSyncReleaseBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); // // Wait for BSP's signal to program MTRRs // SmmCpuSyncWaitForBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); // // Replace OS MTRRs with SMI MTRRs // ReplaceOSMtrrs (CpuIndex); // // Signal BSP the completion of this AP // SmmCpuSyncReleaseBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); } while (TRUE) { // // Wait for something to happen // SmmCpuSyncWaitForBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); // // Check if BSP wants to exit SMM // if (!(*mSmmMpSyncData->InsideSmm)) { break; } // // BUSY should be acquired by SmmStartupThisAp() // ASSERT ( !AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy) ); // // Invoke the scheduled procedure // ProcedureStatus = (*mSmmMpSyncData->CpuData[CpuIndex].Procedure)( (VOID *)mSmmMpSyncData->CpuData[CpuIndex].Parameter ); if (mSmmMpSyncData->CpuData[CpuIndex].Status != NULL) { *mSmmMpSyncData->CpuData[CpuIndex].Status = ProcedureStatus; } if (mSmmMpSyncData->CpuData[CpuIndex].Token != NULL) { ReleaseToken (CpuIndex); } // // Release BUSY // ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy); } if (SmmCpuFeaturesNeedConfigureMtrrs ()) { // // Notify BSP the readiness of this AP to program MTRRs // SmmCpuSyncReleaseBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); // // Wait for the signal from BSP to program MTRRs // SmmCpuSyncWaitForBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); // // Restore OS MTRRs // SmmCpuFeaturesReenableSmrr (); MtrrSetAllMtrrs (&Mtrrs); } if (SmmCpuFeaturesNeedConfigureMtrrs () || mSmmDebugAgentSupport) { // // Notify BSP the readiness of this AP to Reset states/semaphore for this processor // SmmCpuSyncReleaseBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); // // Wait for the signal from BSP to Reset states/semaphore for this processor // SmmCpuSyncWaitForBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); } // // Reset states/semaphore for this processor // *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE; // // Notify BSP the readiness of this AP to exit SMM // SmmCpuSyncReleaseBsp (mSmmMpSyncData->SyncContext, CpuIndex, BspIndex); } /** Checks whether the input token is the current used token. @param[in] Token This parameter describes the token that was passed into DispatchProcedure or BroadcastProcedure. @retval TRUE The input token is the current used token. @retval FALSE The input token is not the current used token. **/ BOOLEAN IsTokenInUse ( IN SPIN_LOCK *Token ) { LIST_ENTRY *Link; PROCEDURE_TOKEN *ProcToken; if (Token == NULL) { return FALSE; } Link = GetFirstNode (&gSmmCpuPrivate->TokenList); // // Only search used tokens. // while (Link != gSmmCpuPrivate->FirstFreeToken) { ProcToken = PROCEDURE_TOKEN_FROM_LINK (Link); if (ProcToken->SpinLock == Token) { return TRUE; } Link = GetNextNode (&gSmmCpuPrivate->TokenList, Link); } return FALSE; } /** Allocate buffer for the SPIN_LOCK and PROCEDURE_TOKEN. @return First token of the token buffer. **/ LIST_ENTRY * AllocateTokenBuffer ( VOID ) { UINTN SpinLockSize; UINT32 TokenCountPerChunk; UINTN Index; SPIN_LOCK *SpinLock; UINT8 *SpinLockBuffer; PROCEDURE_TOKEN *ProcTokens; SpinLockSize = GetSpinLockProperties (); TokenCountPerChunk = FixedPcdGet32 (PcdCpuSmmMpTokenCountPerChunk); ASSERT (TokenCountPerChunk != 0); if (TokenCountPerChunk == 0) { DEBUG ((DEBUG_ERROR, "PcdCpuSmmMpTokenCountPerChunk should not be Zero!\n")); CpuDeadLoop (); } DEBUG ((DEBUG_INFO, "CpuSmm: SpinLock Size = 0x%x, PcdCpuSmmMpTokenCountPerChunk = 0x%x\n", SpinLockSize, TokenCountPerChunk)); // // Separate the Spin_lock and Proc_token because the alignment requires by Spin_Lock. // SpinLockBuffer = AllocatePool (SpinLockSize * TokenCountPerChunk); ASSERT (SpinLockBuffer != NULL); ProcTokens = AllocatePool (sizeof (PROCEDURE_TOKEN) * TokenCountPerChunk); ASSERT (ProcTokens != NULL); for (Index = 0; Index < TokenCountPerChunk; Index++) { SpinLock = (SPIN_LOCK *)(SpinLockBuffer + SpinLockSize * Index); InitializeSpinLock (SpinLock); ProcTokens[Index].Signature = PROCEDURE_TOKEN_SIGNATURE; ProcTokens[Index].SpinLock = SpinLock; ProcTokens[Index].RunningApCount = 0; InsertTailList (&gSmmCpuPrivate->TokenList, &ProcTokens[Index].Link); } return &ProcTokens[0].Link; } /** Get the free token. If no free token, allocate new tokens then return the free one. @param RunningApsCount The Running Aps count for this token. @retval return the first free PROCEDURE_TOKEN. **/ PROCEDURE_TOKEN * GetFreeToken ( IN UINT32 RunningApsCount ) { PROCEDURE_TOKEN *NewToken; // // If FirstFreeToken meets the end of token list, enlarge the token list. // Set FirstFreeToken to the first free token. // if (gSmmCpuPrivate->FirstFreeToken == &gSmmCpuPrivate->TokenList) { gSmmCpuPrivate->FirstFreeToken = AllocateTokenBuffer (); } NewToken = PROCEDURE_TOKEN_FROM_LINK (gSmmCpuPrivate->FirstFreeToken); gSmmCpuPrivate->FirstFreeToken = GetNextNode (&gSmmCpuPrivate->TokenList, gSmmCpuPrivate->FirstFreeToken); NewToken->RunningApCount = RunningApsCount; AcquireSpinLock (NewToken->SpinLock); return NewToken; } /** Checks status of specified AP. This function checks whether the specified AP has finished the task assigned by StartupThisAP(), and whether timeout expires. @param[in] Token This parameter describes the token that was passed into DispatchProcedure or BroadcastProcedure. @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs(). @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired. **/ EFI_STATUS IsApReady ( IN SPIN_LOCK *Token ) { if (AcquireSpinLockOrFail (Token)) { ReleaseSpinLock (Token); return EFI_SUCCESS; } return EFI_NOT_READY; } /** Schedule a procedure to run on the specified CPU. @param[in] Procedure The address of the procedure to run @param[in] CpuIndex Target CPU Index @param[in,out] ProcArguments The parameter to pass to the procedure @param[in] Token This is an optional parameter that allows the caller to execute the procedure in a blocking or non-blocking fashion. If it is NULL the call is blocking, and the call will not return until the AP has completed the procedure. If the token is not NULL, the call will return immediately. The caller can check whether the procedure has completed with CheckOnProcedure or WaitForProcedure. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for the APs to finish execution of Procedure, either for blocking or non-blocking mode. Zero means infinity. If the timeout expires before all APs return from Procedure, then Procedure on the failed APs is terminated. If the timeout expires in blocking mode, the call returns EFI_TIMEOUT. If the timeout expires in non-blocking mode, the timeout determined can be through CheckOnProcedure or WaitForProcedure. Note that timeout support is optional. Whether an implementation supports this feature can be determined via the Attributes data member. @param[in,out] CpuStatus This optional pointer may be used to get the status code returned by Procedure when it completes execution on the target AP, or with EFI_TIMEOUT if the Procedure fails to complete within the optional timeout. The implementation will update this variable with EFI_NOT_READY prior to starting Procedure on the target AP. @retval EFI_INVALID_PARAMETER CpuNumber not valid @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy @retval EFI_SUCCESS The procedure has been successfully scheduled **/ EFI_STATUS InternalSmmStartupThisAp ( IN EFI_AP_PROCEDURE2 Procedure, IN UINTN CpuIndex, IN OUT VOID *ProcArguments OPTIONAL, IN MM_COMPLETION *Token, IN UINTN TimeoutInMicroseconds, IN OUT EFI_STATUS *CpuStatus ) { PROCEDURE_TOKEN *ProcToken; if (CpuIndex >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus) { DEBUG ((DEBUG_ERROR, "CpuIndex(%d) >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus(%d)\n", CpuIndex, gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus)); return EFI_INVALID_PARAMETER; } if (CpuIndex == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) { DEBUG ((DEBUG_ERROR, "CpuIndex(%d) == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu\n", CpuIndex)); return EFI_INVALID_PARAMETER; } if (gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId == INVALID_APIC_ID) { return EFI_INVALID_PARAMETER; } if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) { if (mSmmMpSyncData->EffectiveSyncMode == SmmCpuSyncModeTradition) { DEBUG ((DEBUG_ERROR, "!mSmmMpSyncData->CpuData[%d].Present\n", CpuIndex)); } return EFI_INVALID_PARAMETER; } if (gSmmCpuPrivate->Operation[CpuIndex] == SmmCpuRemove) { if (!FeaturePcdGet (PcdCpuHotPlugSupport)) { DEBUG ((DEBUG_ERROR, "gSmmCpuPrivate->Operation[%d] == SmmCpuRemove\n", CpuIndex)); } return EFI_INVALID_PARAMETER; } if ((TimeoutInMicroseconds != 0) && ((mSmmMp.Attributes & EFI_MM_MP_TIMEOUT_SUPPORTED) == 0)) { return EFI_INVALID_PARAMETER; } if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy); mSmmMpSyncData->CpuData[CpuIndex].Procedure = Procedure; mSmmMpSyncData->CpuData[CpuIndex].Parameter = ProcArguments; if (Token != NULL) { if (Token != &mSmmStartupThisApToken) { // // When Token points to mSmmStartupThisApToken, this routine is called // from SmmStartupThisAp() in non-blocking mode (PcdCpuSmmBlockStartupThisAp == FALSE). // // In this case, caller wants to startup AP procedure in non-blocking // mode and cannot get the completion status from the Token because there // is no way to return the Token to caller from SmmStartupThisAp(). // Caller needs to use its implementation specific way to query the completion status. // // There is no need to allocate a token for such case so the 3 overheads // can be avoided: // 1. Call AllocateTokenBuffer() when there is no free token. // 2. Get a free token from the token buffer. // 3. Call ReleaseToken() in APHandler(). // ProcToken = GetFreeToken (1); mSmmMpSyncData->CpuData[CpuIndex].Token = ProcToken; *Token = (MM_COMPLETION)ProcToken->SpinLock; } } mSmmMpSyncData->CpuData[CpuIndex].Status = CpuStatus; if (mSmmMpSyncData->CpuData[CpuIndex].Status != NULL) { *mSmmMpSyncData->CpuData[CpuIndex].Status = EFI_NOT_READY; } SmmCpuSyncReleaseOneAp (mSmmMpSyncData->SyncContext, CpuIndex, gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu); if (Token == NULL) { AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy); ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy); } return EFI_SUCCESS; } /** Worker function to execute a caller provided function on all enabled APs. @param[in] Procedure A pointer to the function to be run on enabled APs of the system. @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for APs to return from Procedure, either for blocking or non-blocking mode. @param[in,out] ProcedureArguments The parameter passed into Procedure for all APs. @param[in,out] Token This is an optional parameter that allows the caller to execute the procedure in a blocking or non-blocking fashion. If it is NULL the call is blocking, and the call will not return until the AP has completed the procedure. If the token is not NULL, the call will return immediately. The caller can check whether the procedure has completed with CheckOnProcedure or WaitForProcedure. @param[in,out] CPUStatus This optional pointer may be used to get the status code returned by Procedure when it completes execution on the target AP, or with EFI_TIMEOUT if the Procedure fails to complete within the optional timeout. The implementation will update this variable with EFI_NOT_READY prior to starting Procedure on the target AP. @retval EFI_SUCCESS In blocking mode, all APs have finished before the timeout expired. @retval EFI_SUCCESS In non-blocking mode, function has been dispatched to all enabled APs. @retval others Failed to Startup all APs. **/ EFI_STATUS InternalSmmStartupAllAPs ( IN EFI_AP_PROCEDURE2 Procedure, IN UINTN TimeoutInMicroseconds, IN OUT VOID *ProcedureArguments OPTIONAL, IN OUT MM_COMPLETION *Token, IN OUT EFI_STATUS *CPUStatus ) { UINTN Index; UINTN CpuCount; PROCEDURE_TOKEN *ProcToken; if ((TimeoutInMicroseconds != 0) && ((mSmmMp.Attributes & EFI_MM_MP_TIMEOUT_SUPPORTED) == 0)) { return EFI_INVALID_PARAMETER; } if (Procedure == NULL) { return EFI_INVALID_PARAMETER; } CpuCount = 0; for (Index = 0; Index < mMaxNumberOfCpus; Index++) { if (IsPresentAp (Index)) { CpuCount++; if (gSmmCpuPrivate->Operation[Index] == SmmCpuRemove) { return EFI_INVALID_PARAMETER; } if (!AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[Index].Busy)) { return EFI_NOT_READY; } ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy); } } if (CpuCount == 0) { return EFI_NOT_STARTED; } if (Token != NULL) { ProcToken = GetFreeToken ((UINT32)mMaxNumberOfCpus); *Token = (MM_COMPLETION)ProcToken->SpinLock; } else { ProcToken = NULL; } // // Make sure all BUSY should be acquired. // // Because former code already check mSmmMpSyncData->CpuData[***].Busy for each AP. // Here code always use AcquireSpinLock instead of AcquireSpinLockOrFail for not // block mode. // for (Index = 0; Index < mMaxNumberOfCpus; Index++) { if (IsPresentAp (Index)) { AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy); } } for (Index = 0; Index < mMaxNumberOfCpus; Index++) { if (IsPresentAp (Index)) { mSmmMpSyncData->CpuData[Index].Procedure = (EFI_AP_PROCEDURE2)Procedure; mSmmMpSyncData->CpuData[Index].Parameter = ProcedureArguments; if (ProcToken != NULL) { mSmmMpSyncData->CpuData[Index].Token = ProcToken; } if (CPUStatus != NULL) { mSmmMpSyncData->CpuData[Index].Status = &CPUStatus[Index]; if (mSmmMpSyncData->CpuData[Index].Status != NULL) { *mSmmMpSyncData->CpuData[Index].Status = EFI_NOT_READY; } } } else { // // PI spec requirement: // For every excluded processor, the array entry must contain a value of EFI_NOT_STARTED. // if (CPUStatus != NULL) { CPUStatus[Index] = EFI_NOT_STARTED; } // // Decrease the count to mark this processor(AP or BSP) as finished. // if (ProcToken != NULL) { InterlockedDecrement (&ProcToken->RunningApCount); } } } ReleaseAllAPs (); if (Token == NULL) { // // Make sure all APs have completed their tasks. // WaitForAllAPsNotBusy (TRUE); } return EFI_SUCCESS; } /** ISO C99 6.5.2.2 "Function calls", paragraph 9: If the function is defined with a type that is not compatible with the type (of the expression) pointed to by the expression that denotes the called function, the behavior is undefined. So add below wrapper function to convert between EFI_AP_PROCEDURE and EFI_AP_PROCEDURE2. Wrapper for Procedures. @param[in] Buffer Pointer to PROCEDURE_WRAPPER buffer. **/ EFI_STATUS EFIAPI ProcedureWrapper ( IN VOID *Buffer ) { PROCEDURE_WRAPPER *Wrapper; Wrapper = Buffer; Wrapper->Procedure (Wrapper->ProcedureArgument); return EFI_SUCCESS; } /** Schedule a procedure to run on the specified CPU in blocking mode. @param[in] Procedure The address of the procedure to run @param[in] CpuIndex Target CPU Index @param[in, out] ProcArguments The parameter to pass to the procedure @retval EFI_INVALID_PARAMETER CpuNumber not valid @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy @retval EFI_SUCCESS The procedure has been successfully scheduled **/ EFI_STATUS EFIAPI SmmBlockingStartupThisAp ( IN EFI_AP_PROCEDURE Procedure, IN UINTN CpuIndex, IN OUT VOID *ProcArguments OPTIONAL ) { PROCEDURE_WRAPPER Wrapper; Wrapper.Procedure = Procedure; Wrapper.ProcedureArgument = ProcArguments; // // Use wrapper function to convert EFI_AP_PROCEDURE to EFI_AP_PROCEDURE2. // return InternalSmmStartupThisAp (ProcedureWrapper, CpuIndex, &Wrapper, NULL, 0, NULL); } /** Schedule a procedure to run on the specified CPU. @param Procedure The address of the procedure to run @param CpuIndex Target CPU Index @param ProcArguments The parameter to pass to the procedure @retval EFI_INVALID_PARAMETER CpuNumber not valid @retval EFI_INVALID_PARAMETER CpuNumber specifying BSP @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber did not enter SMM @retval EFI_INVALID_PARAMETER The AP specified by CpuNumber is busy @retval EFI_SUCCESS The procedure has been successfully scheduled **/ EFI_STATUS EFIAPI SmmStartupThisAp ( IN EFI_AP_PROCEDURE Procedure, IN UINTN CpuIndex, IN OUT VOID *ProcArguments OPTIONAL ) { gSmmCpuPrivate->ApWrapperFunc[CpuIndex].Procedure = Procedure; gSmmCpuPrivate->ApWrapperFunc[CpuIndex].ProcedureArgument = ProcArguments; // // Use wrapper function to convert EFI_AP_PROCEDURE to EFI_AP_PROCEDURE2. // return InternalSmmStartupThisAp ( ProcedureWrapper, CpuIndex, &gSmmCpuPrivate->ApWrapperFunc[CpuIndex], FeaturePcdGet (PcdCpuSmmBlockStartupThisAp) ? NULL : &mSmmStartupThisApToken, 0, NULL ); } /** This function sets DR6 & DR7 according to SMM save state, before running SMM C code. They are useful when you want to enable hardware breakpoints in SMM without entry SMM mode. NOTE: It might not be appreciated in runtime since it might conflict with OS debugging facilities. Turn them off in RELEASE. @param CpuIndex CPU Index **/ VOID EFIAPI CpuSmmDebugEntry ( IN UINTN CpuIndex ) { SMRAM_SAVE_STATE_MAP *CpuSaveState; if (FeaturePcdGet (PcdCpuSmmDebug)) { ASSERT (CpuIndex < mMaxNumberOfCpus); CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex]; if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) { AsmWriteDr6 (CpuSaveState->x86._DR6); AsmWriteDr7 (CpuSaveState->x86._DR7); } else { AsmWriteDr6 ((UINTN)CpuSaveState->x64._DR6); AsmWriteDr7 ((UINTN)CpuSaveState->x64._DR7); } } } /** This function restores DR6 & DR7 to SMM save state. NOTE: It might not be appreciated in runtime since it might conflict with OS debugging facilities. Turn them off in RELEASE. @param CpuIndex CPU Index **/ VOID EFIAPI CpuSmmDebugExit ( IN UINTN CpuIndex ) { SMRAM_SAVE_STATE_MAP *CpuSaveState; if (FeaturePcdGet (PcdCpuSmmDebug)) { ASSERT (CpuIndex < mMaxNumberOfCpus); CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex]; if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) { CpuSaveState->x86._DR7 = (UINT32)AsmReadDr7 (); CpuSaveState->x86._DR6 = (UINT32)AsmReadDr6 (); } else { CpuSaveState->x64._DR7 = AsmReadDr7 (); CpuSaveState->x64._DR6 = AsmReadDr6 (); } } } /** C function for SMI entry, each processor comes here upon SMI trigger. @param CpuIndex CPU Index **/ VOID EFIAPI SmiRendezvous ( IN UINTN CpuIndex ) { EFI_STATUS Status; BOOLEAN ValidSmi; BOOLEAN IsBsp; BOOLEAN BspInProgress; UINTN Index; UINTN Cr2; ASSERT (CpuIndex < mMaxNumberOfCpus); ASSERT (mSmmInitialized != NULL); // // Save Cr2 because Page Fault exception in SMM may override its value, // when using on-demand paging for above 4G memory. // Cr2 = 0; SaveCr2 (&Cr2); if (!mSmmInitialized[CpuIndex]) { // // Perform InitializeSmm for CpuIndex // InitializeSmm (); // // Restore Cr2 // RestoreCr2 (Cr2); // // Mark the first SMI init for CpuIndex has been done so as to avoid the reentry. // mSmmInitialized[CpuIndex] = TRUE; return; } // // Call the user register Startup function first. // if (mSmmMpSyncData->StartupProcedure != NULL) { mSmmMpSyncData->StartupProcedure (mSmmMpSyncData->StartupProcArgs); } // // Perform CPU specific entry hooks // PERF_CODE ( MpPerfBegin (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (SmmRendezvousEntry)); ); SmmCpuFeaturesRendezvousEntry (CpuIndex); PERF_CODE ( MpPerfEnd (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (SmmRendezvousEntry)); ); // // Determine if this is a valid SMI // PERF_CODE ( MpPerfBegin (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (PlatformValidSmi)); ); ValidSmi = PlatformValidSmi (); PERF_CODE ( MpPerfEnd (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (PlatformValidSmi)); ); // // Determine if BSP has been already in progress. Note this must be checked after // ValidSmi because BSP may clear a valid SMI source after checking in. // BspInProgress = *mSmmMpSyncData->InsideSmm; if (!BspInProgress && !ValidSmi) { // // If we reach here, it means when we sampled the ValidSmi flag, SMI status had not // been cleared by BSP in a new SMI run (so we have a truly invalid SMI), or SMI // status had been cleared by BSP and an existing SMI run has almost ended. (Note // we sampled ValidSmi flag BEFORE judging BSP-in-progress status.) In both cases, there // is nothing we need to do. // goto Exit; } else { // // Signal presence of this processor // CPU check in here! // "SmmCpuSyncCheckInCpu (mSmmMpSyncData->SyncContext, CpuIndex)" return error means failed // to check in CPU. BSP has already ended the synchronization. // if (RETURN_ERROR (SmmCpuSyncCheckInCpu (mSmmMpSyncData->SyncContext, CpuIndex))) { // // BSP has already ended the synchronization, so QUIT!!! // Existing AP is too late now to enter SMI since BSP has already ended the synchronization!!! // // // Wait for BSP's signal to finish SMI // while (*mSmmMpSyncData->AllCpusInSync) { CpuPause (); } goto Exit; } else { // // The BUSY lock is initialized to Released state. // This needs to be done early enough to be ready for BSP's SmmStartupThisAp() call. // E.g., with Relaxed AP flow, SmmStartupThisAp() may be called immediately // after AP's present flag is detected. // InitializeSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy); } if (FeaturePcdGet (PcdCpuSmmProfileEnable)) { ActivateSmmProfile (CpuIndex); } if (BspInProgress) { // // BSP has been elected. Follow AP path, regardless of ValidSmi flag // as BSP may have cleared the SMI status // APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode); } else { // // We have a valid SMI // // // Elect BSP // IsBsp = FALSE; if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) { if (!mSmmMpSyncData->SwitchBsp || mSmmMpSyncData->CandidateBsp[CpuIndex]) { // // Call platform hook to do BSP election // Status = PlatformSmmBspElection (&IsBsp); if (EFI_SUCCESS == Status) { // // Platform hook determines successfully // if (IsBsp) { mSmmMpSyncData->BspIndex = (UINT32)CpuIndex; } } else { // // Platform hook fails to determine, use default BSP election method // if (mSmmMpSyncData->BspIndex == MAX_UINT32) { InterlockedCompareExchange32 ( (UINT32 *)&mSmmMpSyncData->BspIndex, MAX_UINT32, (UINT32)CpuIndex ); } } } } // // "mSmmMpSyncData->BspIndex == CpuIndex" means this is the BSP // if (mSmmMpSyncData->BspIndex == CpuIndex) { // // Clear last request for SwitchBsp. // if (mSmmMpSyncData->SwitchBsp) { mSmmMpSyncData->SwitchBsp = FALSE; for (Index = 0; Index < mMaxNumberOfCpus; Index++) { mSmmMpSyncData->CandidateBsp[Index] = FALSE; } } if (FeaturePcdGet (PcdCpuSmmProfileEnable)) { SmmProfileRecordSmiNum (); } // // BSP Handler is always called with a ValidSmi == TRUE // BSPHandler (CpuIndex, mSmmMpSyncData->EffectiveSyncMode); } else { APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode); } } // // Wait for BSP's signal to exit SMI // while (*mSmmMpSyncData->AllCpusInSync) { CpuPause (); } } Exit: // // Note: SmmRendezvousExit perf-logging entry is the only one that will be // migrated to standard perf-logging database in next SMI by BSPHandler(). // Hence, the number of SmmRendezvousEntry entries will be larger than // the number of SmmRendezvousExit entries. Delta equals to the number // of CPU threads. // PERF_CODE ( MpPerfBegin (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (SmmRendezvousExit)); ); SmmCpuFeaturesRendezvousExit (CpuIndex); PERF_CODE ( MpPerfEnd (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (SmmRendezvousExit)); ); // // Restore Cr2 // RestoreCr2 (Cr2); } /** Initialize PackageBsp Info. Processor specified by mPackageFirstThreadIndex[PackageIndex] will do the package-scope register programming. Set default CpuIndex to (UINT32)-1, which means not specified yet. **/ VOID InitPackageFirstThreadIndexInfo ( VOID ) { UINT32 Index; UINT32 PackageId; UINT32 PackageCount; PackageId = 0; PackageCount = 0; // // Count the number of package, set to max PackageId + 1 // for (Index = 0; Index < mNumberOfCpus; Index++) { if (PackageId < gSmmCpuPrivate->ProcessorInfo[Index].Location.Package) { PackageId = gSmmCpuPrivate->ProcessorInfo[Index].Location.Package; } } PackageCount = PackageId + 1; mPackageFirstThreadIndex = (UINT32 *)AllocatePool (sizeof (UINT32) * PackageCount); ASSERT (mPackageFirstThreadIndex != NULL); if (mPackageFirstThreadIndex == NULL) { return; } // // Set default CpuIndex to (UINT32)-1, which means not specified yet. // SetMem32 (mPackageFirstThreadIndex, sizeof (UINT32) * PackageCount, (UINT32)-1); } /** Allocate buffer for SpinLock and Wrapper function buffer. **/ VOID InitializeDataForMmMp ( VOID ) { gSmmCpuPrivate->ApWrapperFunc = AllocatePool (sizeof (PROCEDURE_WRAPPER) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus); ASSERT (gSmmCpuPrivate->ApWrapperFunc != NULL); InitializeListHead (&gSmmCpuPrivate->TokenList); gSmmCpuPrivate->FirstFreeToken = AllocateTokenBuffer (); } /** Allocate buffer for all semaphores and spin locks. **/ VOID InitializeSmmCpuSemaphores ( VOID ) { UINTN ProcessorCount; UINTN TotalSize; UINTN GlobalSemaphoresSize; UINTN CpuSemaphoresSize; UINTN SemaphoreSize; UINTN Pages; UINTN *SemaphoreBlock; UINTN SemaphoreAddr; SemaphoreSize = GetSpinLockProperties (); ProcessorCount = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; GlobalSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_GLOBAL) / sizeof (VOID *)) * SemaphoreSize; CpuSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_CPU) / sizeof (VOID *)) * ProcessorCount * SemaphoreSize; TotalSize = GlobalSemaphoresSize + CpuSemaphoresSize; DEBUG ((DEBUG_INFO, "One Semaphore Size = 0x%x\n", SemaphoreSize)); DEBUG ((DEBUG_INFO, "Total Semaphores Size = 0x%x\n", TotalSize)); Pages = EFI_SIZE_TO_PAGES (TotalSize); SemaphoreBlock = AllocatePages (Pages); ASSERT (SemaphoreBlock != NULL); ZeroMem (SemaphoreBlock, TotalSize); SemaphoreAddr = (UINTN)SemaphoreBlock; mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm = (BOOLEAN *)SemaphoreAddr; SemaphoreAddr += SemaphoreSize; mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync = (BOOLEAN *)SemaphoreAddr; SemaphoreAddr += SemaphoreSize; mSmmCpuSemaphores.SemaphoreGlobal.PFLock = (SPIN_LOCK *)SemaphoreAddr; SemaphoreAddr += SemaphoreSize; mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock = (SPIN_LOCK *)SemaphoreAddr; SemaphoreAddr += SemaphoreSize; SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize; mSmmCpuSemaphores.SemaphoreCpu.Busy = (SPIN_LOCK *)SemaphoreAddr; SemaphoreAddr += ProcessorCount * SemaphoreSize; mSmmCpuSemaphores.SemaphoreCpu.Present = (BOOLEAN *)SemaphoreAddr; mPFLock = mSmmCpuSemaphores.SemaphoreGlobal.PFLock; mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock; mSemaphoreSize = SemaphoreSize; } /** Initialize un-cacheable data. **/ VOID EFIAPI InitializeMpSyncData ( VOID ) { RETURN_STATUS Status; UINTN CpuIndex; if (mSmmMpSyncData != NULL) { // // mSmmMpSyncDataSize includes one structure of SMM_DISPATCHER_MP_SYNC_DATA, one // CpuData array of SMM_CPU_DATA_BLOCK and one CandidateBsp array of BOOLEAN. // ZeroMem (mSmmMpSyncData, mSmmMpSyncDataSize); mSmmMpSyncData->CpuData = (SMM_CPU_DATA_BLOCK *)((UINT8 *)mSmmMpSyncData + sizeof (SMM_DISPATCHER_MP_SYNC_DATA)); mSmmMpSyncData->CandidateBsp = (BOOLEAN *)(mSmmMpSyncData->CpuData + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus); if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) { // // Enable BSP election by setting BspIndex to MAX_UINT32 // mSmmMpSyncData->BspIndex = MAX_UINT32; } else { // // Use NonSMM BSP as SMM BSP // for (CpuIndex = 0; CpuIndex < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; CpuIndex++) { if (GetApicId () == gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId) { mSmmMpSyncData->BspIndex = (UINT32)CpuIndex; break; } } } mSmmMpSyncData->EffectiveSyncMode = mCpuSmmSyncMode; Status = SmmCpuSyncContextInit (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus, &mSmmMpSyncData->SyncContext); if (EFI_ERROR (Status)) { DEBUG ((DEBUG_ERROR, "InitializeMpSyncData: SmmCpuSyncContextInit return error %r!\n", Status)); CpuDeadLoop (); return; } ASSERT (mSmmMpSyncData->SyncContext != NULL); mSmmMpSyncData->InsideSmm = mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm; mSmmMpSyncData->AllCpusInSync = mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync; ASSERT ( mSmmMpSyncData->InsideSmm != NULL && mSmmMpSyncData->AllCpusInSync != NULL ); *mSmmMpSyncData->InsideSmm = FALSE; *mSmmMpSyncData->AllCpusInSync = FALSE; mSmmMpSyncData->AllApArrivedWithException = FALSE; for (CpuIndex = 0; CpuIndex < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; CpuIndex++) { mSmmMpSyncData->CpuData[CpuIndex].Busy = (SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Busy + mSemaphoreSize * CpuIndex); mSmmMpSyncData->CpuData[CpuIndex].Present = (BOOLEAN *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Present + mSemaphoreSize * CpuIndex); *(mSmmMpSyncData->CpuData[CpuIndex].Busy) = 0; *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE; } } } /** Initialize global data for MP synchronization. @param Stacks Base address of SMI stack buffer for all processors. @param StackSize Stack size for each processor in SMM. @param ShadowStackSize Shadow Stack size for each processor in SMM. **/ UINT32 InitializeMpServiceData ( IN VOID *Stacks, IN UINTN StackSize, IN UINTN ShadowStackSize ) { UINT32 Cr3; UINTN Index; UINT8 *GdtTssTables; UINTN GdtTableStepSize; CPUID_VERSION_INFO_EDX RegEdx; UINT32 MaxExtendedFunction; CPUID_VIR_PHY_ADDRESS_SIZE_EAX VirPhyAddressSize; // // Determine if this CPU supports machine check // AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx.Uint32); mMachineCheckSupported = (BOOLEAN)(RegEdx.Bits.MCA == 1); // // Allocate memory for all locks and semaphores // InitializeSmmCpuSemaphores (); // // Initialize mSmmMpSyncData // mSmmMpSyncDataSize = sizeof (SMM_DISPATCHER_MP_SYNC_DATA) + (sizeof (SMM_CPU_DATA_BLOCK) + sizeof (BOOLEAN)) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; mSmmMpSyncData = (SMM_DISPATCHER_MP_SYNC_DATA *)AllocatePages (EFI_SIZE_TO_PAGES (mSmmMpSyncDataSize)); ASSERT (mSmmMpSyncData != NULL); mCpuSmmSyncMode = (SMM_CPU_SYNC_MODE)PcdGet8 (PcdCpuSmmSyncMode); InitializeMpSyncData (); // // Initialize physical address mask // NOTE: Physical memory above virtual address limit is not supported !!! // AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedFunction, NULL, NULL, NULL); if (MaxExtendedFunction >= CPUID_VIR_PHY_ADDRESS_SIZE) { AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &VirPhyAddressSize.Uint32, NULL, NULL, NULL); } else { VirPhyAddressSize.Bits.PhysicalAddressBits = 36; } gPhyMask = LShiftU64 (1, VirPhyAddressSize.Bits.PhysicalAddressBits) - 1; // // Clear the low 12 bits // gPhyMask &= 0xfffffffffffff000ULL; // // Create page tables // Cr3 = SmmInitPageTable (); GdtTssTables = InitGdt (Cr3, &GdtTableStepSize); // // Install SMI handler for each CPU // for (Index = 0; Index < mMaxNumberOfCpus; Index++) { InstallSmiHandler ( Index, (UINT32)mCpuHotPlugData.SmBase[Index], (VOID *)((UINTN)Stacks + (StackSize + ShadowStackSize) * Index), StackSize, (UINTN)(GdtTssTables + GdtTableStepSize * Index), gcSmiGdtr.Limit + 1, gcSmiIdtr.Base, gcSmiIdtr.Limit + 1, Cr3 ); } // // Record current MTRR settings // ZeroMem (&gSmiMtrrs, sizeof (gSmiMtrrs)); MtrrGetAllMtrrs (&gSmiMtrrs); return Cr3; } /** Register the SMM Foundation entry point. @param This Pointer to EFI_SMM_CONFIGURATION_PROTOCOL instance @param SmmEntryPoint SMM Foundation EntryPoint @retval EFI_SUCCESS Successfully to register SMM foundation entry point **/ EFI_STATUS EFIAPI RegisterSmmEntry ( IN CONST EFI_SMM_CONFIGURATION_PROTOCOL *This, IN EFI_SMM_ENTRY_POINT SmmEntryPoint ) { // // Record SMM Foundation EntryPoint, later invoke it on SMI entry vector. // gSmmCpuPrivate->SmmCoreEntry = SmmEntryPoint; return EFI_SUCCESS; } /** Register the SMM Foundation entry point. @param[in] Procedure A pointer to the code stream to be run on the designated target AP of the system. Type EFI_AP_PROCEDURE is defined below in Volume 2 with the related definitions of EFI_MP_SERVICES_PROTOCOL.StartupAllAPs. If caller may pass a value of NULL to deregister any existing startup procedure. @param[in,out] ProcedureArguments Allows the caller to pass a list of parameters to the code that is run by the AP. It is an optional common mailbox between APs and the caller to share information @retval EFI_SUCCESS The Procedure has been set successfully. @retval EFI_INVALID_PARAMETER The Procedure is NULL but ProcedureArguments not NULL. **/ EFI_STATUS RegisterStartupProcedure ( IN EFI_AP_PROCEDURE Procedure, IN OUT VOID *ProcedureArguments OPTIONAL ) { if ((Procedure == NULL) && (ProcedureArguments != NULL)) { return EFI_INVALID_PARAMETER; } if (mSmmMpSyncData == NULL) { return EFI_NOT_READY; } mSmmMpSyncData->StartupProcedure = Procedure; mSmmMpSyncData->StartupProcArgs = ProcedureArguments; return EFI_SUCCESS; }