/** @file Provides services to access SMRAM Save State Map Copyright (c) 2010 - 2019, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include #include "PiSmmCpuDxeSmm.h" typedef struct { UINT64 Signature; // Offset 0x00 UINT16 Reserved1; // Offset 0x08 UINT16 Reserved2; // Offset 0x0A UINT16 Reserved3; // Offset 0x0C UINT16 SmmCs; // Offset 0x0E UINT16 SmmDs; // Offset 0x10 UINT16 SmmSs; // Offset 0x12 UINT16 SmmOtherSegment; // Offset 0x14 UINT16 Reserved4; // Offset 0x16 UINT64 Reserved5; // Offset 0x18 UINT64 Reserved6; // Offset 0x20 UINT64 Reserved7; // Offset 0x28 UINT64 SmmGdtPtr; // Offset 0x30 UINT32 SmmGdtSize; // Offset 0x38 UINT32 Reserved8; // Offset 0x3C UINT64 Reserved9; // Offset 0x40 UINT64 Reserved10; // Offset 0x48 UINT16 Reserved11; // Offset 0x50 UINT16 Reserved12; // Offset 0x52 UINT32 Reserved13; // Offset 0x54 UINT64 Reserved14; // Offset 0x58 } PROCESSOR_SMM_DESCRIPTOR; extern CONST PROCESSOR_SMM_DESCRIPTOR gcPsd; // // EFER register LMA bit // #define LMA BIT10 /// /// Macro used to simplify the lookup table entries of type CPU_SMM_SAVE_STATE_LOOKUP_ENTRY /// #define SMM_CPU_OFFSET(Field) OFFSET_OF (SMRAM_SAVE_STATE_MAP, Field) /// /// Macro used to simplify the lookup table entries of type CPU_SMM_SAVE_STATE_REGISTER_RANGE /// #define SMM_REGISTER_RANGE(Start, End) { Start, End, End - Start + 1 } /// /// Structure used to describe a range of registers /// typedef struct { EFI_SMM_SAVE_STATE_REGISTER Start; EFI_SMM_SAVE_STATE_REGISTER End; UINTN Length; } CPU_SMM_SAVE_STATE_REGISTER_RANGE; /// /// Structure used to build a lookup table to retrieve the widths and offsets /// associated with each supported EFI_SMM_SAVE_STATE_REGISTER value /// #define SMM_SAVE_STATE_REGISTER_SMMREVID_INDEX 1 #define SMM_SAVE_STATE_REGISTER_IOMISC_INDEX 2 #define SMM_SAVE_STATE_REGISTER_IOMEMADDR_INDEX 3 #define SMM_SAVE_STATE_REGISTER_MAX_INDEX 4 typedef struct { UINT8 Width32; UINT8 Width64; UINT16 Offset32; UINT16 Offset64Lo; UINT16 Offset64Hi; BOOLEAN Writeable; } CPU_SMM_SAVE_STATE_LOOKUP_ENTRY; /// /// Structure used to build a lookup table for the IOMisc width information /// typedef struct { UINT8 Width; EFI_SMM_SAVE_STATE_IO_WIDTH IoWidth; } CPU_SMM_SAVE_STATE_IO_WIDTH; /// /// Variables from SMI Handler /// X86_ASSEMBLY_PATCH_LABEL gPatchSmbase; X86_ASSEMBLY_PATCH_LABEL gPatchSmiStack; X86_ASSEMBLY_PATCH_LABEL gPatchSmiCr3; extern volatile UINT8 gcSmiHandlerTemplate[]; extern CONST UINT16 gcSmiHandlerSize; // // Variables used by SMI Handler // IA32_DESCRIPTOR gSmiHandlerIdtr; /// /// Table used by GetRegisterIndex() to convert an EFI_SMM_SAVE_STATE_REGISTER /// value to an index into a table of type CPU_SMM_SAVE_STATE_LOOKUP_ENTRY /// CONST CPU_SMM_SAVE_STATE_REGISTER_RANGE mSmmCpuRegisterRanges[] = { SMM_REGISTER_RANGE (EFI_SMM_SAVE_STATE_REGISTER_GDTBASE, EFI_SMM_SAVE_STATE_REGISTER_LDTINFO), SMM_REGISTER_RANGE (EFI_SMM_SAVE_STATE_REGISTER_ES, EFI_SMM_SAVE_STATE_REGISTER_RIP), SMM_REGISTER_RANGE (EFI_SMM_SAVE_STATE_REGISTER_RFLAGS, EFI_SMM_SAVE_STATE_REGISTER_CR4), { (EFI_SMM_SAVE_STATE_REGISTER)0, (EFI_SMM_SAVE_STATE_REGISTER)0, 0 } }; /// /// Lookup table used to retrieve the widths and offsets associated with each /// supported EFI_SMM_SAVE_STATE_REGISTER value /// CONST CPU_SMM_SAVE_STATE_LOOKUP_ENTRY mSmmCpuWidthOffset[] = { {0, 0, 0, 0, 0, FALSE}, // Reserved // // Internally defined CPU Save State Registers. Not defined in PI SMM CPU Protocol. // {4, 4, SMM_CPU_OFFSET (x86.SMMRevId) , SMM_CPU_OFFSET (x64.SMMRevId) , 0 , FALSE}, // SMM_SAVE_STATE_REGISTER_SMMREVID_INDEX = 1 {4, 4, SMM_CPU_OFFSET (x86.IOMisc) , SMM_CPU_OFFSET (x64.IOMisc) , 0 , FALSE}, // SMM_SAVE_STATE_REGISTER_IOMISC_INDEX = 2 {4, 8, SMM_CPU_OFFSET (x86.IOMemAddr) , SMM_CPU_OFFSET (x64.IOMemAddr) , SMM_CPU_OFFSET (x64.IOMemAddr) + 4, FALSE}, // SMM_SAVE_STATE_REGISTER_IOMEMADDR_INDEX = 3 // // CPU Save State registers defined in PI SMM CPU Protocol. // {0, 8, 0 , SMM_CPU_OFFSET (x64.GdtBaseLoDword) , SMM_CPU_OFFSET (x64.GdtBaseHiDword), FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_GDTBASE = 4 {0, 8, 0 , SMM_CPU_OFFSET (x64.IdtBaseLoDword) , SMM_CPU_OFFSET (x64.IdtBaseHiDword), FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_IDTBASE = 5 {0, 8, 0 , SMM_CPU_OFFSET (x64.LdtBaseLoDword) , SMM_CPU_OFFSET (x64.LdtBaseHiDword), FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_LDTBASE = 6 {0, 0, 0 , 0 , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_GDTLIMIT = 7 {0, 0, 0 , 0 , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_IDTLIMIT = 8 {0, 0, 0 , 0 , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_LDTLIMIT = 9 {0, 0, 0 , 0 , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_LDTINFO = 10 {4, 4, SMM_CPU_OFFSET (x86._ES) , SMM_CPU_OFFSET (x64._ES) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_ES = 20 {4, 4, SMM_CPU_OFFSET (x86._CS) , SMM_CPU_OFFSET (x64._CS) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_CS = 21 {4, 4, SMM_CPU_OFFSET (x86._SS) , SMM_CPU_OFFSET (x64._SS) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_SS = 22 {4, 4, SMM_CPU_OFFSET (x86._DS) , SMM_CPU_OFFSET (x64._DS) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_DS = 23 {4, 4, SMM_CPU_OFFSET (x86._FS) , SMM_CPU_OFFSET (x64._FS) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_FS = 24 {4, 4, SMM_CPU_OFFSET (x86._GS) , SMM_CPU_OFFSET (x64._GS) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_GS = 25 {0, 4, 0 , SMM_CPU_OFFSET (x64._LDTR) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_LDTR_SEL = 26 {4, 4, SMM_CPU_OFFSET (x86._TR) , SMM_CPU_OFFSET (x64._TR) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_TR_SEL = 27 {4, 8, SMM_CPU_OFFSET (x86._DR7) , SMM_CPU_OFFSET (x64._DR7) , SMM_CPU_OFFSET (x64._DR7) + 4, FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_DR7 = 28 {4, 8, SMM_CPU_OFFSET (x86._DR6) , SMM_CPU_OFFSET (x64._DR6) , SMM_CPU_OFFSET (x64._DR6) + 4, FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_DR6 = 29 {0, 8, 0 , SMM_CPU_OFFSET (x64._R8) , SMM_CPU_OFFSET (x64._R8) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_R8 = 30 {0, 8, 0 , SMM_CPU_OFFSET (x64._R9) , SMM_CPU_OFFSET (x64._R9) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_R9 = 31 {0, 8, 0 , SMM_CPU_OFFSET (x64._R10) , SMM_CPU_OFFSET (x64._R10) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_R10 = 32 {0, 8, 0 , SMM_CPU_OFFSET (x64._R11) , SMM_CPU_OFFSET (x64._R11) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_R11 = 33 {0, 8, 0 , SMM_CPU_OFFSET (x64._R12) , SMM_CPU_OFFSET (x64._R12) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_R12 = 34 {0, 8, 0 , SMM_CPU_OFFSET (x64._R13) , SMM_CPU_OFFSET (x64._R13) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_R13 = 35 {0, 8, 0 , SMM_CPU_OFFSET (x64._R14) , SMM_CPU_OFFSET (x64._R14) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_R14 = 36 {0, 8, 0 , SMM_CPU_OFFSET (x64._R15) , SMM_CPU_OFFSET (x64._R15) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_R15 = 37 {4, 8, SMM_CPU_OFFSET (x86._EAX) , SMM_CPU_OFFSET (x64._RAX) , SMM_CPU_OFFSET (x64._RAX) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RAX = 38 {4, 8, SMM_CPU_OFFSET (x86._EBX) , SMM_CPU_OFFSET (x64._RBX) , SMM_CPU_OFFSET (x64._RBX) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RBX = 39 {4, 8, SMM_CPU_OFFSET (x86._ECX) , SMM_CPU_OFFSET (x64._RCX) , SMM_CPU_OFFSET (x64._RCX) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RCX = 40 {4, 8, SMM_CPU_OFFSET (x86._EDX) , SMM_CPU_OFFSET (x64._RDX) , SMM_CPU_OFFSET (x64._RDX) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RDX = 41 {4, 8, SMM_CPU_OFFSET (x86._ESP) , SMM_CPU_OFFSET (x64._RSP) , SMM_CPU_OFFSET (x64._RSP) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RSP = 42 {4, 8, SMM_CPU_OFFSET (x86._EBP) , SMM_CPU_OFFSET (x64._RBP) , SMM_CPU_OFFSET (x64._RBP) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RBP = 43 {4, 8, SMM_CPU_OFFSET (x86._ESI) , SMM_CPU_OFFSET (x64._RSI) , SMM_CPU_OFFSET (x64._RSI) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RSI = 44 {4, 8, SMM_CPU_OFFSET (x86._EDI) , SMM_CPU_OFFSET (x64._RDI) , SMM_CPU_OFFSET (x64._RDI) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RDI = 45 {4, 8, SMM_CPU_OFFSET (x86._EIP) , SMM_CPU_OFFSET (x64._RIP) , SMM_CPU_OFFSET (x64._RIP) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RIP = 46 {4, 8, SMM_CPU_OFFSET (x86._EFLAGS) , SMM_CPU_OFFSET (x64._RFLAGS) , SMM_CPU_OFFSET (x64._RFLAGS) + 4, TRUE }, // EFI_SMM_SAVE_STATE_REGISTER_RFLAGS = 51 {4, 8, SMM_CPU_OFFSET (x86._CR0) , SMM_CPU_OFFSET (x64._CR0) , SMM_CPU_OFFSET (x64._CR0) + 4, FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_CR0 = 52 {4, 8, SMM_CPU_OFFSET (x86._CR3) , SMM_CPU_OFFSET (x64._CR3) , SMM_CPU_OFFSET (x64._CR3) + 4, FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_CR3 = 53 {0, 4, 0 , SMM_CPU_OFFSET (x64._CR4) , 0 , FALSE}, // EFI_SMM_SAVE_STATE_REGISTER_CR4 = 54 }; /// /// Lookup table for the IOMisc width information /// CONST CPU_SMM_SAVE_STATE_IO_WIDTH mSmmCpuIoWidth[] = { { 0, EFI_SMM_SAVE_STATE_IO_WIDTH_UINT8 }, // Undefined = 0 { 1, EFI_SMM_SAVE_STATE_IO_WIDTH_UINT8 }, // SMM_IO_LENGTH_BYTE = 1 { 2, EFI_SMM_SAVE_STATE_IO_WIDTH_UINT16 }, // SMM_IO_LENGTH_WORD = 2 { 0, EFI_SMM_SAVE_STATE_IO_WIDTH_UINT8 }, // Undefined = 3 { 4, EFI_SMM_SAVE_STATE_IO_WIDTH_UINT32 }, // SMM_IO_LENGTH_DWORD = 4 { 0, EFI_SMM_SAVE_STATE_IO_WIDTH_UINT8 }, // Undefined = 5 { 0, EFI_SMM_SAVE_STATE_IO_WIDTH_UINT8 }, // Undefined = 6 { 0, EFI_SMM_SAVE_STATE_IO_WIDTH_UINT8 } // Undefined = 7 }; /// /// Lookup table for the IOMisc type information /// CONST EFI_SMM_SAVE_STATE_IO_TYPE mSmmCpuIoType[] = { EFI_SMM_SAVE_STATE_IO_TYPE_OUTPUT, // SMM_IO_TYPE_OUT_DX = 0 EFI_SMM_SAVE_STATE_IO_TYPE_INPUT, // SMM_IO_TYPE_IN_DX = 1 EFI_SMM_SAVE_STATE_IO_TYPE_STRING, // SMM_IO_TYPE_OUTS = 2 EFI_SMM_SAVE_STATE_IO_TYPE_STRING, // SMM_IO_TYPE_INS = 3 (EFI_SMM_SAVE_STATE_IO_TYPE)0, // Undefined = 4 (EFI_SMM_SAVE_STATE_IO_TYPE)0, // Undefined = 5 EFI_SMM_SAVE_STATE_IO_TYPE_REP_PREFIX, // SMM_IO_TYPE_REP_OUTS = 6 EFI_SMM_SAVE_STATE_IO_TYPE_REP_PREFIX, // SMM_IO_TYPE_REP_INS = 7 EFI_SMM_SAVE_STATE_IO_TYPE_OUTPUT, // SMM_IO_TYPE_OUT_IMMEDIATE = 8 EFI_SMM_SAVE_STATE_IO_TYPE_INPUT, // SMM_IO_TYPE_OUT_IMMEDIATE = 9 (EFI_SMM_SAVE_STATE_IO_TYPE)0, // Undefined = 10 (EFI_SMM_SAVE_STATE_IO_TYPE)0, // Undefined = 11 (EFI_SMM_SAVE_STATE_IO_TYPE)0, // Undefined = 12 (EFI_SMM_SAVE_STATE_IO_TYPE)0, // Undefined = 13 (EFI_SMM_SAVE_STATE_IO_TYPE)0, // Undefined = 14 (EFI_SMM_SAVE_STATE_IO_TYPE)0 // Undefined = 15 }; /// /// The mode of the CPU at the time an SMI occurs /// UINT8 mSmmSaveStateRegisterLma; /** Read information from the CPU save state. @param Register Specifies the CPU register to read form the save state. @retval 0 Register is not valid @retval >0 Index into mSmmCpuWidthOffset[] associated with Register **/ UINTN GetRegisterIndex ( IN EFI_SMM_SAVE_STATE_REGISTER Register ) { UINTN Index; UINTN Offset; for (Index = 0, Offset = SMM_SAVE_STATE_REGISTER_MAX_INDEX; mSmmCpuRegisterRanges[Index].Length != 0; Index++) { if (Register >= mSmmCpuRegisterRanges[Index].Start && Register <= mSmmCpuRegisterRanges[Index].End) { return Register - mSmmCpuRegisterRanges[Index].Start + Offset; } Offset += mSmmCpuRegisterRanges[Index].Length; } return 0; } /** Read a CPU Save State register on the target processor. This function abstracts the differences that whether the CPU Save State register is in the IA32 CPU Save State Map or X64 CPU Save State Map. This function supports reading a CPU Save State register in SMBase relocation handler. @param[in] CpuIndex Specifies the zero-based index of the CPU save state. @param[in] RegisterIndex Index into mSmmCpuWidthOffset[] look up table. @param[in] Width The number of bytes to read from the CPU save state. @param[out] Buffer Upon return, this holds the CPU register value read from the save state. @retval EFI_SUCCESS The register was read from Save State. @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor. @retval EFI_INVALID_PARAMETER This or Buffer is NULL. **/ EFI_STATUS ReadSaveStateRegisterByIndex ( IN UINTN CpuIndex, IN UINTN RegisterIndex, IN UINTN Width, OUT VOID *Buffer ) { SMRAM_SAVE_STATE_MAP *CpuSaveState; if (RegisterIndex == 0) { return EFI_NOT_FOUND; } CpuSaveState = gSmst->CpuSaveState[CpuIndex]; if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) { // // If 32-bit mode width is zero, then the specified register can not be accessed // if (mSmmCpuWidthOffset[RegisterIndex].Width32 == 0) { return EFI_NOT_FOUND; } // // If Width is bigger than the 32-bit mode width, then the specified register can not be accessed // if (Width > mSmmCpuWidthOffset[RegisterIndex].Width32) { return EFI_INVALID_PARAMETER; } // // Write return buffer // ASSERT(CpuSaveState != NULL); CopyMem(Buffer, (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset32, Width); } else { // // If 64-bit mode width is zero, then the specified register can not be accessed // if (mSmmCpuWidthOffset[RegisterIndex].Width64 == 0) { return EFI_NOT_FOUND; } // // If Width is bigger than the 64-bit mode width, then the specified register can not be accessed // if (Width > mSmmCpuWidthOffset[RegisterIndex].Width64) { return EFI_INVALID_PARAMETER; } // // Write lower 32-bits of return buffer // CopyMem(Buffer, (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Lo, MIN(4, Width)); if (Width >= 4) { // // Write upper 32-bits of return buffer // CopyMem((UINT8 *)Buffer + 4, (UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Hi, Width - 4); } } return EFI_SUCCESS; } /** Read a CPU Save State register on the target processor. This function abstracts the differences that whether the CPU Save State register is in the IA32 CPU Save State Map or X64 CPU Save State Map. This function supports reading a CPU Save State register in SMBase relocation handler. @param[in] CpuIndex Specifies the zero-based index of the CPU save state. @param[in] RegisterIndex Index into mSmmCpuWidthOffset[] look up table. @param[in] Width The number of bytes to read from the CPU save state. @param[out] Buffer Upon return, this holds the CPU register value read from the save state. @retval EFI_SUCCESS The register was read from Save State. @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor. @retval EFI_INVALID_PARAMETER Buffer is NULL, or Width does not meet requirement per Register type. **/ EFI_STATUS EFIAPI ReadSaveStateRegister ( IN UINTN CpuIndex, IN EFI_SMM_SAVE_STATE_REGISTER Register, IN UINTN Width, OUT VOID *Buffer ) { UINT32 SmmRevId; SMRAM_SAVE_STATE_IOMISC IoMisc; EFI_SMM_SAVE_STATE_IO_INFO *IoInfo; // // Check for special EFI_SMM_SAVE_STATE_REGISTER_LMA // if (Register == EFI_SMM_SAVE_STATE_REGISTER_LMA) { // // Only byte access is supported for this register // if (Width != 1) { return EFI_INVALID_PARAMETER; } *(UINT8 *)Buffer = mSmmSaveStateRegisterLma; return EFI_SUCCESS; } // // Check for special EFI_SMM_SAVE_STATE_REGISTER_IO // if (Register == EFI_SMM_SAVE_STATE_REGISTER_IO) { // // Get SMM Revision ID // ReadSaveStateRegisterByIndex (CpuIndex, SMM_SAVE_STATE_REGISTER_SMMREVID_INDEX, sizeof(SmmRevId), &SmmRevId); // // See if the CPU supports the IOMisc register in the save state // if (SmmRevId < SMRAM_SAVE_STATE_MIN_REV_ID_IOMISC) { return EFI_NOT_FOUND; } // // Get the IOMisc register value // ReadSaveStateRegisterByIndex (CpuIndex, SMM_SAVE_STATE_REGISTER_IOMISC_INDEX, sizeof(IoMisc.Uint32), &IoMisc.Uint32); // // Check for the SMI_FLAG in IOMisc // if (IoMisc.Bits.SmiFlag == 0) { return EFI_NOT_FOUND; } // // Only support IN/OUT, but not INS/OUTS/REP INS/REP OUTS. // if ((mSmmCpuIoType[IoMisc.Bits.Type] != EFI_SMM_SAVE_STATE_IO_TYPE_INPUT) && (mSmmCpuIoType[IoMisc.Bits.Type] != EFI_SMM_SAVE_STATE_IO_TYPE_OUTPUT)) { return EFI_NOT_FOUND; } // // Compute index for the I/O Length and I/O Type lookup tables // if (mSmmCpuIoWidth[IoMisc.Bits.Length].Width == 0 || mSmmCpuIoType[IoMisc.Bits.Type] == 0) { return EFI_NOT_FOUND; } // // Make sure the incoming buffer is large enough to hold IoInfo before accessing // if (Width < sizeof (EFI_SMM_SAVE_STATE_IO_INFO)) { return EFI_INVALID_PARAMETER; } // // Zero the IoInfo structure that will be returned in Buffer // IoInfo = (EFI_SMM_SAVE_STATE_IO_INFO *)Buffer; ZeroMem (IoInfo, sizeof(EFI_SMM_SAVE_STATE_IO_INFO)); // // Use lookup tables to help fill in all the fields of the IoInfo structure // IoInfo->IoPort = (UINT16)IoMisc.Bits.Port; IoInfo->IoWidth = mSmmCpuIoWidth[IoMisc.Bits.Length].IoWidth; IoInfo->IoType = mSmmCpuIoType[IoMisc.Bits.Type]; ReadSaveStateRegister (CpuIndex, EFI_SMM_SAVE_STATE_REGISTER_RAX, mSmmCpuIoWidth[IoMisc.Bits.Length].Width, &IoInfo->IoData); return EFI_SUCCESS; } // // Convert Register to a register lookup table index // return ReadSaveStateRegisterByIndex (CpuIndex, GetRegisterIndex (Register), Width, Buffer); } /** Write value to a CPU Save State register on the target processor. This function abstracts the differences that whether the CPU Save State register is in the IA32 CPU Save State Map or X64 CPU Save State Map. This function supports writing a CPU Save State register in SMBase relocation handler. @param[in] CpuIndex Specifies the zero-based index of the CPU save state. @param[in] RegisterIndex Index into mSmmCpuWidthOffset[] look up table. @param[in] Width The number of bytes to read from the CPU save state. @param[in] Buffer Upon entry, this holds the new CPU register value. @retval EFI_SUCCESS The register was written to Save State. @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor. @retval EFI_INVALID_PARAMETER ProcessorIndex or Width is not correct. **/ EFI_STATUS EFIAPI WriteSaveStateRegister ( IN UINTN CpuIndex, IN EFI_SMM_SAVE_STATE_REGISTER Register, IN UINTN Width, IN CONST VOID *Buffer ) { UINTN RegisterIndex; SMRAM_SAVE_STATE_MAP *CpuSaveState; // // Writes to EFI_SMM_SAVE_STATE_REGISTER_LMA are ignored // if (Register == EFI_SMM_SAVE_STATE_REGISTER_LMA) { return EFI_SUCCESS; } // // Writes to EFI_SMM_SAVE_STATE_REGISTER_IO are not supported // if (Register == EFI_SMM_SAVE_STATE_REGISTER_IO) { return EFI_NOT_FOUND; } // // Convert Register to a register lookup table index // RegisterIndex = GetRegisterIndex (Register); if (RegisterIndex == 0) { return EFI_NOT_FOUND; } CpuSaveState = gSmst->CpuSaveState[CpuIndex]; // // Do not write non-writable SaveState, because it will cause exception. // if (!mSmmCpuWidthOffset[RegisterIndex].Writeable) { return EFI_UNSUPPORTED; } // // Check CPU mode // if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) { // // If 32-bit mode width is zero, then the specified register can not be accessed // if (mSmmCpuWidthOffset[RegisterIndex].Width32 == 0) { return EFI_NOT_FOUND; } // // If Width is bigger than the 32-bit mode width, then the specified register can not be accessed // if (Width > mSmmCpuWidthOffset[RegisterIndex].Width32) { return EFI_INVALID_PARAMETER; } // // Write SMM State register // ASSERT (CpuSaveState != NULL); CopyMem((UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset32, Buffer, Width); } else { // // If 64-bit mode width is zero, then the specified register can not be accessed // if (mSmmCpuWidthOffset[RegisterIndex].Width64 == 0) { return EFI_NOT_FOUND; } // // If Width is bigger than the 64-bit mode width, then the specified register can not be accessed // if (Width > mSmmCpuWidthOffset[RegisterIndex].Width64) { return EFI_INVALID_PARAMETER; } // // Write lower 32-bits of SMM State register // CopyMem((UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Lo, Buffer, MIN (4, Width)); if (Width >= 4) { // // Write upper 32-bits of SMM State register // CopyMem((UINT8 *)CpuSaveState + mSmmCpuWidthOffset[RegisterIndex].Offset64Hi, (UINT8 *)Buffer + 4, Width - 4); } } return EFI_SUCCESS; } /** Hook the code executed immediately after an RSM instruction on the currently executing CPU. The mode of code executed immediately after RSM must be detected, and the appropriate hook must be selected. Always clear the auto HALT restart flag if it is set. @param[in] CpuIndex The processor index for the currently executing CPU. @param[in] CpuState Pointer to SMRAM Save State Map for the currently executing CPU. @param[in] NewInstructionPointer32 Instruction pointer to use if resuming to 32-bit mode from 64-bit SMM. @param[in] NewInstructionPointer Instruction pointer to use if resuming to same mode as SMM. @retval The value of the original instruction pointer before it was hooked. **/ UINT64 EFIAPI HookReturnFromSmm ( IN UINTN CpuIndex, SMRAM_SAVE_STATE_MAP *CpuState, UINT64 NewInstructionPointer32, UINT64 NewInstructionPointer ) { UINT64 OriginalInstructionPointer; OriginalInstructionPointer = SmmCpuFeaturesHookReturnFromSmm ( CpuIndex, CpuState, NewInstructionPointer32, NewInstructionPointer ); if (OriginalInstructionPointer != 0) { return OriginalInstructionPointer; } if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) { OriginalInstructionPointer = (UINT64)CpuState->x86._EIP; CpuState->x86._EIP = (UINT32)NewInstructionPointer; // // Clear the auto HALT restart flag so the RSM instruction returns // program control to the instruction following the HLT instruction. // if ((CpuState->x86.AutoHALTRestart & BIT0) != 0) { CpuState->x86.AutoHALTRestart &= ~BIT0; } } else { OriginalInstructionPointer = CpuState->x64._RIP; if ((CpuState->x64.IA32_EFER & LMA) == 0) { CpuState->x64._RIP = (UINT32)NewInstructionPointer32; } else { CpuState->x64._RIP = (UINT32)NewInstructionPointer; } // // Clear the auto HALT restart flag so the RSM instruction returns // program control to the instruction following the HLT instruction. // if ((CpuState->x64.AutoHALTRestart & BIT0) != 0) { CpuState->x64.AutoHALTRestart &= ~BIT0; } } return OriginalInstructionPointer; } /** Get the size of the SMI Handler in bytes. @retval The size, in bytes, of the SMI Handler. **/ UINTN EFIAPI GetSmiHandlerSize ( VOID ) { UINTN Size; Size = SmmCpuFeaturesGetSmiHandlerSize (); if (Size != 0) { return Size; } return gcSmiHandlerSize; } /** Install the SMI handler for the CPU specified by CpuIndex. This function is called by the CPU that was elected as monarch during System Management Mode initialization. @param[in] CpuIndex The index of the CPU to install the custom SMI handler. The value must be between 0 and the NumberOfCpus field in the System Management System Table (SMST). @param[in] SmBase The SMBASE address for the CPU specified by CpuIndex. @param[in] SmiStack The stack to use when an SMI is processed by the the CPU specified by CpuIndex. @param[in] StackSize The size, in bytes, if the stack used when an SMI is processed by the CPU specified by CpuIndex. @param[in] GdtBase The base address of the GDT to use when an SMI is processed by the CPU specified by CpuIndex. @param[in] GdtSize The size, in bytes, of the GDT used when an SMI is processed by the CPU specified by CpuIndex. @param[in] IdtBase The base address of the IDT to use when an SMI is processed by the CPU specified by CpuIndex. @param[in] IdtSize The size, in bytes, of the IDT used when an SMI is processed by the CPU specified by CpuIndex. @param[in] Cr3 The base address of the page tables to use when an SMI is processed by the CPU specified by CpuIndex. **/ VOID EFIAPI InstallSmiHandler ( IN UINTN CpuIndex, IN UINT32 SmBase, IN VOID *SmiStack, IN UINTN StackSize, IN UINTN GdtBase, IN UINTN GdtSize, IN UINTN IdtBase, IN UINTN IdtSize, IN UINT32 Cr3 ) { PROCESSOR_SMM_DESCRIPTOR *Psd; UINT32 CpuSmiStack; // // Initialize PROCESSOR_SMM_DESCRIPTOR // Psd = (PROCESSOR_SMM_DESCRIPTOR *)(VOID *)((UINTN)SmBase + SMM_PSD_OFFSET); CopyMem (Psd, &gcPsd, sizeof (gcPsd)); Psd->SmmGdtPtr = (UINT64)GdtBase; Psd->SmmGdtSize = (UINT32)GdtSize; if (SmmCpuFeaturesGetSmiHandlerSize () != 0) { // // Install SMI handler provided by library // SmmCpuFeaturesInstallSmiHandler ( CpuIndex, SmBase, SmiStack, StackSize, GdtBase, GdtSize, IdtBase, IdtSize, Cr3 ); return; } InitShadowStack (CpuIndex, (VOID *)((UINTN)SmiStack + StackSize)); // // Initialize values in template before copy // CpuSmiStack = (UINT32)((UINTN)SmiStack + StackSize - sizeof (UINTN)); PatchInstructionX86 (gPatchSmiStack, CpuSmiStack, 4); PatchInstructionX86 (gPatchSmiCr3, Cr3, 4); PatchInstructionX86 (gPatchSmbase, SmBase, 4); gSmiHandlerIdtr.Base = IdtBase; gSmiHandlerIdtr.Limit = (UINT16)(IdtSize - 1); // // Set the value at the top of the CPU stack to the CPU Index // *(UINTN*)(UINTN)CpuSmiStack = CpuIndex; // // Copy template to CPU specific SMI handler location // CopyMem ( (VOID*)((UINTN)SmBase + SMM_HANDLER_OFFSET), (VOID*)gcSmiHandlerTemplate, gcSmiHandlerSize ); }