/** @file Copyright (c) 2016 - 2019, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "PiSmmCpuDxeSmm.h" // // attributes for reserved memory before it is promoted to system memory // #define EFI_MEMORY_PRESENT 0x0100000000000000ULL #define EFI_MEMORY_INITIALIZED 0x0200000000000000ULL #define EFI_MEMORY_TESTED 0x0400000000000000ULL #define PREVIOUS_MEMORY_DESCRIPTOR(MemoryDescriptor, Size) \ ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)(MemoryDescriptor) - (Size))) EFI_MEMORY_DESCRIPTOR *mUefiMemoryMap; UINTN mUefiMemoryMapSize; UINTN mUefiDescriptorSize; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *mGcdMemSpace = NULL; UINTN mGcdMemNumberOfDesc = 0; EFI_MEMORY_ATTRIBUTES_TABLE *mUefiMemoryAttributesTable = NULL; PAGE_ATTRIBUTE_TABLE mPageAttributeTable[] = { { Page4K, SIZE_4KB, PAGING_4K_ADDRESS_MASK_64 }, { Page2M, SIZE_2MB, PAGING_2M_ADDRESS_MASK_64 }, { Page1G, SIZE_1GB, PAGING_1G_ADDRESS_MASK_64 }, }; BOOLEAN mIsShadowStack = FALSE; BOOLEAN m5LevelPagingNeeded = FALSE; // // Global variable to keep track current available memory used as page table. // PAGE_TABLE_POOL *mPageTablePool = NULL; // // If memory used by SMM page table has been mareked as ReadOnly. // BOOLEAN mIsReadOnlyPageTable = FALSE; /** Initialize a buffer pool for page table use only. To reduce the potential split operation on page table, the pages reserved for page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always initialized with number of pages greater than or equal to the given PoolPages. Once the pages in the pool are used up, this method should be called again to reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. But usually this won't happen in practice. @param PoolPages The least page number of the pool to be created. @retval TRUE The pool is initialized successfully. @retval FALSE The memory is out of resource. **/ BOOLEAN InitializePageTablePool ( IN UINTN PoolPages ) { VOID *Buffer; BOOLEAN CetEnabled; BOOLEAN WpEnabled; IA32_CR0 Cr0; // // Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for // header. // PoolPages += 1; // Add one page for header. PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) * PAGE_TABLE_POOL_UNIT_PAGES; Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT); if (Buffer == NULL) { DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n")); return FALSE; } // // Link all pools into a list for easier track later. // if (mPageTablePool == NULL) { mPageTablePool = Buffer; mPageTablePool->NextPool = mPageTablePool; } else { ((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool; mPageTablePool->NextPool = Buffer; mPageTablePool = Buffer; } // // Reserve one page for pool header. // mPageTablePool->FreePages = PoolPages - 1; mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1); // // If page table memory has been marked as RO, mark the new pool pages as read-only. // if (mIsReadOnlyPageTable) { CetEnabled = ((AsmReadCr4 () & CR4_CET_ENABLE) != 0) ? TRUE : FALSE; Cr0.UintN = AsmReadCr0 (); WpEnabled = (Cr0.Bits.WP != 0) ? TRUE : FALSE; if (WpEnabled) { if (CetEnabled) { // // CET must be disabled if WP is disabled. Disable CET before clearing CR0.WP. // DisableCet (); } Cr0.Bits.WP = 0; AsmWriteCr0 (Cr0.UintN); } SmmSetMemoryAttributes ((EFI_PHYSICAL_ADDRESS)(UINTN)Buffer, EFI_PAGES_TO_SIZE (PoolPages), EFI_MEMORY_RO); if (WpEnabled) { Cr0.UintN = AsmReadCr0 (); Cr0.Bits.WP = 1; AsmWriteCr0 (Cr0.UintN); if (CetEnabled) { // // re-enable CET. // EnableCet (); } } } return TRUE; } /** This API provides a way to allocate memory for page table. This API can be called more once to allocate memory for page tables. Allocates the number of 4KB pages of type EfiRuntimeServicesData and returns a pointer to the allocated buffer. The buffer returned is aligned on a 4KB boundary. If Pages is 0, then NULL is returned. If there is not enough memory remaining to satisfy the request, then NULL is returned. @param Pages The number of 4 KB pages to allocate. @return A pointer to the allocated buffer or NULL if allocation fails. **/ VOID * AllocatePageTableMemory ( IN UINTN Pages ) { VOID *Buffer; if (Pages == 0) { return NULL; } // // Renew the pool if necessary. // if ((mPageTablePool == NULL) || (Pages > mPageTablePool->FreePages)) { if (!InitializePageTablePool (Pages)) { return NULL; } } Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset; mPageTablePool->Offset += EFI_PAGES_TO_SIZE (Pages); mPageTablePool->FreePages -= Pages; return Buffer; } /** Return length according to page attributes. @param[in] PageAttributes The page attribute of the page entry. @return The length of page entry. **/ UINTN PageAttributeToLength ( IN PAGE_ATTRIBUTE PageAttribute ) { UINTN Index; for (Index = 0; Index < sizeof (mPageAttributeTable)/sizeof (mPageAttributeTable[0]); Index++) { if (PageAttribute == mPageAttributeTable[Index].Attribute) { return (UINTN)mPageAttributeTable[Index].Length; } } return 0; } /** Return address mask according to page attributes. @param[in] PageAttributes The page attribute of the page entry. @return The address mask of page entry. **/ UINTN PageAttributeToMask ( IN PAGE_ATTRIBUTE PageAttribute ) { UINTN Index; for (Index = 0; Index < sizeof (mPageAttributeTable)/sizeof (mPageAttributeTable[0]); Index++) { if (PageAttribute == mPageAttributeTable[Index].Attribute) { return (UINTN)mPageAttributeTable[Index].AddressMask; } } return 0; } /** Return page table entry to match the address. @param[in] PageTableBase The page table base. @param[in] Enable5LevelPaging If PML5 paging is enabled. @param[in] Address The address to be checked. @param[out] PageAttributes The page attribute of the page entry. @return The page entry. **/ VOID * GetPageTableEntry ( IN UINTN PageTableBase, IN BOOLEAN Enable5LevelPaging, IN PHYSICAL_ADDRESS Address, OUT PAGE_ATTRIBUTE *PageAttribute ) { UINTN Index1; UINTN Index2; UINTN Index3; UINTN Index4; UINTN Index5; UINT64 *L1PageTable; UINT64 *L2PageTable; UINT64 *L3PageTable; UINT64 *L4PageTable; UINT64 *L5PageTable; Index5 = ((UINTN)RShiftU64 (Address, 48)) & PAGING_PAE_INDEX_MASK; Index4 = ((UINTN)RShiftU64 (Address, 39)) & PAGING_PAE_INDEX_MASK; Index3 = ((UINTN)Address >> 30) & PAGING_PAE_INDEX_MASK; Index2 = ((UINTN)Address >> 21) & PAGING_PAE_INDEX_MASK; Index1 = ((UINTN)Address >> 12) & PAGING_PAE_INDEX_MASK; if (sizeof (UINTN) == sizeof (UINT64)) { if (Enable5LevelPaging) { L5PageTable = (UINT64 *)PageTableBase; if (L5PageTable[Index5] == 0) { *PageAttribute = PageNone; return NULL; } L4PageTable = (UINT64 *)(UINTN)(L5PageTable[Index5] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64); } else { L4PageTable = (UINT64 *)PageTableBase; } if (L4PageTable[Index4] == 0) { *PageAttribute = PageNone; return NULL; } L3PageTable = (UINT64 *)(UINTN)(L4PageTable[Index4] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64); } else { L3PageTable = (UINT64 *)PageTableBase; } if (L3PageTable[Index3] == 0) { *PageAttribute = PageNone; return NULL; } if ((L3PageTable[Index3] & IA32_PG_PS) != 0) { // 1G *PageAttribute = Page1G; return &L3PageTable[Index3]; } L2PageTable = (UINT64 *)(UINTN)(L3PageTable[Index3] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64); if (L2PageTable[Index2] == 0) { *PageAttribute = PageNone; return NULL; } if ((L2PageTable[Index2] & IA32_PG_PS) != 0) { // 2M *PageAttribute = Page2M; return &L2PageTable[Index2]; } // 4k L1PageTable = (UINT64 *)(UINTN)(L2PageTable[Index2] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64); if ((L1PageTable[Index1] == 0) && (Address != 0)) { *PageAttribute = PageNone; return NULL; } *PageAttribute = Page4K; return &L1PageTable[Index1]; } /** Return memory attributes of page entry. @param[in] PageEntry The page entry. @return Memory attributes of page entry. **/ UINT64 GetAttributesFromPageEntry ( IN UINT64 *PageEntry ) { UINT64 Attributes; Attributes = 0; if ((*PageEntry & IA32_PG_P) == 0) { Attributes |= EFI_MEMORY_RP; } if ((*PageEntry & IA32_PG_RW) == 0) { Attributes |= EFI_MEMORY_RO; } if ((*PageEntry & IA32_PG_NX) != 0) { Attributes |= EFI_MEMORY_XP; } return Attributes; } /** Modify memory attributes of page entry. @param[in] PageEntry The page entry. @param[in] Attributes The bit mask of attributes to modify for the memory region. @param[in] IsSet TRUE means to set attributes. FALSE means to clear attributes. @param[out] IsModified TRUE means page table modified. FALSE means page table not modified. **/ VOID ConvertPageEntryAttribute ( IN UINT64 *PageEntry, IN UINT64 Attributes, IN BOOLEAN IsSet, OUT BOOLEAN *IsModified ) { UINT64 CurrentPageEntry; UINT64 NewPageEntry; CurrentPageEntry = *PageEntry; NewPageEntry = CurrentPageEntry; if ((Attributes & EFI_MEMORY_RP) != 0) { if (IsSet) { NewPageEntry &= ~(UINT64)IA32_PG_P; } else { NewPageEntry |= IA32_PG_P; } } if ((Attributes & EFI_MEMORY_RO) != 0) { if (IsSet) { NewPageEntry &= ~(UINT64)IA32_PG_RW; if (mIsShadowStack) { // Environment setup // ReadOnly page need set Dirty bit for shadow stack NewPageEntry |= IA32_PG_D; // Clear user bit for supervisor shadow stack NewPageEntry &= ~(UINT64)IA32_PG_U; } else { // Runtime update // Clear dirty bit for non shadow stack, to protect RO page. NewPageEntry &= ~(UINT64)IA32_PG_D; } } else { NewPageEntry |= IA32_PG_RW; } } if ((Attributes & EFI_MEMORY_XP) != 0) { if (mXdSupported) { if (IsSet) { NewPageEntry |= IA32_PG_NX; } else { NewPageEntry &= ~IA32_PG_NX; } } } *PageEntry = NewPageEntry; if (CurrentPageEntry != NewPageEntry) { *IsModified = TRUE; DEBUG ((DEBUG_VERBOSE, "ConvertPageEntryAttribute 0x%lx", CurrentPageEntry)); DEBUG ((DEBUG_VERBOSE, "->0x%lx\n", NewPageEntry)); } else { *IsModified = FALSE; } } /** This function returns if there is need to split page entry. @param[in] BaseAddress The base address to be checked. @param[in] Length The length to be checked. @param[in] PageEntry The page entry to be checked. @param[in] PageAttribute The page attribute of the page entry. @retval SplitAttributes on if there is need to split page entry. **/ PAGE_ATTRIBUTE NeedSplitPage ( IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 *PageEntry, IN PAGE_ATTRIBUTE PageAttribute ) { UINT64 PageEntryLength; PageEntryLength = PageAttributeToLength (PageAttribute); if (((BaseAddress & (PageEntryLength - 1)) == 0) && (Length >= PageEntryLength)) { return PageNone; } if (((BaseAddress & PAGING_2M_MASK) != 0) || (Length < SIZE_2MB)) { return Page4K; } return Page2M; } /** This function splits one page entry to small page entries. @param[in] PageEntry The page entry to be splitted. @param[in] PageAttribute The page attribute of the page entry. @param[in] SplitAttribute How to split the page entry. @retval RETURN_SUCCESS The page entry is splitted. @retval RETURN_UNSUPPORTED The page entry does not support to be splitted. @retval RETURN_OUT_OF_RESOURCES No resource to split page entry. **/ RETURN_STATUS SplitPage ( IN UINT64 *PageEntry, IN PAGE_ATTRIBUTE PageAttribute, IN PAGE_ATTRIBUTE SplitAttribute ) { UINT64 BaseAddress; UINT64 *NewPageEntry; UINTN Index; ASSERT (PageAttribute == Page2M || PageAttribute == Page1G); if (PageAttribute == Page2M) { // // Split 2M to 4K // ASSERT (SplitAttribute == Page4K); if (SplitAttribute == Page4K) { NewPageEntry = AllocatePageTableMemory (1); DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry)); if (NewPageEntry == NULL) { return RETURN_OUT_OF_RESOURCES; } BaseAddress = *PageEntry & PAGING_2M_ADDRESS_MASK_64; for (Index = 0; Index < SIZE_4KB / sizeof (UINT64); Index++) { NewPageEntry[Index] = (BaseAddress + SIZE_4KB * Index) | mAddressEncMask | ((*PageEntry) & PAGE_PROGATE_BITS); } (*PageEntry) = (UINT64)(UINTN)NewPageEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS; return RETURN_SUCCESS; } else { return RETURN_UNSUPPORTED; } } else if (PageAttribute == Page1G) { // // Split 1G to 2M // No need support 1G->4K directly, we should use 1G->2M, then 2M->4K to get more compact page table. // ASSERT (SplitAttribute == Page2M || SplitAttribute == Page4K); if (((SplitAttribute == Page2M) || (SplitAttribute == Page4K))) { NewPageEntry = AllocatePageTableMemory (1); DEBUG ((DEBUG_VERBOSE, "Split - 0x%x\n", NewPageEntry)); if (NewPageEntry == NULL) { return RETURN_OUT_OF_RESOURCES; } BaseAddress = *PageEntry & PAGING_1G_ADDRESS_MASK_64; for (Index = 0; Index < SIZE_4KB / sizeof (UINT64); Index++) { NewPageEntry[Index] = (BaseAddress + SIZE_2MB * Index) | mAddressEncMask | IA32_PG_PS | ((*PageEntry) & PAGE_PROGATE_BITS); } (*PageEntry) = (UINT64)(UINTN)NewPageEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS; return RETURN_SUCCESS; } else { return RETURN_UNSUPPORTED; } } else { return RETURN_UNSUPPORTED; } } /** This function modifies the page attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. Caller should make sure BaseAddress and Length is at page boundary. @param[in] PageTableBase The page table base. @param[in] EnablePML5Paging If PML5 paging is enabled. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to modify for the memory region. @param[in] IsSet TRUE means to set attributes. FALSE means to clear attributes. @param[out] IsSplitted TRUE means page table splitted. FALSE means page table not splitted. @param[out] IsModified TRUE means page table modified. FALSE means page table not modified. @retval RETURN_SUCCESS The attributes were modified for the memory region. @retval RETURN_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval RETURN_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval RETURN_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval RETURN_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ RETURN_STATUS ConvertMemoryPageAttributes ( IN UINTN PageTableBase, IN BOOLEAN EnablePML5Paging, IN PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes, IN BOOLEAN IsSet, OUT BOOLEAN *IsSplitted OPTIONAL, OUT BOOLEAN *IsModified OPTIONAL ) { UINT64 *PageEntry; PAGE_ATTRIBUTE PageAttribute; UINTN PageEntryLength; PAGE_ATTRIBUTE SplitAttribute; RETURN_STATUS Status; BOOLEAN IsEntryModified; EFI_PHYSICAL_ADDRESS MaximumSupportMemAddress; ASSERT (Attributes != 0); ASSERT ((Attributes & ~EFI_MEMORY_ATTRIBUTE_MASK) == 0); ASSERT ((BaseAddress & (SIZE_4KB - 1)) == 0); ASSERT ((Length & (SIZE_4KB - 1)) == 0); if (Length == 0) { return RETURN_INVALID_PARAMETER; } MaximumSupportMemAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)(LShiftU64 (1, mPhysicalAddressBits) - 1); if (BaseAddress > MaximumSupportMemAddress) { return RETURN_UNSUPPORTED; } if (Length > MaximumSupportMemAddress) { return RETURN_UNSUPPORTED; } if ((Length != 0) && (BaseAddress > MaximumSupportMemAddress - (Length - 1))) { return RETURN_UNSUPPORTED; } // DEBUG ((DEBUG_ERROR, "ConvertMemoryPageAttributes(%x) - %016lx, %016lx, %02lx\n", IsSet, BaseAddress, Length, Attributes)); if (IsSplitted != NULL) { *IsSplitted = FALSE; } if (IsModified != NULL) { *IsModified = FALSE; } // // Below logic is to check 2M/4K page to make sure we do not waste memory. // while (Length != 0) { PageEntry = GetPageTableEntry (PageTableBase, EnablePML5Paging, BaseAddress, &PageAttribute); if (PageEntry == NULL) { return RETURN_UNSUPPORTED; } PageEntryLength = PageAttributeToLength (PageAttribute); SplitAttribute = NeedSplitPage (BaseAddress, Length, PageEntry, PageAttribute); if (SplitAttribute == PageNone) { ConvertPageEntryAttribute (PageEntry, Attributes, IsSet, &IsEntryModified); if (IsEntryModified) { if (IsModified != NULL) { *IsModified = TRUE; } } // // Convert success, move to next // BaseAddress += PageEntryLength; Length -= PageEntryLength; } else { Status = SplitPage (PageEntry, PageAttribute, SplitAttribute); if (RETURN_ERROR (Status)) { return RETURN_UNSUPPORTED; } if (IsSplitted != NULL) { *IsSplitted = TRUE; } if (IsModified != NULL) { *IsModified = TRUE; } // // Just split current page // Convert success in next around // } } return RETURN_SUCCESS; } /** FlushTlb on current processor. @param[in,out] Buffer Pointer to private data buffer. **/ VOID EFIAPI FlushTlbOnCurrentProcessor ( IN OUT VOID *Buffer ) { CpuFlushTlb (); } /** FlushTlb for all processors. **/ VOID FlushTlbForAll ( VOID ) { UINTN Index; FlushTlbOnCurrentProcessor (NULL); for (Index = 0; Index < gSmst->NumberOfCpus; Index++) { if (Index != gSmst->CurrentlyExecutingCpu) { // Force to start up AP in blocking mode, SmmBlockingStartupThisAp (FlushTlbOnCurrentProcessor, Index, NULL); // Do not check return status, because AP might not be present in some corner cases. } } } /** This function sets the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param[in] PageTableBase The page table base. @param[in] EnablePML5Paging If PML5 paging is enabled. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to set for the memory region. @param[out] IsSplitted TRUE means page table splitted. FALSE means page table not splitted. @retval EFI_SUCCESS The attributes were set for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS SmmSetMemoryAttributesEx ( IN UINTN PageTableBase, IN BOOLEAN EnablePML5Paging, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes, OUT BOOLEAN *IsSplitted OPTIONAL ) { EFI_STATUS Status; BOOLEAN IsModified; Status = ConvertMemoryPageAttributes (PageTableBase, EnablePML5Paging, BaseAddress, Length, Attributes, TRUE, IsSplitted, &IsModified); if (!EFI_ERROR (Status)) { if (IsModified) { // // Flush TLB as last step // FlushTlbForAll (); } } return Status; } /** This function clears the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param[in] PageTableBase The page table base. @param[in] EnablePML5Paging If PML5 paging is enabled. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to clear for the memory region. @param[out] IsSplitted TRUE means page table splitted. FALSE means page table not splitted. @retval EFI_SUCCESS The attributes were cleared for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be cleared together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not supported for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS SmmClearMemoryAttributesEx ( IN UINTN PageTableBase, IN BOOLEAN EnablePML5Paging, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes, OUT BOOLEAN *IsSplitted OPTIONAL ) { EFI_STATUS Status; BOOLEAN IsModified; Status = ConvertMemoryPageAttributes (PageTableBase, EnablePML5Paging, BaseAddress, Length, Attributes, FALSE, IsSplitted, &IsModified); if (!EFI_ERROR (Status)) { if (IsModified) { // // Flush TLB as last step // FlushTlbForAll (); } } return Status; } /** This function sets the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to set for the memory region. @retval EFI_SUCCESS The attributes were set for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not supported for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS SmmSetMemoryAttributes ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { IA32_CR4 Cr4; UINTN PageTableBase; BOOLEAN Enable5LevelPaging; PageTableBase = AsmReadCr3 () & PAGING_4K_ADDRESS_MASK_64; Cr4.UintN = AsmReadCr4 (); Enable5LevelPaging = (BOOLEAN)(Cr4.Bits.LA57 == 1); return SmmSetMemoryAttributesEx (PageTableBase, Enable5LevelPaging, BaseAddress, Length, Attributes, NULL); } /** This function clears the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @param[in] Attributes The bit mask of attributes to clear for the memory region. @retval EFI_SUCCESS The attributes were cleared for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be cleared together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not supported for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS SmmClearMemoryAttributes ( IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { IA32_CR4 Cr4; UINTN PageTableBase; BOOLEAN Enable5LevelPaging; PageTableBase = AsmReadCr3 () & PAGING_4K_ADDRESS_MASK_64; Cr4.UintN = AsmReadCr4 (); Enable5LevelPaging = (BOOLEAN)(Cr4.Bits.LA57 == 1); return SmmClearMemoryAttributesEx (PageTableBase, Enable5LevelPaging, BaseAddress, Length, Attributes, NULL); } /** Set ShadowStack memory. @param[in] Cr3 The page table base address. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @retval EFI_SUCCESS The shadow stack memory is set. **/ EFI_STATUS SetShadowStack ( IN UINTN Cr3, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length ) { EFI_STATUS Status; mIsShadowStack = TRUE; Status = SmmSetMemoryAttributesEx (Cr3, m5LevelPagingNeeded, BaseAddress, Length, EFI_MEMORY_RO, NULL); mIsShadowStack = FALSE; return Status; } /** Set not present memory. @param[in] Cr3 The page table base address. @param[in] BaseAddress The physical address that is the start address of a memory region. @param[in] Length The size in bytes of the memory region. @retval EFI_SUCCESS The not present memory is set. **/ EFI_STATUS SetNotPresentPage ( IN UINTN Cr3, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length ) { EFI_STATUS Status; Status = SmmSetMemoryAttributesEx (Cr3, m5LevelPagingNeeded, BaseAddress, Length, EFI_MEMORY_RP, NULL); return Status; } /** Retrieves a pointer to the system configuration table from the SMM System Table based on a specified GUID. @param[in] TableGuid The pointer to table's GUID type. @param[out] Table The pointer to the table associated with TableGuid in the EFI System Table. @retval EFI_SUCCESS A configuration table matching TableGuid was found. @retval EFI_NOT_FOUND A configuration table matching TableGuid could not be found. **/ EFI_STATUS EFIAPI SmmGetSystemConfigurationTable ( IN EFI_GUID *TableGuid, OUT VOID **Table ) { UINTN Index; ASSERT (TableGuid != NULL); ASSERT (Table != NULL); *Table = NULL; for (Index = 0; Index < gSmst->NumberOfTableEntries; Index++) { if (CompareGuid (TableGuid, &(gSmst->SmmConfigurationTable[Index].VendorGuid))) { *Table = gSmst->SmmConfigurationTable[Index].VendorTable; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** This function sets SMM save state buffer to be RW and XP. **/ VOID PatchSmmSaveStateMap ( VOID ) { UINTN Index; UINTN TileCodeSize; UINTN TileDataSize; UINTN TileSize; TileCodeSize = GetSmiHandlerSize (); TileCodeSize = ALIGN_VALUE (TileCodeSize, SIZE_4KB); TileDataSize = (SMRAM_SAVE_STATE_MAP_OFFSET - SMM_PSD_OFFSET) + sizeof (SMRAM_SAVE_STATE_MAP); TileDataSize = ALIGN_VALUE (TileDataSize, SIZE_4KB); TileSize = TileDataSize + TileCodeSize - 1; TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize); DEBUG ((DEBUG_INFO, "PatchSmmSaveStateMap:\n")); for (Index = 0; Index < mMaxNumberOfCpus - 1; Index++) { // // Code // SmmSetMemoryAttributes ( mCpuHotPlugData.SmBase[Index] + SMM_HANDLER_OFFSET, TileCodeSize, EFI_MEMORY_RO ); SmmClearMemoryAttributes ( mCpuHotPlugData.SmBase[Index] + SMM_HANDLER_OFFSET, TileCodeSize, EFI_MEMORY_XP ); // // Data // SmmClearMemoryAttributes ( mCpuHotPlugData.SmBase[Index] + SMM_HANDLER_OFFSET + TileCodeSize, TileSize - TileCodeSize, EFI_MEMORY_RO ); SmmSetMemoryAttributes ( mCpuHotPlugData.SmBase[Index] + SMM_HANDLER_OFFSET + TileCodeSize, TileSize - TileCodeSize, EFI_MEMORY_XP ); } // // Code // SmmSetMemoryAttributes ( mCpuHotPlugData.SmBase[mMaxNumberOfCpus - 1] + SMM_HANDLER_OFFSET, TileCodeSize, EFI_MEMORY_RO ); SmmClearMemoryAttributes ( mCpuHotPlugData.SmBase[mMaxNumberOfCpus - 1] + SMM_HANDLER_OFFSET, TileCodeSize, EFI_MEMORY_XP ); // // Data // SmmClearMemoryAttributes ( mCpuHotPlugData.SmBase[mMaxNumberOfCpus - 1] + SMM_HANDLER_OFFSET + TileCodeSize, SIZE_32KB - TileCodeSize, EFI_MEMORY_RO ); SmmSetMemoryAttributes ( mCpuHotPlugData.SmBase[mMaxNumberOfCpus - 1] + SMM_HANDLER_OFFSET + TileCodeSize, SIZE_32KB - TileCodeSize, EFI_MEMORY_XP ); } /** This function sets GDT/IDT buffer to be RO and XP. **/ VOID PatchGdtIdtMap ( VOID ) { EFI_PHYSICAL_ADDRESS BaseAddress; UINTN Size; // // GDT // DEBUG ((DEBUG_INFO, "PatchGdtIdtMap - GDT:\n")); BaseAddress = mGdtBuffer; Size = ALIGN_VALUE (mGdtBufferSize, SIZE_4KB); // // The range should have been set to RO // if it is allocated with EfiRuntimeServicesCode. // SmmSetMemoryAttributes ( BaseAddress, Size, EFI_MEMORY_XP ); // // IDT // DEBUG ((DEBUG_INFO, "PatchGdtIdtMap - IDT:\n")); BaseAddress = gcSmiIdtr.Base; Size = ALIGN_VALUE (gcSmiIdtr.Limit + 1, SIZE_4KB); // // The range should have been set to RO // if it is allocated with EfiRuntimeServicesCode. // SmmSetMemoryAttributes ( BaseAddress, Size, EFI_MEMORY_XP ); } /** This function sets memory attribute according to MemoryAttributesTable. **/ VOID SetMemMapAttributes ( VOID ) { EFI_MEMORY_DESCRIPTOR *MemoryMap; EFI_MEMORY_DESCRIPTOR *MemoryMapStart; UINTN MemoryMapEntryCount; UINTN DescriptorSize; UINTN Index; EDKII_PI_SMM_MEMORY_ATTRIBUTES_TABLE *MemoryAttributesTable; SmmGetSystemConfigurationTable (&gEdkiiPiSmmMemoryAttributesTableGuid, (VOID **)&MemoryAttributesTable); if (MemoryAttributesTable == NULL) { DEBUG ((DEBUG_INFO, "MemoryAttributesTable - NULL\n")); return; } DEBUG ((DEBUG_INFO, "MemoryAttributesTable:\n")); DEBUG ((DEBUG_INFO, " Version - 0x%08x\n", MemoryAttributesTable->Version)); DEBUG ((DEBUG_INFO, " NumberOfEntries - 0x%08x\n", MemoryAttributesTable->NumberOfEntries)); DEBUG ((DEBUG_INFO, " DescriptorSize - 0x%08x\n", MemoryAttributesTable->DescriptorSize)); MemoryMapEntryCount = MemoryAttributesTable->NumberOfEntries; DescriptorSize = MemoryAttributesTable->DescriptorSize; MemoryMapStart = (EFI_MEMORY_DESCRIPTOR *)(MemoryAttributesTable + 1); MemoryMap = MemoryMapStart; for (Index = 0; Index < MemoryMapEntryCount; Index++) { DEBUG ((DEBUG_INFO, "Entry (0x%x)\n", MemoryMap)); DEBUG ((DEBUG_INFO, " Type - 0x%x\n", MemoryMap->Type)); DEBUG ((DEBUG_INFO, " PhysicalStart - 0x%016lx\n", MemoryMap->PhysicalStart)); DEBUG ((DEBUG_INFO, " VirtualStart - 0x%016lx\n", MemoryMap->VirtualStart)); DEBUG ((DEBUG_INFO, " NumberOfPages - 0x%016lx\n", MemoryMap->NumberOfPages)); DEBUG ((DEBUG_INFO, " Attribute - 0x%016lx\n", MemoryMap->Attribute)); MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, DescriptorSize); } MemoryMap = MemoryMapStart; for (Index = 0; Index < MemoryMapEntryCount; Index++) { DEBUG ((DEBUG_VERBOSE, "SetAttribute: Memory Entry - 0x%lx, 0x%x\n", MemoryMap->PhysicalStart, MemoryMap->NumberOfPages)); switch (MemoryMap->Type) { case EfiRuntimeServicesCode: SmmSetMemoryAttributes ( MemoryMap->PhysicalStart, EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages), EFI_MEMORY_RO ); break; case EfiRuntimeServicesData: SmmSetMemoryAttributes ( MemoryMap->PhysicalStart, EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages), EFI_MEMORY_XP ); break; default: SmmSetMemoryAttributes ( MemoryMap->PhysicalStart, EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages), EFI_MEMORY_XP ); break; } MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, DescriptorSize); } PatchSmmSaveStateMap (); PatchGdtIdtMap (); return; } /** Sort memory map entries based upon PhysicalStart, from low to high. @param MemoryMap A pointer to the buffer in which firmware places the current memory map. @param MemoryMapSize Size, in bytes, of the MemoryMap buffer. @param DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. **/ STATIC VOID SortMemoryMap ( IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap, IN UINTN MemoryMapSize, IN UINTN DescriptorSize ) { EFI_MEMORY_DESCRIPTOR *MemoryMapEntry; EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry; EFI_MEMORY_DESCRIPTOR *MemoryMapEnd; EFI_MEMORY_DESCRIPTOR TempMemoryMap; MemoryMapEntry = MemoryMap; NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + MemoryMapSize); while (MemoryMapEntry < MemoryMapEnd) { while (NextMemoryMapEntry < MemoryMapEnd) { if (MemoryMapEntry->PhysicalStart > NextMemoryMapEntry->PhysicalStart) { CopyMem (&TempMemoryMap, MemoryMapEntry, sizeof (EFI_MEMORY_DESCRIPTOR)); CopyMem (MemoryMapEntry, NextMemoryMapEntry, sizeof (EFI_MEMORY_DESCRIPTOR)); CopyMem (NextMemoryMapEntry, &TempMemoryMap, sizeof (EFI_MEMORY_DESCRIPTOR)); } NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize); } MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); } } /** Return if a UEFI memory page should be marked as not present in SMM page table. If the memory map entries type is EfiLoaderCode/Data, EfiBootServicesCode/Data, EfiConventionalMemory, EfiUnusableMemory, EfiACPIReclaimMemory, return TRUE. Or return FALSE. @param[in] MemoryMap A pointer to the memory descriptor. @return TRUE The memory described will be marked as not present in SMM page table. @return FALSE The memory described will not be marked as not present in SMM page table. **/ BOOLEAN IsUefiPageNotPresent ( IN EFI_MEMORY_DESCRIPTOR *MemoryMap ) { switch (MemoryMap->Type) { case EfiLoaderCode: case EfiLoaderData: case EfiBootServicesCode: case EfiBootServicesData: case EfiConventionalMemory: case EfiUnusableMemory: case EfiACPIReclaimMemory: return TRUE; default: return FALSE; } } /** Merge continuous memory map entries whose type is EfiLoaderCode/Data, EfiBootServicesCode/Data, EfiConventionalMemory, EfiUnusableMemory, EfiACPIReclaimMemory, because the memory described by these entries will be set as NOT present in SMM page table. @param[in, out] MemoryMap A pointer to the buffer in which firmware places the current memory map. @param[in, out] MemoryMapSize A pointer to the size, in bytes, of the MemoryMap buffer. On input, this is the size of the current memory map. On output, it is the size of new memory map after merge. @param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. **/ STATIC VOID MergeMemoryMapForNotPresentEntry ( IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap, IN OUT UINTN *MemoryMapSize, IN UINTN DescriptorSize ) { EFI_MEMORY_DESCRIPTOR *MemoryMapEntry; EFI_MEMORY_DESCRIPTOR *MemoryMapEnd; UINT64 MemoryBlockLength; EFI_MEMORY_DESCRIPTOR *NewMemoryMapEntry; EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry; MemoryMapEntry = MemoryMap; NewMemoryMapEntry = MemoryMap; MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + *MemoryMapSize); while ((UINTN)MemoryMapEntry < (UINTN)MemoryMapEnd) { CopyMem (NewMemoryMapEntry, MemoryMapEntry, sizeof (EFI_MEMORY_DESCRIPTOR)); NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); do { MemoryBlockLength = (UINT64)(EFI_PAGES_TO_SIZE ((UINTN)MemoryMapEntry->NumberOfPages)); if (((UINTN)NextMemoryMapEntry < (UINTN)MemoryMapEnd) && IsUefiPageNotPresent (MemoryMapEntry) && IsUefiPageNotPresent (NextMemoryMapEntry) && ((MemoryMapEntry->PhysicalStart + MemoryBlockLength) == NextMemoryMapEntry->PhysicalStart)) { MemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages; if (NewMemoryMapEntry != MemoryMapEntry) { NewMemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages; } NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize); continue; } else { MemoryMapEntry = PREVIOUS_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize); break; } } while (TRUE); MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); NewMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NewMemoryMapEntry, DescriptorSize); } *MemoryMapSize = (UINTN)NewMemoryMapEntry - (UINTN)MemoryMap; return; } /** This function caches the GCD memory map information. **/ VOID GetGcdMemoryMap ( VOID ) { UINTN NumberOfDescriptors; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemSpaceMap; EFI_STATUS Status; UINTN Index; Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemSpaceMap); if (EFI_ERROR (Status)) { return; } mGcdMemNumberOfDesc = 0; for (Index = 0; Index < NumberOfDescriptors; Index++) { if ((MemSpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeReserved) && ((MemSpaceMap[Index].Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) == (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) ) { mGcdMemNumberOfDesc++; } } mGcdMemSpace = AllocateZeroPool (mGcdMemNumberOfDesc * sizeof (EFI_GCD_MEMORY_SPACE_DESCRIPTOR)); ASSERT (mGcdMemSpace != NULL); if (mGcdMemSpace == NULL) { mGcdMemNumberOfDesc = 0; gBS->FreePool (MemSpaceMap); return; } mGcdMemNumberOfDesc = 0; for (Index = 0; Index < NumberOfDescriptors; Index++) { if ((MemSpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeReserved) && ((MemSpaceMap[Index].Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) == (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) ) { CopyMem ( &mGcdMemSpace[mGcdMemNumberOfDesc], &MemSpaceMap[Index], sizeof (EFI_GCD_MEMORY_SPACE_DESCRIPTOR) ); mGcdMemNumberOfDesc++; } } gBS->FreePool (MemSpaceMap); } /** Get UEFI MemoryAttributesTable. **/ VOID GetUefiMemoryAttributesTable ( VOID ) { EFI_STATUS Status; EFI_MEMORY_ATTRIBUTES_TABLE *MemoryAttributesTable; UINTN MemoryAttributesTableSize; Status = EfiGetSystemConfigurationTable (&gEfiMemoryAttributesTableGuid, (VOID **)&MemoryAttributesTable); if (!EFI_ERROR (Status) && (MemoryAttributesTable != NULL)) { MemoryAttributesTableSize = sizeof (EFI_MEMORY_ATTRIBUTES_TABLE) + MemoryAttributesTable->DescriptorSize * MemoryAttributesTable->NumberOfEntries; mUefiMemoryAttributesTable = AllocateCopyPool (MemoryAttributesTableSize, MemoryAttributesTable); ASSERT (mUefiMemoryAttributesTable != NULL); } } /** This function caches the UEFI memory map information. **/ VOID GetUefiMemoryMap ( VOID ) { EFI_STATUS Status; UINTN MapKey; UINT32 DescriptorVersion; EFI_MEMORY_DESCRIPTOR *MemoryMap; UINTN UefiMemoryMapSize; DEBUG ((DEBUG_INFO, "GetUefiMemoryMap\n")); UefiMemoryMapSize = 0; MemoryMap = NULL; Status = gBS->GetMemoryMap ( &UefiMemoryMapSize, MemoryMap, &MapKey, &mUefiDescriptorSize, &DescriptorVersion ); ASSERT (Status == EFI_BUFFER_TOO_SMALL); do { Status = gBS->AllocatePool (EfiBootServicesData, UefiMemoryMapSize, (VOID **)&MemoryMap); ASSERT (MemoryMap != NULL); if (MemoryMap == NULL) { return; } Status = gBS->GetMemoryMap ( &UefiMemoryMapSize, MemoryMap, &MapKey, &mUefiDescriptorSize, &DescriptorVersion ); if (EFI_ERROR (Status)) { gBS->FreePool (MemoryMap); MemoryMap = NULL; } } while (Status == EFI_BUFFER_TOO_SMALL); if (MemoryMap == NULL) { return; } SortMemoryMap (MemoryMap, UefiMemoryMapSize, mUefiDescriptorSize); MergeMemoryMapForNotPresentEntry (MemoryMap, &UefiMemoryMapSize, mUefiDescriptorSize); mUefiMemoryMapSize = UefiMemoryMapSize; mUefiMemoryMap = AllocateCopyPool (UefiMemoryMapSize, MemoryMap); ASSERT (mUefiMemoryMap != NULL); gBS->FreePool (MemoryMap); // // Get additional information from GCD memory map. // GetGcdMemoryMap (); // // Get UEFI memory attributes table. // GetUefiMemoryAttributesTable (); } /** This function sets UEFI memory attribute according to UEFI memory map. The normal memory region is marked as not present, such as EfiLoaderCode/Data, EfiBootServicesCode/Data, EfiConventionalMemory, EfiUnusableMemory, EfiACPIReclaimMemory. **/ VOID SetUefiMemMapAttributes ( VOID ) { EFI_STATUS Status; EFI_MEMORY_DESCRIPTOR *MemoryMap; UINTN MemoryMapEntryCount; UINTN Index; EFI_MEMORY_DESCRIPTOR *Entry; DEBUG ((DEBUG_INFO, "SetUefiMemMapAttributes\n")); if (mUefiMemoryMap != NULL) { MemoryMapEntryCount = mUefiMemoryMapSize/mUefiDescriptorSize; MemoryMap = mUefiMemoryMap; for (Index = 0; Index < MemoryMapEntryCount; Index++) { if (IsUefiPageNotPresent (MemoryMap)) { Status = SmmSetMemoryAttributes ( MemoryMap->PhysicalStart, EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages), EFI_MEMORY_RP ); DEBUG (( DEBUG_INFO, "UefiMemory protection: 0x%lx - 0x%lx %r\n", MemoryMap->PhysicalStart, MemoryMap->PhysicalStart + (UINT64)EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages), Status )); } MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, mUefiDescriptorSize); } } // // Do not free mUefiMemoryMap, it will be checked in IsSmmCommBufferForbiddenAddress(). // // // Set untested memory as not present. // if (mGcdMemSpace != NULL) { for (Index = 0; Index < mGcdMemNumberOfDesc; Index++) { Status = SmmSetMemoryAttributes ( mGcdMemSpace[Index].BaseAddress, mGcdMemSpace[Index].Length, EFI_MEMORY_RP ); DEBUG (( DEBUG_INFO, "GcdMemory protection: 0x%lx - 0x%lx %r\n", mGcdMemSpace[Index].BaseAddress, mGcdMemSpace[Index].BaseAddress + mGcdMemSpace[Index].Length, Status )); } } // // Do not free mGcdMemSpace, it will be checked in IsSmmCommBufferForbiddenAddress(). // // // Set UEFI runtime memory with EFI_MEMORY_RO as not present. // if (mUefiMemoryAttributesTable != NULL) { Entry = (EFI_MEMORY_DESCRIPTOR *)(mUefiMemoryAttributesTable + 1); for (Index = 0; Index < mUefiMemoryAttributesTable->NumberOfEntries; Index++) { if ((Entry->Type == EfiRuntimeServicesCode) || (Entry->Type == EfiRuntimeServicesData)) { if ((Entry->Attribute & EFI_MEMORY_RO) != 0) { Status = SmmSetMemoryAttributes ( Entry->PhysicalStart, EFI_PAGES_TO_SIZE ((UINTN)Entry->NumberOfPages), EFI_MEMORY_RP ); DEBUG (( DEBUG_INFO, "UefiMemoryAttribute protection: 0x%lx - 0x%lx %r\n", Entry->PhysicalStart, Entry->PhysicalStart + (UINT64)EFI_PAGES_TO_SIZE ((UINTN)Entry->NumberOfPages), Status )); } } Entry = NEXT_MEMORY_DESCRIPTOR (Entry, mUefiMemoryAttributesTable->DescriptorSize); } } // // Do not free mUefiMemoryAttributesTable, it will be checked in IsSmmCommBufferForbiddenAddress(). // } /** Return if the Address is forbidden as SMM communication buffer. @param[in] Address the address to be checked @return TRUE The address is forbidden as SMM communication buffer. @return FALSE The address is allowed as SMM communication buffer. **/ BOOLEAN IsSmmCommBufferForbiddenAddress ( IN UINT64 Address ) { EFI_MEMORY_DESCRIPTOR *MemoryMap; UINTN MemoryMapEntryCount; UINTN Index; EFI_MEMORY_DESCRIPTOR *Entry; if (mUefiMemoryMap != NULL) { MemoryMap = mUefiMemoryMap; MemoryMapEntryCount = mUefiMemoryMapSize/mUefiDescriptorSize; for (Index = 0; Index < MemoryMapEntryCount; Index++) { if (IsUefiPageNotPresent (MemoryMap)) { if ((Address >= MemoryMap->PhysicalStart) && (Address < MemoryMap->PhysicalStart + EFI_PAGES_TO_SIZE ((UINTN)MemoryMap->NumberOfPages))) { return TRUE; } } MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, mUefiDescriptorSize); } } if (mGcdMemSpace != NULL) { for (Index = 0; Index < mGcdMemNumberOfDesc; Index++) { if ((Address >= mGcdMemSpace[Index].BaseAddress) && (Address < mGcdMemSpace[Index].BaseAddress + mGcdMemSpace[Index].Length)) { return TRUE; } } } if (mUefiMemoryAttributesTable != NULL) { Entry = (EFI_MEMORY_DESCRIPTOR *)(mUefiMemoryAttributesTable + 1); for (Index = 0; Index < mUefiMemoryAttributesTable->NumberOfEntries; Index++) { if ((Entry->Type == EfiRuntimeServicesCode) || (Entry->Type == EfiRuntimeServicesData)) { if ((Entry->Attribute & EFI_MEMORY_RO) != 0) { if ((Address >= Entry->PhysicalStart) && (Address < Entry->PhysicalStart + LShiftU64 (Entry->NumberOfPages, EFI_PAGE_SHIFT))) { return TRUE; } Entry = NEXT_MEMORY_DESCRIPTOR (Entry, mUefiMemoryAttributesTable->DescriptorSize); } } } } return FALSE; } /** This function set given attributes of the memory region specified by BaseAddress and Length. @param This The EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL instance. @param BaseAddress The physical address that is the start address of a memory region. @param Length The size in bytes of the memory region. @param Attributes The bit mask of attributes to set for the memory region. @retval EFI_SUCCESS The attributes were set for the memory region. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not supported for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI EdkiiSmmSetMemoryAttributes ( IN EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL *This, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { return SmmSetMemoryAttributes (BaseAddress, Length, Attributes); } /** This function clears given attributes of the memory region specified by BaseAddress and Length. @param This The EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL instance. @param BaseAddress The physical address that is the start address of a memory region. @param Length The size in bytes of the memory region. @param Attributes The bit mask of attributes to clear for the memory region. @retval EFI_SUCCESS The attributes were cleared for the memory region. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be cleared together. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not supported for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI EdkiiSmmClearMemoryAttributes ( IN EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL *This, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { return SmmClearMemoryAttributes (BaseAddress, Length, Attributes); } /** This function retrieves the attributes of the memory region specified by BaseAddress and Length. If different attributes are got from different part of the memory region, EFI_NO_MAPPING will be returned. @param This The EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL instance. @param BaseAddress The physical address that is the start address of a memory region. @param Length The size in bytes of the memory region. @param Attributes Pointer to attributes returned. @retval EFI_SUCCESS The attributes got for the memory region. @retval EFI_INVALID_PARAMETER Length is zero. Attributes is NULL. @retval EFI_NO_MAPPING Attributes are not consistent cross the memory region. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI EdkiiSmmGetMemoryAttributes ( IN EDKII_SMM_MEMORY_ATTRIBUTE_PROTOCOL *This, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, OUT UINT64 *Attributes ) { EFI_PHYSICAL_ADDRESS Address; UINT64 *PageEntry; UINT64 MemAttr; PAGE_ATTRIBUTE PageAttr; INT64 Size; UINTN PageTableBase; BOOLEAN EnablePML5Paging; IA32_CR4 Cr4; if ((Length < SIZE_4KB) || (Attributes == NULL)) { return EFI_INVALID_PARAMETER; } Size = (INT64)Length; MemAttr = (UINT64)-1; PageTableBase = AsmReadCr3 () & PAGING_4K_ADDRESS_MASK_64; Cr4.UintN = AsmReadCr4 (); EnablePML5Paging = (BOOLEAN)(Cr4.Bits.LA57 == 1); do { PageEntry = GetPageTableEntry (PageTableBase, EnablePML5Paging, BaseAddress, &PageAttr); if ((PageEntry == NULL) || (PageAttr == PageNone)) { return EFI_UNSUPPORTED; } // // If the memory range is cross page table boundary, make sure they // share the same attribute. Return EFI_NO_MAPPING if not. // *Attributes = GetAttributesFromPageEntry (PageEntry); if ((MemAttr != (UINT64)-1) && (*Attributes != MemAttr)) { return EFI_NO_MAPPING; } switch (PageAttr) { case Page4K: Address = *PageEntry & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64; Size -= (SIZE_4KB - (BaseAddress - Address)); BaseAddress += (SIZE_4KB - (BaseAddress - Address)); break; case Page2M: Address = *PageEntry & ~mAddressEncMask & PAGING_2M_ADDRESS_MASK_64; Size -= SIZE_2MB - (BaseAddress - Address); BaseAddress += SIZE_2MB - (BaseAddress - Address); break; case Page1G: Address = *PageEntry & ~mAddressEncMask & PAGING_1G_ADDRESS_MASK_64; Size -= SIZE_1GB - (BaseAddress - Address); BaseAddress += SIZE_1GB - (BaseAddress - Address); break; default: return EFI_UNSUPPORTED; } MemAttr = *Attributes; } while (Size > 0); return EFI_SUCCESS; } /** Prevent the memory pages used for SMM page table from been overwritten. **/ VOID EnablePageTableProtection ( VOID ) { PAGE_TABLE_POOL *HeadPool; PAGE_TABLE_POOL *Pool; UINT64 PoolSize; EFI_PHYSICAL_ADDRESS Address; UINTN PageTableBase; if (mPageTablePool == NULL) { return; } PageTableBase = AsmReadCr3 () & PAGING_4K_ADDRESS_MASK_64; // // ConvertMemoryPageAttributes might update mPageTablePool. It's safer to // remember original one in advance. // HeadPool = mPageTablePool; Pool = HeadPool; do { Address = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool; PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages); // // Set entire pool including header, used-memory and left free-memory as ReadOnly in SMM page table. // ConvertMemoryPageAttributes (PageTableBase, m5LevelPagingNeeded, Address, PoolSize, EFI_MEMORY_RO, TRUE, NULL, NULL); Pool = Pool->NextPool; } while (Pool != HeadPool); } /** Return whether memory used by SMM page table need to be set as Read Only. @retval TRUE Need to set SMM page table as Read Only. @retval FALSE Do not set SMM page table as Read Only. **/ BOOLEAN IfReadOnlyPageTableNeeded ( VOID ) { // // Don't mark page table memory as read-only if // - no restriction on access to non-SMRAM memory; or // - SMM heap guard feature enabled; or // BIT2: SMM page guard enabled // BIT3: SMM pool guard enabled // - SMM profile feature enabled // if (!IsRestrictedMemoryAccess () || ((PcdGet8 (PcdHeapGuardPropertyMask) & (BIT3 | BIT2)) != 0) || FeaturePcdGet (PcdCpuSmmProfileEnable)) { if (sizeof (UINTN) == sizeof (UINT64)) { // // Restriction on access to non-SMRAM memory and heap guard could not be enabled at the same time. // ASSERT ( !(IsRestrictedMemoryAccess () && (PcdGet8 (PcdHeapGuardPropertyMask) & (BIT3 | BIT2)) != 0) ); // // Restriction on access to non-SMRAM memory and SMM profile could not be enabled at the same time. // ASSERT (!(IsRestrictedMemoryAccess () && FeaturePcdGet (PcdCpuSmmProfileEnable))); } return FALSE; } return TRUE; } /** This function sets memory attribute for page table. **/ VOID SetPageTableAttributes ( VOID ) { BOOLEAN CetEnabled; if (!IfReadOnlyPageTableNeeded ()) { return; } DEBUG ((DEBUG_INFO, "SetPageTableAttributes\n")); // // Disable write protection, because we need mark page table to be write protected. // We need *write* page table memory, to mark itself to be *read only*. // CetEnabled = ((AsmReadCr4 () & CR4_CET_ENABLE) != 0) ? TRUE : FALSE; if (CetEnabled) { // // CET must be disabled if WP is disabled. // DisableCet (); } AsmWriteCr0 (AsmReadCr0 () & ~CR0_WP); // Set memory used by page table as Read Only. DEBUG ((DEBUG_INFO, "Start...\n")); EnablePageTableProtection (); // // Enable write protection, after page table attribute updated. // AsmWriteCr0 (AsmReadCr0 () | CR0_WP); mIsReadOnlyPageTable = TRUE; // // Flush TLB after mark all page table pool as read only. // FlushTlbForAll (); if (CetEnabled) { // // re-enable CET. // EnableCet (); } return; }