/** @file SMM CPU misc functions for x64 arch specific. Copyright (c) 2015 - 2019, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "PiSmmCpuDxeSmm.h" EFI_PHYSICAL_ADDRESS mGdtBuffer; UINTN mGdtBufferSize; extern BOOLEAN mCetSupported; extern UINTN mSmmShadowStackSize; X86_ASSEMBLY_PATCH_LABEL mPatchCetPl0Ssp; X86_ASSEMBLY_PATCH_LABEL mPatchCetInterruptSsp; X86_ASSEMBLY_PATCH_LABEL mPatchCetInterruptSspTable; UINT32 mCetPl0Ssp; UINT32 mCetInterruptSsp; UINT32 mCetInterruptSspTable; UINTN mSmmInterruptSspTables; /** Initialize IDT for SMM Stack Guard. **/ VOID EFIAPI InitializeIDTSmmStackGuard ( VOID ) { IA32_IDT_GATE_DESCRIPTOR *IdtGate; // // If SMM Stack Guard feature is enabled, set the IST field of // the interrupt gate for Page Fault Exception to be 1 // IdtGate = (IA32_IDT_GATE_DESCRIPTOR *)gcSmiIdtr.Base; IdtGate += EXCEPT_IA32_PAGE_FAULT; IdtGate->Bits.Reserved_0 = 1; } /** Initialize Gdt for all processors. @param[in] Cr3 CR3 value. @param[out] GdtStepSize The step size for GDT table. @return GdtBase for processor 0. GdtBase for processor X is: GdtBase + (GdtStepSize * X) **/ VOID * InitGdt ( IN UINTN Cr3, OUT UINTN *GdtStepSize ) { UINTN Index; IA32_SEGMENT_DESCRIPTOR *GdtDescriptor; UINTN TssBase; UINTN GdtTssTableSize; UINT8 *GdtTssTables; UINTN GdtTableStepSize; // // For X64 SMM, we allocate separate GDT/TSS for each CPUs to avoid TSS load contention // on each SMI entry. // GdtTssTableSize = (gcSmiGdtr.Limit + 1 + TSS_SIZE + 7) & ~7; // 8 bytes aligned mGdtBufferSize = GdtTssTableSize * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; GdtTssTables = (UINT8*)AllocateCodePages (EFI_SIZE_TO_PAGES (mGdtBufferSize)); ASSERT (GdtTssTables != NULL); mGdtBuffer = (UINTN)GdtTssTables; GdtTableStepSize = GdtTssTableSize; for (Index = 0; Index < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; Index++) { CopyMem (GdtTssTables + GdtTableStepSize * Index, (VOID*)(UINTN)gcSmiGdtr.Base, gcSmiGdtr.Limit + 1 + TSS_SIZE); // // Fixup TSS descriptors // TssBase = (UINTN)(GdtTssTables + GdtTableStepSize * Index + gcSmiGdtr.Limit + 1); GdtDescriptor = (IA32_SEGMENT_DESCRIPTOR *)(TssBase) - 2; GdtDescriptor->Bits.BaseLow = (UINT16)(UINTN)TssBase; GdtDescriptor->Bits.BaseMid = (UINT8)((UINTN)TssBase >> 16); GdtDescriptor->Bits.BaseHigh = (UINT8)((UINTN)TssBase >> 24); if (FeaturePcdGet (PcdCpuSmmStackGuard)) { // // Setup top of known good stack as IST1 for each processor. // *(UINTN *)(TssBase + TSS_X64_IST1_OFFSET) = (mSmmStackArrayBase + EFI_PAGE_SIZE + Index * mSmmStackSize); } } *GdtStepSize = GdtTableStepSize; return GdtTssTables; } /** Get Protected mode code segment from current GDT table. @return Protected mode code segment value. **/ UINT16 GetProtectedModeCS ( VOID ) { IA32_DESCRIPTOR GdtrDesc; IA32_SEGMENT_DESCRIPTOR *GdtEntry; UINTN GdtEntryCount; UINT16 Index; AsmReadGdtr (&GdtrDesc); GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR); GdtEntry = (IA32_SEGMENT_DESCRIPTOR *) GdtrDesc.Base; for (Index = 0; Index < GdtEntryCount; Index++) { if (GdtEntry->Bits.L == 0) { if (GdtEntry->Bits.Type > 8 && GdtEntry->Bits.L == 0) { break; } } GdtEntry++; } ASSERT (Index != GdtEntryCount); return Index * 8; } /** Transfer AP to safe hlt-loop after it finished restore CPU features on S3 patch. @param[in] ApHltLoopCode The address of the safe hlt-loop function. @param[in] TopOfStack A pointer to the new stack to use for the ApHltLoopCode. @param[in] NumberToFinishAddress Address of Semaphore of APs finish count. **/ VOID TransferApToSafeState ( IN UINTN ApHltLoopCode, IN UINTN TopOfStack, IN UINTN NumberToFinishAddress ) { AsmDisablePaging64 ( GetProtectedModeCS (), (UINT32)ApHltLoopCode, (UINT32)NumberToFinishAddress, 0, (UINT32)TopOfStack ); // // It should never reach here // ASSERT (FALSE); } /** Initialize the shadow stack related data structure. @param CpuIndex The index of CPU. @param ShadowStack The bottom of the shadow stack for this CPU. **/ VOID InitShadowStack ( IN UINTN CpuIndex, IN VOID *ShadowStack ) { UINTN SmmShadowStackSize; UINT64 *InterruptSspTable; if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) { SmmShadowStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmShadowStackSize))); if (FeaturePcdGet (PcdCpuSmmStackGuard)) { SmmShadowStackSize += EFI_PAGES_TO_SIZE (2); } mCetPl0Ssp = (UINT32)((UINTN)ShadowStack + SmmShadowStackSize - sizeof(UINT64)); PatchInstructionX86 (mPatchCetPl0Ssp, mCetPl0Ssp, 4); DEBUG ((DEBUG_INFO, "mCetPl0Ssp - 0x%x\n", mCetPl0Ssp)); DEBUG ((DEBUG_INFO, "ShadowStack - 0x%x\n", ShadowStack)); DEBUG ((DEBUG_INFO, " SmmShadowStackSize - 0x%x\n", SmmShadowStackSize)); if (FeaturePcdGet (PcdCpuSmmStackGuard)) { if (mSmmInterruptSspTables == 0) { mSmmInterruptSspTables = (UINTN)AllocateZeroPool(sizeof(UINT64) * 8 * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus); ASSERT (mSmmInterruptSspTables != 0); DEBUG ((DEBUG_INFO, "mSmmInterruptSspTables - 0x%x\n", mSmmInterruptSspTables)); } mCetInterruptSsp = (UINT32)((UINTN)ShadowStack + EFI_PAGES_TO_SIZE(1) - sizeof(UINT64)); mCetInterruptSspTable = (UINT32)(UINTN)(mSmmInterruptSspTables + sizeof(UINT64) * 8 * CpuIndex); InterruptSspTable = (UINT64 *)(UINTN)mCetInterruptSspTable; InterruptSspTable[1] = mCetInterruptSsp; PatchInstructionX86 (mPatchCetInterruptSsp, mCetInterruptSsp, 4); PatchInstructionX86 (mPatchCetInterruptSspTable, mCetInterruptSspTable, 4); DEBUG ((DEBUG_INFO, "mCetInterruptSsp - 0x%x\n", mCetInterruptSsp)); DEBUG ((DEBUG_INFO, "mCetInterruptSspTable - 0x%x\n", mCetInterruptSspTable)); } } }