summaryrefslogtreecommitdiffstats
path: root/OvmfPkg/IoMmuDxe/CcIoMmu.c
blob: 795b945dacb0b96f96f9e9eb1f8f024bb45d09f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
/** @file

  The protocol provides support to allocate, free, map and umap a DMA buffer
  for bus master (e.g PciHostBridge). When SEV or TDX is enabled, the DMA
  operations must be performed on unencrypted buffer hence we use a bounce
  buffer to map the guest buffer into an unencrypted DMA buffer.

  Copyright (c) 2017 - 2024, AMD Inc. All rights reserved.<BR>
  Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>

  SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include <Library/PcdLib.h>
#include <ConfidentialComputingGuestAttr.h>
#include "CcIoMmu.h"
#include "IoMmuInternal.h"

//
// List of the MAP_INFO structures that have been set up by IoMmuMap() and not
// yet torn down by IoMmuUnmap(). The list represents the full set of mappings
// currently in effect.
//
STATIC LIST_ENTRY  mMapInfos = INITIALIZE_LIST_HEAD_VARIABLE (mMapInfos);

//
// Indicate if the feature of reserved memory is supported in DMA operation.
//
BOOLEAN  mReservedSharedMemSupported = FALSE;

//
// ASCII names for EDKII_IOMMU_OPERATION constants, for debug logging.
//
STATIC CONST CHAR8 *CONST
mBusMasterOperationName[EdkiiIoMmuOperationMaximum] = {
  "Read",
  "Write",
  "CommonBuffer",
  "Read64",
  "Write64",
  "CommonBuffer64"
};

/**
  Provides the controller-specific addresses required to access system memory
  from a DMA bus master. On SEV/TDX guest, the DMA operations must be performed on
  shared buffer hence we allocate a bounce buffer to map the HostAddress to a
  DeviceAddress. The Encryption attribute is removed from the DeviceAddress
  buffer.

  @param  This                  The protocol instance pointer.
  @param  Operation             Indicates if the bus master is going to read or
                                write to system memory.
  @param  HostAddress           The system memory address to map to the PCI
                                controller.
  @param  NumberOfBytes         On input the number of bytes to map. On output
                                the number of bytes that were mapped.
  @param  DeviceAddress         The resulting map address for the bus master
                                PCI controller to use to access the hosts
                                HostAddress.
  @param  Mapping               A resulting value to pass to Unmap().

  @retval EFI_SUCCESS           The range was mapped for the returned
                                NumberOfBytes.
  @retval EFI_UNSUPPORTED       The HostAddress cannot be mapped as a common
                                buffer.
  @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
  @retval EFI_OUT_OF_RESOURCES  The request could not be completed due to a
                                lack of resources.
  @retval EFI_DEVICE_ERROR      The system hardware could not map the requested
                                address.

**/
EFI_STATUS
EFIAPI
IoMmuMap (
  IN     EDKII_IOMMU_PROTOCOL   *This,
  IN     EDKII_IOMMU_OPERATION  Operation,
  IN     VOID                   *HostAddress,
  IN OUT UINTN                  *NumberOfBytes,
  OUT    EFI_PHYSICAL_ADDRESS   *DeviceAddress,
  OUT    VOID                   **Mapping
  )
{
  EFI_STATUS            Status;
  MAP_INFO              *MapInfo;
  EFI_ALLOCATE_TYPE     AllocateType;
  COMMON_BUFFER_HEADER  *CommonBufferHeader;
  VOID                  *DecryptionSource;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a: Operation=%a Host=0x%p Bytes=0x%Lx\n",
    __func__,
    ((Operation >= 0 &&
      Operation < ARRAY_SIZE (mBusMasterOperationName)) ?
     mBusMasterOperationName[Operation] :
     "Invalid"),
    HostAddress,
    (UINT64)((NumberOfBytes == NULL) ? 0 : *NumberOfBytes)
    ));

  if ((HostAddress == NULL) || (NumberOfBytes == NULL) || (DeviceAddress == NULL) ||
      (Mapping == NULL))
  {
    return EFI_INVALID_PARAMETER;
  }

  Status = EFI_SUCCESS;

  //
  // Allocate a MAP_INFO structure to remember the mapping when Unmap() is
  // called later.
  //
  MapInfo = AllocatePool (sizeof (MAP_INFO));
  if (MapInfo == NULL) {
    Status = EFI_OUT_OF_RESOURCES;
    goto Failed;
  }

  //
  // Initialize the MAP_INFO structure, except the PlainTextAddress field
  //
  ZeroMem (&MapInfo->Link, sizeof MapInfo->Link);
  MapInfo->Signature         = MAP_INFO_SIG;
  MapInfo->Operation         = Operation;
  MapInfo->NumberOfBytes     = *NumberOfBytes;
  MapInfo->NumberOfPages     = EFI_SIZE_TO_PAGES (MapInfo->NumberOfBytes);
  MapInfo->CryptedAddress    = (UINTN)HostAddress;
  MapInfo->ReservedMemBitmap = 0;

  //
  // In the switch statement below, we point "MapInfo->PlainTextAddress" to the
  // plaintext buffer, according to Operation. We also set "DecryptionSource".
  //
  MapInfo->PlainTextAddress = MAX_ADDRESS;
  AllocateType              = AllocateAnyPages;
  DecryptionSource          = (VOID *)(UINTN)MapInfo->CryptedAddress;
  switch (Operation) {
    //
    // For BusMasterRead[64] and BusMasterWrite[64] operations, a bounce buffer
    // is necessary regardless of whether the original (crypted) buffer crosses
    // the 4GB limit or not -- we have to allocate a separate plaintext buffer.
    // The only variable is whether the plaintext buffer should be under 4GB.
    //
    case EdkiiIoMmuOperationBusMasterRead:
    case EdkiiIoMmuOperationBusMasterWrite:
      MapInfo->PlainTextAddress = BASE_4GB - 1;
      AllocateType              = AllocateMaxAddress;
    //
    // fall through
    //
    case EdkiiIoMmuOperationBusMasterRead64:
    case EdkiiIoMmuOperationBusMasterWrite64:
      //
      // Allocate the implicit plaintext bounce buffer.
      //
      Status = IoMmuAllocateBounceBuffer (
                 AllocateType,
                 EfiBootServicesData,
                 MapInfo
                 );
      if (EFI_ERROR (Status)) {
        goto FreeMapInfo;
      }

      break;

    //
    // For BusMasterCommonBuffer[64] operations, a to-be-plaintext buffer and a
    // stash buffer (for in-place decryption) have been allocated already, with
    // AllocateBuffer(). We only check whether the address of the to-be-plaintext
    // buffer is low enough for the requested operation.
    //
    case EdkiiIoMmuOperationBusMasterCommonBuffer:
      if ((MapInfo->CryptedAddress > BASE_4GB) ||
          (EFI_PAGES_TO_SIZE (MapInfo->NumberOfPages) >
           BASE_4GB - MapInfo->CryptedAddress))
      {
        //
        // CommonBuffer operations cannot be remapped. If the common buffer is
        // above 4GB, then it is not possible to generate a mapping, so return an
        // error.
        //
        Status = EFI_UNSUPPORTED;
        goto FreeMapInfo;
      }

    //
    // fall through
    //
    case EdkiiIoMmuOperationBusMasterCommonBuffer64:
      //
      // The buffer at MapInfo->CryptedAddress comes from AllocateBuffer().
      //
      MapInfo->PlainTextAddress = MapInfo->CryptedAddress;
      //
      // Stash the crypted data.
      //
      CommonBufferHeader = (COMMON_BUFFER_HEADER *)(
                                                    (UINTN)MapInfo->CryptedAddress - EFI_PAGE_SIZE
                                                    );
      ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG);
      CopyMem (
        CommonBufferHeader->StashBuffer,
        (VOID *)(UINTN)MapInfo->CryptedAddress,
        MapInfo->NumberOfBytes
        );
      //
      // Point "DecryptionSource" to the stash buffer so that we decrypt
      // it to the original location, after the switch statement.
      //
      DecryptionSource           = CommonBufferHeader->StashBuffer;
      MapInfo->ReservedMemBitmap = CommonBufferHeader->ReservedMemBitmap;
      break;

    default:
      //
      // Operation is invalid
      //
      Status = EFI_INVALID_PARAMETER;
      goto FreeMapInfo;
  }

  if (MapInfo->ReservedMemBitmap == 0) {
    //
    // If MapInfo->ReservedMemBitmap is 0, it means the bounce buffer is not allocated
    // from the pre-allocated shared memory, so it must be converted to shared memory here.
    //
    if (CC_GUEST_IS_SEV (PcdGet64 (PcdConfidentialComputingGuestAttr))) {
      //
      // Clear the memory encryption mask on the plaintext buffer.
      //
      Status = MemEncryptSevClearPageEncMask (
                 0,
                 MapInfo->PlainTextAddress,
                 MapInfo->NumberOfPages
                 );
    } else if (CC_GUEST_IS_TDX (PcdGet64 (PcdConfidentialComputingGuestAttr))) {
      //
      // Set the memory shared bit.
      //
      Status = MemEncryptTdxSetPageSharedBit (
                 0,
                 MapInfo->PlainTextAddress,
                 MapInfo->NumberOfPages
                 );
    } else {
      ASSERT (FALSE);
    }
  }

  ASSERT_EFI_ERROR (Status);
  if (EFI_ERROR (Status)) {
    CpuDeadLoop ();
  }

  //
  // If this is a read operation from the Bus Master's point of view,
  // then copy the contents of the real buffer into the mapped buffer
  // so the Bus Master can read the contents of the real buffer.
  //
  // For BusMasterCommonBuffer[64] operations, the CopyMem() below will decrypt
  // the original data (from the stash buffer) back to the original location.
  //
  if ((Operation == EdkiiIoMmuOperationBusMasterRead) ||
      (Operation == EdkiiIoMmuOperationBusMasterRead64) ||
      (Operation == EdkiiIoMmuOperationBusMasterCommonBuffer) ||
      (Operation == EdkiiIoMmuOperationBusMasterCommonBuffer64))
  {
    CopyMem (
      (VOID *)(UINTN)MapInfo->PlainTextAddress,
      DecryptionSource,
      MapInfo->NumberOfBytes
      );
  }

  //
  // Track all MAP_INFO structures.
  //
  InsertHeadList (&mMapInfos, &MapInfo->Link);
  //
  // Populate output parameters.
  //
  *DeviceAddress = MapInfo->PlainTextAddress;
  *Mapping       = MapInfo;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a: Mapping=0x%p Device(PlainText)=0x%Lx Crypted=0x%Lx Pages=0x%Lx, ReservedMemBitmap=0x%Lx\n",
    __func__,
    MapInfo,
    MapInfo->PlainTextAddress,
    MapInfo->CryptedAddress,
    (UINT64)MapInfo->NumberOfPages,
    MapInfo->ReservedMemBitmap
    ));

  return EFI_SUCCESS;

FreeMapInfo:
  FreePool (MapInfo);

Failed:
  *NumberOfBytes = 0;
  return Status;
}

/**
  Completes the Map() operation and releases any corresponding resources.

  This is an internal worker function that only extends the Map() API with
  the MemoryMapLocked parameter.

  @param  This                  The protocol instance pointer.
  @param  Mapping               The mapping value returned from Map().
  @param  MemoryMapLocked       The function is executing on the stack of
                                gBS->ExitBootServices(); changes to the UEFI
                                memory map are forbidden.

  @retval EFI_SUCCESS           The range was unmapped.
  @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by
                                Map().
  @retval EFI_DEVICE_ERROR      The data was not committed to the target system
                                memory.
**/
STATIC
EFI_STATUS
EFIAPI
IoMmuUnmapWorker (
  IN  EDKII_IOMMU_PROTOCOL  *This,
  IN  VOID                  *Mapping,
  IN  BOOLEAN               MemoryMapLocked
  )
{
  MAP_INFO              *MapInfo;
  EFI_STATUS            Status;
  COMMON_BUFFER_HEADER  *CommonBufferHeader;
  VOID                  *EncryptionTarget;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a: Mapping=0x%p MemoryMapLocked=%d\n",
    __func__,
    Mapping,
    MemoryMapLocked
    ));

  if (Mapping == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  MapInfo = (MAP_INFO *)Mapping;
  Status  = EFI_SUCCESS;
  //
  // set CommonBufferHeader to suppress incorrect compiler/analyzer warnings
  //
  CommonBufferHeader = NULL;

  //
  // For BusMasterWrite[64] operations and BusMasterCommonBuffer[64] operations
  // we have to encrypt the results, ultimately to the original place (i.e.,
  // "MapInfo->CryptedAddress").
  //
  // For BusMasterCommonBuffer[64] operations however, this encryption has to
  // land in-place, so divert the encryption to the stash buffer first.
  //
  EncryptionTarget = (VOID *)(UINTN)MapInfo->CryptedAddress;

  switch (MapInfo->Operation) {
    case EdkiiIoMmuOperationBusMasterCommonBuffer:
    case EdkiiIoMmuOperationBusMasterCommonBuffer64:
      ASSERT (MapInfo->PlainTextAddress == MapInfo->CryptedAddress);

      CommonBufferHeader = (COMMON_BUFFER_HEADER *)(
                                                    (UINTN)MapInfo->PlainTextAddress - EFI_PAGE_SIZE
                                                    );
      ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG);
      EncryptionTarget = CommonBufferHeader->StashBuffer;
    //
    // fall through
    //

    case EdkiiIoMmuOperationBusMasterWrite:
    case EdkiiIoMmuOperationBusMasterWrite64:
      CopyMem (
        EncryptionTarget,
        (VOID *)(UINTN)MapInfo->PlainTextAddress,
        MapInfo->NumberOfBytes
        );
      break;

    default:
      //
      // nothing to encrypt after BusMasterRead[64] operations
      //
      break;
  }

  if (MapInfo->ReservedMemBitmap == 0) {
    if (CC_GUEST_IS_SEV (PcdGet64 (PcdConfidentialComputingGuestAttr))) {
      //
      // Restore the memory encryption mask on the area we used to hold the
      // plaintext.
      //
      Status = MemEncryptSevSetPageEncMask (
                 0,
                 MapInfo->PlainTextAddress,
                 MapInfo->NumberOfPages
                 );
    } else if (CC_GUEST_IS_TDX (PcdGet64 (PcdConfidentialComputingGuestAttr))) {
      //
      // Restore the memory shared bit mask on the area we used to hold the
      // plaintext.
      //
      Status = MemEncryptTdxClearPageSharedBit (
                 0,
                 MapInfo->PlainTextAddress,
                 MapInfo->NumberOfPages
                 );
    } else {
      ASSERT (FALSE);
    }
  }

  ASSERT_EFI_ERROR (Status);
  if (EFI_ERROR (Status)) {
    CpuDeadLoop ();
  }

  //
  // For BusMasterCommonBuffer[64] operations, copy the stashed data to the
  // original (now encrypted) location.
  //
  // For all other operations, fill the late bounce buffer (which existed as
  // plaintext at some point) with zeros, and then release it (unless the UEFI
  // memory map is locked).
  //
  if ((MapInfo->Operation == EdkiiIoMmuOperationBusMasterCommonBuffer) ||
      (MapInfo->Operation == EdkiiIoMmuOperationBusMasterCommonBuffer64))
  {
    CopyMem (
      (VOID *)(UINTN)MapInfo->CryptedAddress,
      CommonBufferHeader->StashBuffer,
      MapInfo->NumberOfBytes
      );
  } else {
    ZeroMem (
      (VOID *)(UINTN)MapInfo->PlainTextAddress,
      EFI_PAGES_TO_SIZE (MapInfo->NumberOfPages)
      );

    if (!MemoryMapLocked) {
      IoMmuFreeBounceBuffer (MapInfo);
    }
  }

  //
  // Forget the MAP_INFO structure, then free it (unless the UEFI memory map is
  // locked).
  //
  RemoveEntryList (&MapInfo->Link);
  if (!MemoryMapLocked) {
    FreePool (MapInfo);
  }

  return EFI_SUCCESS;
}

/**
  Completes the Map() operation and releases any corresponding resources.

  @param  This                  The protocol instance pointer.
  @param  Mapping               The mapping value returned from Map().

  @retval EFI_SUCCESS           The range was unmapped.
  @retval EFI_INVALID_PARAMETER Mapping is not a value that was returned by
                                Map().
  @retval EFI_DEVICE_ERROR      The data was not committed to the target system
                                memory.
**/
EFI_STATUS
EFIAPI
IoMmuUnmap (
  IN  EDKII_IOMMU_PROTOCOL  *This,
  IN  VOID                  *Mapping
  )
{
  return IoMmuUnmapWorker (
           This,
           Mapping,
           FALSE    // MemoryMapLocked
           );
}

/**
  Allocates pages that are suitable for an OperationBusMasterCommonBuffer or
  OperationBusMasterCommonBuffer64 mapping.

  @param  This                  The protocol instance pointer.
  @param  Type                  This parameter is not used and must be ignored.
  @param  MemoryType            The type of memory to allocate,
                                EfiBootServicesData or EfiRuntimeServicesData.
  @param  Pages                 The number of pages to allocate.
  @param  HostAddress           A pointer to store the base system memory
                                address of the allocated range.
  @param  Attributes            The requested bit mask of attributes for the
                                allocated range.

  @retval EFI_SUCCESS           The requested memory pages were allocated.
  @retval EFI_UNSUPPORTED       Attributes is unsupported. The only legal
                                attribute bits are MEMORY_WRITE_COMBINE and
                                MEMORY_CACHED.
  @retval EFI_INVALID_PARAMETER One or more parameters are invalid.
  @retval EFI_OUT_OF_RESOURCES  The memory pages could not be allocated.

**/
EFI_STATUS
EFIAPI
IoMmuAllocateBuffer (
  IN     EDKII_IOMMU_PROTOCOL  *This,
  IN     EFI_ALLOCATE_TYPE     Type,
  IN     EFI_MEMORY_TYPE       MemoryType,
  IN     UINTN                 Pages,
  IN OUT VOID                  **HostAddress,
  IN     UINT64                Attributes
  )
{
  EFI_STATUS            Status;
  EFI_PHYSICAL_ADDRESS  PhysicalAddress;
  VOID                  *StashBuffer;
  UINTN                 CommonBufferPages;
  COMMON_BUFFER_HEADER  *CommonBufferHeader;
  UINT32                ReservedMemBitmap;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a: MemoryType=%u Pages=0x%Lx Attributes=0x%Lx\n",
    __func__,
    (UINT32)MemoryType,
    (UINT64)Pages,
    Attributes
    ));

  //
  // Validate Attributes
  //
  if ((Attributes & EDKII_IOMMU_ATTRIBUTE_INVALID_FOR_ALLOCATE_BUFFER) != 0) {
    return EFI_UNSUPPORTED;
  }

  //
  // Check for invalid inputs
  //
  if (HostAddress == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // The only valid memory types are EfiBootServicesData and
  // EfiRuntimeServicesData
  //
  if ((MemoryType != EfiBootServicesData) &&
      (MemoryType != EfiRuntimeServicesData))
  {
    return EFI_INVALID_PARAMETER;
  }

  //
  // We'll need a header page for the COMMON_BUFFER_HEADER structure.
  //
  if (Pages > MAX_UINTN - 1) {
    return EFI_OUT_OF_RESOURCES;
  }

  CommonBufferPages = Pages + 1;

  //
  // Allocate the stash in EfiBootServicesData type memory.
  //
  // Map() will temporarily save encrypted data in the stash for
  // BusMasterCommonBuffer[64] operations, so the data can be decrypted to the
  // original location.
  //
  // Unmap() will temporarily save plaintext data in the stash for
  // BusMasterCommonBuffer[64] operations, so the data can be encrypted to the
  // original location.
  //
  // StashBuffer always resides in encrypted memory.
  //
  StashBuffer = AllocatePages (Pages);
  if (StashBuffer == NULL) {
    return EFI_OUT_OF_RESOURCES;
  }

  PhysicalAddress = (UINTN)-1;
  if ((Attributes & EDKII_IOMMU_ATTRIBUTE_DUAL_ADDRESS_CYCLE) == 0) {
    //
    // Limit allocations to memory below 4GB
    //
    PhysicalAddress = SIZE_4GB - 1;
  }

  Status = IoMmuAllocateCommonBuffer (
             MemoryType,
             CommonBufferPages,
             &PhysicalAddress,
             &ReservedMemBitmap
             );

  if (EFI_ERROR (Status)) {
    goto FreeStashBuffer;
  }

  CommonBufferHeader = (VOID *)(UINTN)PhysicalAddress;
  PhysicalAddress   += EFI_PAGE_SIZE;

  CommonBufferHeader->Signature         = COMMON_BUFFER_SIG;
  CommonBufferHeader->StashBuffer       = StashBuffer;
  CommonBufferHeader->ReservedMemBitmap = ReservedMemBitmap;

  *HostAddress = (VOID *)(UINTN)PhysicalAddress;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a: Host=0x%Lx Stash=0x%p\n",
    __func__,
    PhysicalAddress,
    StashBuffer
    ));
  return EFI_SUCCESS;

FreeStashBuffer:
  FreePages (StashBuffer, Pages);
  return Status;
}

/**
  Frees memory that was allocated with AllocateBuffer().

  @param  This                  The protocol instance pointer.
  @param  Pages                 The number of pages to free.
  @param  HostAddress           The base system memory address of the allocated
                                range.

  @retval EFI_SUCCESS           The requested memory pages were freed.
  @retval EFI_INVALID_PARAMETER The memory range specified by HostAddress and
                                Pages was not allocated with AllocateBuffer().

**/
EFI_STATUS
EFIAPI
IoMmuFreeBuffer (
  IN  EDKII_IOMMU_PROTOCOL  *This,
  IN  UINTN                 Pages,
  IN  VOID                  *HostAddress
  )
{
  UINTN                 CommonBufferPages;
  COMMON_BUFFER_HEADER  *CommonBufferHeader;

  DEBUG ((
    DEBUG_VERBOSE,
    "%a: Host=0x%p Pages=0x%Lx\n",
    __func__,
    HostAddress,
    (UINT64)Pages
    ));

  CommonBufferPages  = Pages + 1;
  CommonBufferHeader = (COMMON_BUFFER_HEADER *)(
                                                (UINTN)HostAddress - EFI_PAGE_SIZE
                                                );

  //
  // Check the signature.
  //
  ASSERT (CommonBufferHeader->Signature == COMMON_BUFFER_SIG);
  if (CommonBufferHeader->Signature != COMMON_BUFFER_SIG) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Free the stash buffer. This buffer was always encrypted, so no need to
  // zero it.
  //
  FreePages (CommonBufferHeader->StashBuffer, Pages);

  //
  // Release the common buffer itself. Unmap() has re-encrypted it in-place, so
  // no need to zero it.
  //
  return IoMmuFreeCommonBuffer (CommonBufferHeader, CommonBufferPages);
}

/**
  Set IOMMU attribute for a system memory.

  If the IOMMU protocol exists, the system memory cannot be used
  for DMA by default.

  When a device requests a DMA access for a system memory,
  the device driver need use SetAttribute() to update the IOMMU
  attribute to request DMA access (read and/or write).

  The DeviceHandle is used to identify which device submits the request.
  The IOMMU implementation need translate the device path to an IOMMU device
  ID, and set IOMMU hardware register accordingly.
  1) DeviceHandle can be a standard PCI device.
     The memory for BusMasterRead need set EDKII_IOMMU_ACCESS_READ.
     The memory for BusMasterWrite need set EDKII_IOMMU_ACCESS_WRITE.
     The memory for BusMasterCommonBuffer need set
     EDKII_IOMMU_ACCESS_READ|EDKII_IOMMU_ACCESS_WRITE.
     After the memory is used, the memory need set 0 to keep it being
     protected.
  2) DeviceHandle can be an ACPI device (ISA, I2C, SPI, etc).
     The memory for DMA access need set EDKII_IOMMU_ACCESS_READ and/or
     EDKII_IOMMU_ACCESS_WRITE.

  @param[in]  This              The protocol instance pointer.
  @param[in]  DeviceHandle      The device who initiates the DMA access
                                request.
  @param[in]  Mapping           The mapping value returned from Map().
  @param[in]  IoMmuAccess       The IOMMU access.

  @retval EFI_SUCCESS            The IoMmuAccess is set for the memory range
                                 specified by DeviceAddress and Length.
  @retval EFI_INVALID_PARAMETER  DeviceHandle is an invalid handle.
  @retval EFI_INVALID_PARAMETER  Mapping is not a value that was returned by
                                 Map().
  @retval EFI_INVALID_PARAMETER  IoMmuAccess specified an illegal combination
                                 of access.
  @retval EFI_UNSUPPORTED        DeviceHandle is unknown by the IOMMU.
  @retval EFI_UNSUPPORTED        The bit mask of IoMmuAccess is not supported
                                 by the IOMMU.
  @retval EFI_UNSUPPORTED        The IOMMU does not support the memory range
                                 specified by Mapping.
  @retval EFI_OUT_OF_RESOURCES   There are not enough resources available to
                                 modify the IOMMU access.
  @retval EFI_DEVICE_ERROR       The IOMMU device reported an error while
                                 attempting the operation.

**/
EFI_STATUS
EFIAPI
IoMmuSetAttribute (
  IN EDKII_IOMMU_PROTOCOL  *This,
  IN EFI_HANDLE            DeviceHandle,
  IN VOID                  *Mapping,
  IN UINT64                IoMmuAccess
  )
{
  MAP_INFO    *MapInfo;
  EFI_STATUS  Status;

  DEBUG ((DEBUG_VERBOSE, "%a: Mapping=0x%p Access=%lu\n", __func__, Mapping, IoMmuAccess));

  if (Mapping == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  Status = EFI_SUCCESS;

  //
  // An IoMmuAccess value of 0 is always accepted, validate any non-zero value.
  //
  if (IoMmuAccess != 0) {
    MapInfo = (MAP_INFO *)Mapping;

    //
    // The mapping operation already implied the access mode. Validate that
    // the supplied access mode matches operation access mode.
    //
    switch (MapInfo->Operation) {
      case EdkiiIoMmuOperationBusMasterRead:
      case EdkiiIoMmuOperationBusMasterRead64:
        if (IoMmuAccess != EDKII_IOMMU_ACCESS_READ) {
          Status = EFI_INVALID_PARAMETER;
        }

        break;

      case EdkiiIoMmuOperationBusMasterWrite:
      case EdkiiIoMmuOperationBusMasterWrite64:
        if (IoMmuAccess != EDKII_IOMMU_ACCESS_WRITE) {
          Status = EFI_INVALID_PARAMETER;
        }

        break;

      case EdkiiIoMmuOperationBusMasterCommonBuffer:
      case EdkiiIoMmuOperationBusMasterCommonBuffer64:
        if (IoMmuAccess != (EDKII_IOMMU_ACCESS_READ | EDKII_IOMMU_ACCESS_WRITE)) {
          Status = EFI_INVALID_PARAMETER;
        }

        break;

      default:
        Status = EFI_UNSUPPORTED;
    }
  }

  return Status;
}

EDKII_IOMMU_PROTOCOL  mIoMmu = {
  EDKII_IOMMU_PROTOCOL_REVISION,
  IoMmuSetAttribute,
  IoMmuMap,
  IoMmuUnmap,
  IoMmuAllocateBuffer,
  IoMmuFreeBuffer,
};

/**
  Notification function that is queued when gBS->ExitBootServices() signals the
  EFI_EVENT_GROUP_EXIT_BOOT_SERVICES event group. This function signals another
  event, received as Context, and returns.

  Signaling an event in this context is safe. The UEFI spec allows
  gBS->SignalEvent() to return EFI_SUCCESS only; EFI_OUT_OF_RESOURCES is not
  listed, hence memory is not allocated. The edk2 implementation also does not
  release memory (and we only have to care about the edk2 implementation
  because EDKII_IOMMU_PROTOCOL is edk2-specific anyway).

  @param[in] Event          Event whose notification function is being invoked.
                            Event is permitted to request the queueing of this
                            function at TPL_CALLBACK or TPL_NOTIFY task
                            priority level.

  @param[in] EventToSignal  Identifies the EFI_EVENT to signal. EventToSignal
                            is permitted to request the queueing of its
                            notification function only at TPL_CALLBACK level.
**/
STATIC
VOID
EFIAPI
IoMmuExitBoot (
  IN EFI_EVENT  Event,
  IN VOID       *EventToSignal
  )
{
  //
  // (1) The NotifyFunctions of all the events in
  //     EFI_EVENT_GROUP_EXIT_BOOT_SERVICES will have been queued before
  //     IoMmuExitBoot() is entered.
  //
  // (2) IoMmuExitBoot() is executing minimally at TPL_CALLBACK.
  //
  // (3) IoMmuExitBoot() has been queued in unspecified order relative to the
  //     NotifyFunctions of all the other events in
  //     EFI_EVENT_GROUP_EXIT_BOOT_SERVICES whose NotifyTpl is the same as
  //     Event's.
  //
  // Consequences:
  //
  // - If Event's NotifyTpl is TPL_CALLBACK, then some other NotifyFunctions
  //   queued at TPL_CALLBACK may be invoked after IoMmuExitBoot() returns.
  //
  // - If Event's NotifyTpl is TPL_NOTIFY, then some other NotifyFunctions
  //   queued at TPL_NOTIFY may be invoked after IoMmuExitBoot() returns; plus
  //   *all* NotifyFunctions queued at TPL_CALLBACK will be invoked strictly
  //   after all NotifyFunctions queued at TPL_NOTIFY, including
  //   IoMmuExitBoot(), have been invoked.
  //
  // - By signaling EventToSignal here, whose NotifyTpl is TPL_CALLBACK, we
  //   queue EventToSignal's NotifyFunction after the NotifyFunctions of *all*
  //   events in EFI_EVENT_GROUP_EXIT_BOOT_SERVICES.
  //
  DEBUG ((DEBUG_VERBOSE, "%a\n", __func__));
  gBS->SignalEvent (EventToSignal);
}

/**
  Notification function that is queued after the notification functions of all
  events in the EFI_EVENT_GROUP_EXIT_BOOT_SERVICES event group. The same memory
  map restrictions apply.

  This function unmaps all currently existing IOMMU mappings.

  @param[in] Event    Event whose notification function is being invoked. Event
                      is permitted to request the queueing of this function
                      only at TPL_CALLBACK task priority level.

  @param[in] Context  Ignored.
**/
STATIC
VOID
EFIAPI
IoMmuUnmapAllMappings (
  IN EFI_EVENT  Event,
  IN VOID       *Context
  )
{
  LIST_ENTRY  *Node;
  LIST_ENTRY  *NextNode;
  MAP_INFO    *MapInfo;

  DEBUG ((DEBUG_VERBOSE, "%a\n", __func__));

  //
  // All drivers that had set up IOMMU mappings have halted their respective
  // controllers by now; tear down the mappings.
  //
  for (Node = GetFirstNode (&mMapInfos); Node != &mMapInfos; Node = NextNode) {
    NextNode = GetNextNode (&mMapInfos, Node);
    MapInfo  = CR (Node, MAP_INFO, Link, MAP_INFO_SIG);
    IoMmuUnmapWorker (
      &mIoMmu,  // This
      MapInfo,  // Mapping
      TRUE      // MemoryMapLocked
      );
  }

  //
  // Release the reserved shared memory as well.
  //
  IoMmuReleaseReservedSharedMem (TRUE);
}

/**
  Initialize Iommu Protocol.

**/
EFI_STATUS
EFIAPI
InstallIoMmuProtocol (
  VOID
  )
{
  EFI_STATUS  Status;
  EFI_EVENT   UnmapAllMappingsEvent;
  EFI_EVENT   ExitBootEvent;
  EFI_HANDLE  Handle;

  //
  // Create the "late" event whose notification function will tear down all
  // left-over IOMMU mappings.
  //
  Status = gBS->CreateEvent (
                  EVT_NOTIFY_SIGNAL,      // Type
                  TPL_CALLBACK,           // NotifyTpl
                  IoMmuUnmapAllMappings,  // NotifyFunction
                  NULL,                   // NotifyContext
                  &UnmapAllMappingsEvent  // Event
                  );
  if (EFI_ERROR (Status)) {
    return Status;
  }

  //
  // Create the event whose notification function will be queued by
  // gBS->ExitBootServices() and will signal the event created above.
  //
  Status = gBS->CreateEvent (
                  EVT_SIGNAL_EXIT_BOOT_SERVICES, // Type
                  TPL_CALLBACK,                  // NotifyTpl
                  IoMmuExitBoot,                 // NotifyFunction
                  UnmapAllMappingsEvent,         // NotifyContext
                  &ExitBootEvent                 // Event
                  );
  if (EFI_ERROR (Status)) {
    goto CloseUnmapAllMappingsEvent;
  }

  Handle = NULL;
  Status = gBS->InstallMultipleProtocolInterfaces (
                  &Handle,
                  &gEdkiiIoMmuProtocolGuid,
                  &mIoMmu,
                  NULL
                  );
  if (EFI_ERROR (Status)) {
    goto CloseExitBootEvent;
  }

  //
  // For CC guests, use reserved shared memory for DMA operation.
  //
  mReservedSharedMemSupported = TRUE;
  Status                      = IoMmuInitReservedSharedMem ();
  if (EFI_ERROR (Status)) {
    mReservedSharedMemSupported = FALSE;
  } else {
    DEBUG ((DEBUG_INFO, "%a: Feature of reserved memory for DMA is supported.\n", __func__));
  }

  return EFI_SUCCESS;

CloseExitBootEvent:
  gBS->CloseEvent (ExitBootEvent);

CloseUnmapAllMappingsEvent:
  gBS->CloseEvent (UnmapAllMappingsEvent);

  return Status;
}