summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/CpuDxe/CpuDxe.c
blob: 3febd59d99e0db61a31508d115b4c05f4371f3aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
/** @file
  CPU DXE Module to produce CPU ARCH Protocol.

  Copyright (c) 2008 - 2023, Intel Corporation. All rights reserved.<BR>
  SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "CpuDxe.h"
#include "CpuMp.h"
#include "CpuPageTable.h"

#define CPU_INTERRUPT_NUM  256

//
// Global Variables
//
BOOLEAN     InterruptState = FALSE;
EFI_HANDLE  mCpuHandle     = NULL;
BOOLEAN     mIsFlushingGCD;
BOOLEAN     mIsAllocatingPageTable = FALSE;
UINT64      mValidMtrrAddressMask;
UINT64      mValidMtrrBitsMask;
UINT64      mTimerPeriod = 0;

FIXED_MTRR  mFixedMtrrTable[] = {
  {
    MSR_IA32_MTRR_FIX64K_00000,
    0,
    0x10000
  },
  {
    MSR_IA32_MTRR_FIX16K_80000,
    0x80000,
    0x4000
  },
  {
    MSR_IA32_MTRR_FIX16K_A0000,
    0xA0000,
    0x4000
  },
  {
    MSR_IA32_MTRR_FIX4K_C0000,
    0xC0000,
    0x1000
  },
  {
    MSR_IA32_MTRR_FIX4K_C8000,
    0xC8000,
    0x1000
  },
  {
    MSR_IA32_MTRR_FIX4K_D0000,
    0xD0000,
    0x1000
  },
  {
    MSR_IA32_MTRR_FIX4K_D8000,
    0xD8000,
    0x1000
  },
  {
    MSR_IA32_MTRR_FIX4K_E0000,
    0xE0000,
    0x1000
  },
  {
    MSR_IA32_MTRR_FIX4K_E8000,
    0xE8000,
    0x1000
  },
  {
    MSR_IA32_MTRR_FIX4K_F0000,
    0xF0000,
    0x1000
  },
  {
    MSR_IA32_MTRR_FIX4K_F8000,
    0xF8000,
    0x1000
  },
};

EFI_CPU_ARCH_PROTOCOL  gCpu = {
  CpuFlushCpuDataCache,
  CpuEnableInterrupt,
  CpuDisableInterrupt,
  CpuGetInterruptState,
  CpuInit,
  CpuRegisterInterruptHandler,
  CpuGetTimerValue,
  CpuSetMemoryAttributes,
  1,                          // NumberOfTimers
  4                           // DmaBufferAlignment
};

//
// CPU Arch Protocol Functions
//

/**
  Flush CPU data cache. If the instruction cache is fully coherent
  with all DMA operations then function can just return EFI_SUCCESS.

  @param  This              Protocol instance structure
  @param  Start             Physical address to start flushing from.
  @param  Length            Number of bytes to flush. Round up to chipset
                            granularity.
  @param  FlushType         Specifies the type of flush operation to perform.

  @retval EFI_SUCCESS       If cache was flushed
  @retval EFI_UNSUPPORTED   If flush type is not supported.
  @retval EFI_DEVICE_ERROR  If requested range could not be flushed.

**/
EFI_STATUS
EFIAPI
CpuFlushCpuDataCache (
  IN EFI_CPU_ARCH_PROTOCOL  *This,
  IN EFI_PHYSICAL_ADDRESS   Start,
  IN UINT64                 Length,
  IN EFI_CPU_FLUSH_TYPE     FlushType
  )
{
  if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) {
    AsmWbinvd ();
    return EFI_SUCCESS;
  } else if (FlushType == EfiCpuFlushTypeInvalidate) {
    AsmInvd ();
    return EFI_SUCCESS;
  } else {
    return EFI_UNSUPPORTED;
  }
}

/**
  Enables CPU interrupts.

  @param  This              Protocol instance structure

  @retval EFI_SUCCESS       If interrupts were enabled in the CPU
  @retval EFI_DEVICE_ERROR  If interrupts could not be enabled on the CPU.

**/
EFI_STATUS
EFIAPI
CpuEnableInterrupt (
  IN EFI_CPU_ARCH_PROTOCOL  *This
  )
{
  EnableInterrupts ();

  InterruptState = TRUE;
  return EFI_SUCCESS;
}

/**
  Disables CPU interrupts.

  @param  This              Protocol instance structure

  @retval EFI_SUCCESS       If interrupts were disabled in the CPU.
  @retval EFI_DEVICE_ERROR  If interrupts could not be disabled on the CPU.

**/
EFI_STATUS
EFIAPI
CpuDisableInterrupt (
  IN EFI_CPU_ARCH_PROTOCOL  *This
  )
{
  DisableInterrupts ();

  InterruptState = FALSE;
  return EFI_SUCCESS;
}

/**
  Return the state of interrupts.

  @param  This                   Protocol instance structure
  @param  State                  Pointer to the CPU's current interrupt state

  @retval EFI_SUCCESS            If interrupts were disabled in the CPU.
  @retval EFI_INVALID_PARAMETER  State is NULL.

**/
EFI_STATUS
EFIAPI
CpuGetInterruptState (
  IN  EFI_CPU_ARCH_PROTOCOL  *This,
  OUT BOOLEAN                *State
  )
{
  if (State == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  *State = InterruptState;
  return EFI_SUCCESS;
}

/**
  Generates an INIT to the CPU.

  @param  This              Protocol instance structure
  @param  InitType          Type of CPU INIT to perform

  @retval EFI_SUCCESS       If CPU INIT occurred. This value should never be
                            seen.
  @retval EFI_DEVICE_ERROR  If CPU INIT failed.
  @retval EFI_UNSUPPORTED   Requested type of CPU INIT not supported.

**/
EFI_STATUS
EFIAPI
CpuInit (
  IN EFI_CPU_ARCH_PROTOCOL  *This,
  IN EFI_CPU_INIT_TYPE      InitType
  )
{
  return EFI_UNSUPPORTED;
}

/**
  Registers a function to be called from the CPU interrupt handler.

  @param  This                   Protocol instance structure
  @param  InterruptType          Defines which interrupt to hook. IA-32
                                 valid range is 0x00 through 0xFF
  @param  InterruptHandler       A pointer to a function of type
                                 EFI_CPU_INTERRUPT_HANDLER that is called
                                 when a processor interrupt occurs.  A null
                                 pointer is an error condition.

  @retval EFI_SUCCESS            If handler installed or uninstalled.
  @retval EFI_ALREADY_STARTED    InterruptHandler is not NULL, and a handler
                                 for InterruptType was previously installed.
  @retval EFI_INVALID_PARAMETER  InterruptHandler is NULL, and a handler for
                                 InterruptType was not previously installed.
  @retval EFI_UNSUPPORTED        The interrupt specified by InterruptType
                                 is not supported.

**/
EFI_STATUS
EFIAPI
CpuRegisterInterruptHandler (
  IN EFI_CPU_ARCH_PROTOCOL      *This,
  IN EFI_EXCEPTION_TYPE         InterruptType,
  IN EFI_CPU_INTERRUPT_HANDLER  InterruptHandler
  )
{
  return RegisterCpuInterruptHandler (InterruptType, InterruptHandler);
}

/**
  Returns a timer value from one of the CPU's internal timers. There is no
  inherent time interval between ticks but is a function of the CPU frequency.

  @param  This                - Protocol instance structure.
  @param  TimerIndex          - Specifies which CPU timer is requested.
  @param  TimerValue          - Pointer to the returned timer value.
  @param  TimerPeriod         - A pointer to the amount of time that passes
                                in femtoseconds (10-15) for each increment
                                of TimerValue. If TimerValue does not
                                increment at a predictable rate, then 0 is
                                returned.  The amount of time that has
                                passed between two calls to GetTimerValue()
                                can be calculated with the formula
                                (TimerValue2 - TimerValue1) * TimerPeriod.
                                This parameter is optional and may be NULL.

  @retval EFI_SUCCESS           - If the CPU timer count was returned.
  @retval EFI_UNSUPPORTED       - If the CPU does not have any readable timers.
  @retval EFI_DEVICE_ERROR      - If an error occurred while reading the timer.
  @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL.

**/
EFI_STATUS
EFIAPI
CpuGetTimerValue (
  IN  EFI_CPU_ARCH_PROTOCOL  *This,
  IN  UINT32                 TimerIndex,
  OUT UINT64                 *TimerValue,
  OUT UINT64                 *TimerPeriod OPTIONAL
  )
{
  UINT64  BeginValue;
  UINT64  EndValue;

  if (TimerValue == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  if (TimerIndex != 0) {
    return EFI_INVALID_PARAMETER;
  }

  *TimerValue = AsmReadTsc ();

  if (TimerPeriod != NULL) {
    if (mTimerPeriod == 0) {
      //
      // Read time stamp counter before and after delay of 100 microseconds
      //
      BeginValue = AsmReadTsc ();
      MicroSecondDelay (100);
      EndValue = AsmReadTsc ();
      //
      // Calculate the actual frequency
      //
      mTimerPeriod = DivU64x64Remainder (
                       MultU64x32 (
                         1000 * 1000 * 1000,
                         100
                         ),
                       EndValue - BeginValue,
                       NULL
                       );
    }

    *TimerPeriod = mTimerPeriod;
  }

  return EFI_SUCCESS;
}

/**
  A minimal wrapper function that allows MtrrSetAllMtrrs() to be passed to
  EFI_MP_SERVICES_PROTOCOL.StartupAllAPs() as Procedure.

  @param[in] Buffer  Pointer to an MTRR_SETTINGS object, to be passed to
                     MtrrSetAllMtrrs().
**/
VOID
EFIAPI
SetMtrrsFromBuffer (
  IN VOID  *Buffer
  )
{
  MtrrSetAllMtrrs (Buffer);
}

/**
  Implementation of SetMemoryAttributes() service of CPU Architecture Protocol.

  This function modifies the attributes for the memory region specified by BaseAddress and
  Length from their current attributes to the attributes specified by Attributes.

  @param  This             The EFI_CPU_ARCH_PROTOCOL instance.
  @param  BaseAddress      The physical address that is the start address of a memory region.
  @param  Length           The size in bytes of the memory region.
  @param  Attributes       The bit mask of attributes to set for the memory region.

  @retval EFI_SUCCESS           The attributes were set for the memory region.
  @retval EFI_ACCESS_DENIED     The attributes for the memory resource range specified by
                                BaseAddress and Length cannot be modified.
  @retval EFI_INVALID_PARAMETER Length is zero.
                                Attributes specified an illegal combination of attributes that
                                cannot be set together.
  @retval EFI_OUT_OF_RESOURCES  There are not enough system resources to modify the attributes of
                                the memory resource range.
  @retval EFI_UNSUPPORTED       The processor does not support one or more bytes of the memory
                                resource range specified by BaseAddress and Length.
                                The bit mask of attributes is not support for the memory resource
                                range specified by BaseAddress and Length.

**/
EFI_STATUS
EFIAPI
CpuSetMemoryAttributes (
  IN EFI_CPU_ARCH_PROTOCOL  *This,
  IN EFI_PHYSICAL_ADDRESS   BaseAddress,
  IN UINT64                 Length,
  IN UINT64                 Attributes
  )
{
  RETURN_STATUS             Status;
  MTRR_MEMORY_CACHE_TYPE    CacheType;
  EFI_STATUS                MpStatus;
  EFI_MP_SERVICES_PROTOCOL  *MpService;
  MTRR_SETTINGS             MtrrSettings;
  UINT64                    CacheAttributes;
  UINT64                    MemoryAttributes;
  MTRR_MEMORY_CACHE_TYPE    CurrentCacheType;

  //
  // If this function is called because GCD SetMemorySpaceAttributes () is called
  // by RefreshGcdMemoryAttributes (), then we are just synchronizing GCD memory
  // map with MTRR values. So there is no need to modify MTRRs, just return immediately
  // to avoid unnecessary computing.
  //
  if (mIsFlushingGCD) {
    DEBUG ((DEBUG_VERBOSE, "  Flushing GCD\n"));
    return EFI_SUCCESS;
  }

  //
  // During memory attributes updating, new pages may be allocated to setup
  // smaller granularity of page table. Page allocation action might then cause
  // another calling of CpuSetMemoryAttributes() recursively, due to memory
  // protection policy configured (such as PcdDxeNxMemoryProtectionPolicy).
  // Since this driver will always protect memory used as page table by itself,
  // there's no need to apply protection policy requested from memory service.
  // So it's safe to just return EFI_SUCCESS if this time of calling is caused
  // by page table memory allocation.
  //
  if (mIsAllocatingPageTable) {
    DEBUG ((DEBUG_VERBOSE, "  Allocating page table memory\n"));
    return EFI_SUCCESS;
  }

  CacheAttributes  = Attributes & EFI_CACHE_ATTRIBUTE_MASK;
  MemoryAttributes = Attributes & EFI_MEMORY_ATTRIBUTE_MASK;

  if (Attributes != (CacheAttributes | MemoryAttributes)) {
    return EFI_INVALID_PARAMETER;
  }

  if (CacheAttributes != 0) {
    if (!IsMtrrSupported ()) {
      return EFI_UNSUPPORTED;
    }

    switch (CacheAttributes) {
      case EFI_MEMORY_UC:
        CacheType = CacheUncacheable;
        break;

      case EFI_MEMORY_WC:
        CacheType = CacheWriteCombining;
        break;

      case EFI_MEMORY_WT:
        CacheType = CacheWriteThrough;
        break;

      case EFI_MEMORY_WP:
        CacheType = CacheWriteProtected;
        break;

      case EFI_MEMORY_WB:
        CacheType = CacheWriteBack;
        break;

      default:
        return EFI_INVALID_PARAMETER;
    }

    CurrentCacheType = MtrrGetMemoryAttribute (BaseAddress);
    if (CurrentCacheType != CacheType) {
      //
      // call MTRR library function
      //
      Status = MtrrSetMemoryAttribute (
                 BaseAddress,
                 Length,
                 CacheType
                 );

      if (!RETURN_ERROR (Status)) {
        MpStatus = gBS->LocateProtocol (
                          &gEfiMpServiceProtocolGuid,
                          NULL,
                          (VOID **)&MpService
                          );
        //
        // Synchronize the update with all APs
        //
        if (!EFI_ERROR (MpStatus)) {
          MtrrGetAllMtrrs (&MtrrSettings);
          MpStatus = MpService->StartupAllAPs (
                                  MpService,          // This
                                  SetMtrrsFromBuffer, // Procedure
                                  FALSE,              // SingleThread
                                  NULL,               // WaitEvent
                                  0,                  // TimeoutInMicrosecsond
                                  &MtrrSettings,      // ProcedureArgument
                                  NULL                // FailedCpuList
                                  );
          ASSERT (MpStatus == EFI_SUCCESS || MpStatus == EFI_NOT_STARTED);
        }
      }

      if (EFI_ERROR (Status)) {
        return Status;
      }
    }
  }

  //
  // Set memory attribute by page table
  //
  return AssignMemoryPageAttributes (NULL, BaseAddress, Length, MemoryAttributes, NULL);
}

/**
  Initializes the valid bits mask and valid address mask for MTRRs.

  This function initializes the valid bits mask and valid address mask for MTRRs.

**/
VOID
InitializeMtrrMask (
  VOID
  )
{
  UINT32                                       MaxExtendedFunction;
  CPUID_VIR_PHY_ADDRESS_SIZE_EAX               VirPhyAddressSize;
  UINT32                                       MaxFunction;
  CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX  ExtendedFeatureFlagsEcx;
  MSR_IA32_TME_ACTIVATE_REGISTER               TmeActivate;

  AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedFunction, NULL, NULL, NULL);

  if (MaxExtendedFunction >= CPUID_VIR_PHY_ADDRESS_SIZE) {
    AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &VirPhyAddressSize.Uint32, NULL, NULL, NULL);
  } else {
    VirPhyAddressSize.Bits.PhysicalAddressBits = 36;
  }

  //
  // CPUID enumeration of MAX_PA is unaffected by TME-MK activation and will continue
  // to report the maximum physical address bits available for software to use,
  // irrespective of the number of KeyID bits.
  // So, we need to check if TME is enabled and adjust the PA size accordingly.
  //
  AsmCpuid (CPUID_SIGNATURE, &MaxFunction, NULL, NULL, NULL);
  if (MaxFunction >= CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS) {
    AsmCpuidEx (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, 0, NULL, NULL, &ExtendedFeatureFlagsEcx.Uint32, NULL);
    if (ExtendedFeatureFlagsEcx.Bits.TME_EN == 1) {
      TmeActivate.Uint64 = AsmReadMsr64 (MSR_IA32_TME_ACTIVATE);
      if (TmeActivate.Bits.TmeEnable == 1) {
        VirPhyAddressSize.Bits.PhysicalAddressBits -= TmeActivate.Bits.MkTmeKeyidBits;
      }
    }
  }

  mValidMtrrBitsMask    = LShiftU64 (1, VirPhyAddressSize.Bits.PhysicalAddressBits) - 1;
  mValidMtrrAddressMask = mValidMtrrBitsMask & 0xfffffffffffff000ULL;
}

/**
  Gets GCD Mem Space type from MTRR Type.

  This function gets GCD Mem Space type from MTRR Type.

  @param  MtrrAttributes  MTRR memory type

  @return GCD Mem Space type

**/
UINT64
GetMemorySpaceAttributeFromMtrrType (
  IN UINT8  MtrrAttributes
  )
{
  switch (MtrrAttributes) {
    case MTRR_CACHE_UNCACHEABLE:
      return EFI_MEMORY_UC;
    case MTRR_CACHE_WRITE_COMBINING:
      return EFI_MEMORY_WC;
    case MTRR_CACHE_WRITE_THROUGH:
      return EFI_MEMORY_WT;
    case MTRR_CACHE_WRITE_PROTECTED:
      return EFI_MEMORY_WP;
    case MTRR_CACHE_WRITE_BACK:
      return EFI_MEMORY_WB;
    default:
      return 0;
  }
}

/**
  Searches memory descriptors covered by given memory range.

  This function searches into the Gcd Memory Space for descriptors
  (from StartIndex to EndIndex) that contains the memory range
  specified by BaseAddress and Length.

  @param  MemorySpaceMap       Gcd Memory Space Map as array.
  @param  NumberOfDescriptors  Number of descriptors in map.
  @param  BaseAddress          BaseAddress for the requested range.
  @param  Length               Length for the requested range.
  @param  StartIndex           Start index into the Gcd Memory Space Map.
  @param  EndIndex             End index into the Gcd Memory Space Map.

  @retval EFI_SUCCESS          Search successfully.
  @retval EFI_NOT_FOUND        The requested descriptors does not exist.

**/
EFI_STATUS
SearchGcdMemorySpaces (
  IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR  *MemorySpaceMap,
  IN UINTN                            NumberOfDescriptors,
  IN EFI_PHYSICAL_ADDRESS             BaseAddress,
  IN UINT64                           Length,
  OUT UINTN                           *StartIndex,
  OUT UINTN                           *EndIndex
  )
{
  UINTN  Index;

  *StartIndex = 0;
  *EndIndex   = 0;
  for (Index = 0; Index < NumberOfDescriptors; Index++) {
    if ((BaseAddress >= MemorySpaceMap[Index].BaseAddress) &&
        (BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length))
    {
      *StartIndex = Index;
    }

    if ((BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress) &&
        (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length))
    {
      *EndIndex = Index;
      return EFI_SUCCESS;
    }
  }

  return EFI_NOT_FOUND;
}

/**
  Sets the attributes for a specified range in Gcd Memory Space Map.

  This function sets the attributes for a specified range in
  Gcd Memory Space Map.

  @param  MemorySpaceMap       Gcd Memory Space Map as array
  @param  NumberOfDescriptors  Number of descriptors in map
  @param  BaseAddress          BaseAddress for the range
  @param  Length               Length for the range
  @param  Attributes           Attributes to set

  @retval EFI_SUCCESS          Memory attributes set successfully
  @retval EFI_NOT_FOUND        The specified range does not exist in Gcd Memory Space

**/
EFI_STATUS
SetGcdMemorySpaceAttributes (
  IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR  *MemorySpaceMap,
  IN UINTN                            NumberOfDescriptors,
  IN EFI_PHYSICAL_ADDRESS             BaseAddress,
  IN UINT64                           Length,
  IN UINT64                           Attributes
  )
{
  EFI_STATUS            Status;
  UINTN                 Index;
  UINTN                 StartIndex;
  UINTN                 EndIndex;
  EFI_PHYSICAL_ADDRESS  RegionStart;
  UINT64                RegionLength;

  //
  // Get all memory descriptors covered by the memory range
  //
  Status = SearchGcdMemorySpaces (
             MemorySpaceMap,
             NumberOfDescriptors,
             BaseAddress,
             Length,
             &StartIndex,
             &EndIndex
             );
  if (EFI_ERROR (Status)) {
    return Status;
  }

  //
  // Go through all related descriptors and set attributes accordingly
  //
  for (Index = StartIndex; Index <= EndIndex; Index++) {
    if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
      continue;
    }

    //
    // Calculate the start and end address of the overlapping range
    //
    if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) {
      RegionStart = BaseAddress;
    } else {
      RegionStart = MemorySpaceMap[Index].BaseAddress;
    }

    if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) {
      RegionLength = BaseAddress + Length - RegionStart;
    } else {
      RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart;
    }

    //
    // Set memory attributes according to MTRR attribute and the original attribute of descriptor
    //
    gDS->SetMemorySpaceAttributes (
           RegionStart,
           RegionLength,
           (MemorySpaceMap[Index].Attributes & ~EFI_CACHE_ATTRIBUTE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes)
           );
  }

  return EFI_SUCCESS;
}

/**
  Refreshes the GCD Memory Space attributes according to MTRRs.

  This function refreshes the GCD Memory Space attributes according to MTRRs.

**/
VOID
RefreshMemoryAttributesFromMtrr (
  VOID
  )
{
  EFI_STATUS                       Status;
  UINTN                            Index;
  UINTN                            SubIndex;
  UINT64                           RegValue;
  EFI_PHYSICAL_ADDRESS             BaseAddress;
  UINT64                           Length;
  UINT64                           Attributes;
  UINT64                           CurrentAttributes;
  UINT8                            MtrrType;
  UINTN                            NumberOfDescriptors;
  EFI_GCD_MEMORY_SPACE_DESCRIPTOR  *MemorySpaceMap;
  UINT64                           DefaultAttributes;
  VARIABLE_MTRR                    VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR];
  MTRR_FIXED_SETTINGS              MtrrFixedSettings;
  UINT32                           FirmwareVariableMtrrCount;
  UINT8                            DefaultMemoryType;

  FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount ();
  ASSERT (FirmwareVariableMtrrCount <= MTRR_NUMBER_OF_VARIABLE_MTRR);

  MemorySpaceMap = NULL;

  //
  // Initialize the valid bits mask and valid address mask for MTRRs
  //
  InitializeMtrrMask ();

  //
  // Get the memory attribute of variable MTRRs
  //
  MtrrGetMemoryAttributeInVariableMtrr (
    mValidMtrrBitsMask,
    mValidMtrrAddressMask,
    VariableMtrr
    );

  //
  // Get the memory space map from GCD
  //
  Status = gDS->GetMemorySpaceMap (
                  &NumberOfDescriptors,
                  &MemorySpaceMap
                  );
  ASSERT_EFI_ERROR (Status);

  DefaultMemoryType = (UINT8)MtrrGetDefaultMemoryType ();
  DefaultAttributes = GetMemorySpaceAttributeFromMtrrType (DefaultMemoryType);

  //
  // Set default attributes to all spaces.
  //
  for (Index = 0; Index < NumberOfDescriptors; Index++) {
    if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
      continue;
    }

    gDS->SetMemorySpaceAttributes (
           MemorySpaceMap[Index].BaseAddress,
           MemorySpaceMap[Index].Length,
           (MemorySpaceMap[Index].Attributes & ~EFI_CACHE_ATTRIBUTE_MASK) |
           (MemorySpaceMap[Index].Capabilities & DefaultAttributes)
           );
  }

  //
  // Go for variable MTRRs with WB attribute
  //
  for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
    if (VariableMtrr[Index].Valid &&
        (VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK))
    {
      SetGcdMemorySpaceAttributes (
        MemorySpaceMap,
        NumberOfDescriptors,
        VariableMtrr[Index].BaseAddress,
        VariableMtrr[Index].Length,
        EFI_MEMORY_WB
        );
    }
  }

  //
  // Go for variable MTRRs with the attribute except for WB and UC attributes
  //
  for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
    if (VariableMtrr[Index].Valid &&
        (VariableMtrr[Index].Type != MTRR_CACHE_WRITE_BACK) &&
        (VariableMtrr[Index].Type != MTRR_CACHE_UNCACHEABLE))
    {
      Attributes = GetMemorySpaceAttributeFromMtrrType ((UINT8)VariableMtrr[Index].Type);
      SetGcdMemorySpaceAttributes (
        MemorySpaceMap,
        NumberOfDescriptors,
        VariableMtrr[Index].BaseAddress,
        VariableMtrr[Index].Length,
        Attributes
        );
    }
  }

  //
  // Go for variable MTRRs with UC attribute
  //
  for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) {
    if (VariableMtrr[Index].Valid &&
        (VariableMtrr[Index].Type == MTRR_CACHE_UNCACHEABLE))
    {
      SetGcdMemorySpaceAttributes (
        MemorySpaceMap,
        NumberOfDescriptors,
        VariableMtrr[Index].BaseAddress,
        VariableMtrr[Index].Length,
        EFI_MEMORY_UC
        );
    }
  }

  //
  // Go for fixed MTRRs
  //
  Attributes  = 0;
  BaseAddress = 0;
  Length      = 0;
  MtrrGetFixedMtrr (&MtrrFixedSettings);
  for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) {
    RegValue = MtrrFixedSettings.Mtrr[Index];
    //
    // Check for continuous fixed MTRR sections
    //
    for (SubIndex = 0; SubIndex < 8; SubIndex++) {
      MtrrType          = (UINT8)RShiftU64 (RegValue, SubIndex * 8);
      CurrentAttributes = GetMemorySpaceAttributeFromMtrrType (MtrrType);
      if (Length == 0) {
        //
        // A new MTRR attribute begins
        //
        Attributes = CurrentAttributes;
      } else {
        //
        // If fixed MTRR attribute changed, then set memory attribute for previous attribute
        //
        if (CurrentAttributes != Attributes) {
          SetGcdMemorySpaceAttributes (
            MemorySpaceMap,
            NumberOfDescriptors,
            BaseAddress,
            Length,
            Attributes
            );
          BaseAddress = mFixedMtrrTable[Index].BaseAddress + mFixedMtrrTable[Index].Length * SubIndex;
          Length      = 0;
          Attributes  = CurrentAttributes;
        }
      }

      Length += mFixedMtrrTable[Index].Length;
    }
  }

  //
  // Handle the last fixed MTRR region
  //
  SetGcdMemorySpaceAttributes (
    MemorySpaceMap,
    NumberOfDescriptors,
    BaseAddress,
    Length,
    Attributes
    );

  //
  // Free memory space map allocated by GCD service GetMemorySpaceMap ()
  //
  if (MemorySpaceMap != NULL) {
    FreePool (MemorySpaceMap);
  }
}

/**
 Check if paging is enabled or not.
**/
BOOLEAN
IsPagingAndPageAddressExtensionsEnabled (
  VOID
  )
{
  IA32_CR0  Cr0;
  IA32_CR4  Cr4;

  Cr0.UintN = AsmReadCr0 ();
  Cr4.UintN = AsmReadCr4 ();

  return ((Cr0.Bits.PG != 0) && (Cr4.Bits.PAE != 0));
}

/**
  Refreshes the GCD Memory Space attributes according to MTRRs and Paging.

  This function refreshes the GCD Memory Space attributes according to MTRRs
  and page tables.

**/
VOID
RefreshGcdMemoryAttributes (
  VOID
  )
{
  mIsFlushingGCD = TRUE;

  if (IsMtrrSupported ()) {
    RefreshMemoryAttributesFromMtrr ();
  }

  if (IsPagingAndPageAddressExtensionsEnabled ()) {
    RefreshGcdMemoryAttributesFromPaging ();
  }

  mIsFlushingGCD = FALSE;
}

/**
  Initialize Interrupt Descriptor Table for interrupt handling.

**/
VOID
InitInterruptDescriptorTable (
  VOID
  )
{
  EFI_STATUS                Status;
  EFI_VECTOR_HANDOFF_INFO   *VectorInfoList;
  EFI_VECTOR_HANDOFF_INFO   *VectorInfo;
  IA32_IDT_GATE_DESCRIPTOR  *IdtTable;
  IA32_DESCRIPTOR           IdtDescriptor;
  UINTN                     IdtEntryCount;

  VectorInfo = NULL;
  Status     = EfiGetSystemConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID **)&VectorInfoList);
  if ((Status == EFI_SUCCESS) && (VectorInfoList != NULL)) {
    VectorInfo = VectorInfoList;
  }

  AsmReadIdtr (&IdtDescriptor);
  IdtEntryCount = (IdtDescriptor.Limit + 1) / sizeof (IA32_IDT_GATE_DESCRIPTOR);
  if (IdtEntryCount < CPU_INTERRUPT_NUM) {
    //
    // Increase Interrupt Descriptor Table and Copy the old IDT table in
    //
    IdtTable = AllocateZeroPool (sizeof (IA32_IDT_GATE_DESCRIPTOR) * CPU_INTERRUPT_NUM);
    ASSERT (IdtTable != NULL);
    CopyMem (IdtTable, (VOID *)IdtDescriptor.Base, sizeof (IA32_IDT_GATE_DESCRIPTOR) * IdtEntryCount);

    //
    // Load Interrupt Descriptor Table
    //
    IdtDescriptor.Base  = (UINTN)IdtTable;
    IdtDescriptor.Limit = (UINT16)(sizeof (IA32_IDT_GATE_DESCRIPTOR) * CPU_INTERRUPT_NUM - 1);
    AsmWriteIdtr (&IdtDescriptor);
  }

  Status = InitializeCpuExceptionHandlers (VectorInfo);
  ASSERT_EFI_ERROR (Status);
}

/**
  Callback function for idle events.

  @param  Event                 Event whose notification function is being invoked.
  @param  Context               The pointer to the notification function's context,
                                which is implementation-dependent.

**/
VOID
EFIAPI
IdleLoopEventCallback (
  IN EFI_EVENT  Event,
  IN VOID       *Context
  )
{
  CpuSleep ();
}

/**
  Ensure the compatibility of a memory space descriptor with the MMIO aperture.

  The memory space descriptor can come from the GCD memory space map, or it can
  represent a gap between two neighboring memory space descriptors. In the
  latter case, the GcdMemoryType field is expected to be
  EfiGcdMemoryTypeNonExistent.

  If the memory space descriptor already has type
  EfiGcdMemoryTypeMemoryMappedIo, and its capabilities are a superset of the
  required capabilities, then no action is taken -- it is by definition
  compatible with the aperture.

  Otherwise, the intersection of the memory space descriptor is calculated with
  the aperture. If the intersection is the empty set (no overlap), no action is
  taken; the memory space descriptor is compatible with the aperture.

  Otherwise, the type of the descriptor is investigated again. If the type is
  EfiGcdMemoryTypeNonExistent (representing a gap, or a genuine descriptor with
  such a type), then an attempt is made to add the intersection as MMIO space
  to the GCD memory space map, with the specified capabilities. This ensures
  continuity for the aperture, and the descriptor is deemed compatible with the
  aperture.

  Otherwise, the memory space descriptor is incompatible with the MMIO
  aperture.

  @param[in] Base         Base address of the aperture.
  @param[in] Length       Length of the aperture.
  @param[in] Capabilities Capabilities required by the aperture.
  @param[in] Descriptor   The descriptor to ensure compatibility with the
                          aperture for.

  @retval EFI_SUCCESS            The descriptor is compatible. The GCD memory
                                 space map may have been updated, for
                                 continuity within the aperture.
  @retval EFI_INVALID_PARAMETER  The descriptor is incompatible.
  @return                        Error codes from gDS->AddMemorySpace().
**/
EFI_STATUS
IntersectMemoryDescriptor (
  IN  UINT64                                 Base,
  IN  UINT64                                 Length,
  IN  UINT64                                 Capabilities,
  IN  CONST EFI_GCD_MEMORY_SPACE_DESCRIPTOR  *Descriptor
  )
{
  UINT64      IntersectionBase;
  UINT64      IntersectionEnd;
  EFI_STATUS  Status;

  if ((Descriptor->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) &&
      ((Descriptor->Capabilities & Capabilities) == Capabilities))
  {
    return EFI_SUCCESS;
  }

  IntersectionBase = MAX (Base, Descriptor->BaseAddress);
  IntersectionEnd  = MIN (
                       Base + Length,
                       Descriptor->BaseAddress + Descriptor->Length
                       );
  if (IntersectionBase >= IntersectionEnd) {
    //
    // The descriptor and the aperture don't overlap.
    //
    return EFI_SUCCESS;
  }

  if (Descriptor->GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
    Status = gDS->AddMemorySpace (
                    EfiGcdMemoryTypeMemoryMappedIo,
                    IntersectionBase,
                    IntersectionEnd - IntersectionBase,
                    Capabilities
                    );

    DEBUG ((
      EFI_ERROR (Status) ? DEBUG_ERROR : DEBUG_VERBOSE,
      "%a: %a: add [%Lx, %Lx): %r\n",
      gEfiCallerBaseName,
      __FUNCTION__,
      IntersectionBase,
      IntersectionEnd,
      Status
      ));
    return Status;
  }

  DEBUG ((
    DEBUG_ERROR,
    "%a: %a: desc [%Lx, %Lx) type %u cap %Lx conflicts "
    "with aperture [%Lx, %Lx) cap %Lx\n",
    gEfiCallerBaseName,
    __FUNCTION__,
    Descriptor->BaseAddress,
    Descriptor->BaseAddress + Descriptor->Length,
    (UINT32)Descriptor->GcdMemoryType,
    Descriptor->Capabilities,
    Base,
    Base + Length,
    Capabilities
    ));
  return EFI_INVALID_PARAMETER;
}

/**
  Add MMIO space to GCD.
  The routine checks the GCD database and only adds those which are
  not added in the specified range to GCD.

  @param Base         Base address of the MMIO space.
  @param Length       Length of the MMIO space.
  @param Capabilities Capabilities of the MMIO space.

  @retval EFI_SUCCESS The MMIO space was added successfully.
**/
EFI_STATUS
AddMemoryMappedIoSpace (
  IN  UINT64  Base,
  IN  UINT64  Length,
  IN  UINT64  Capabilities
  )
{
  EFI_STATUS                       Status;
  UINTN                            Index;
  UINTN                            NumberOfDescriptors;
  EFI_GCD_MEMORY_SPACE_DESCRIPTOR  *MemorySpaceMap;

  Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
  if (EFI_ERROR (Status)) {
    DEBUG ((
      DEBUG_ERROR,
      "%a: %a: GetMemorySpaceMap(): %r\n",
      gEfiCallerBaseName,
      __FUNCTION__,
      Status
      ));
    return Status;
  }

  for (Index = 0; Index < NumberOfDescriptors; Index++) {
    Status = IntersectMemoryDescriptor (
               Base,
               Length,
               Capabilities,
               &MemorySpaceMap[Index]
               );
    if (EFI_ERROR (Status)) {
      goto FreeMemorySpaceMap;
    }
  }

  DEBUG_CODE_BEGIN ();
  //
  // Make sure there are adjacent descriptors covering [Base, Base + Length).
  // It is possible that they have not been merged; merging can be prevented
  // by allocation and different capabilities.
  //
  UINT64                           CheckBase;
  EFI_STATUS                       CheckStatus;
  EFI_GCD_MEMORY_SPACE_DESCRIPTOR  Descriptor;

  for (CheckBase = Base;
       CheckBase < Base + Length;
       CheckBase = Descriptor.BaseAddress + Descriptor.Length)
  {
    CheckStatus = gDS->GetMemorySpaceDescriptor (CheckBase, &Descriptor);
    ASSERT_EFI_ERROR (CheckStatus);
    ASSERT (Descriptor.GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo);
    ASSERT ((Descriptor.Capabilities & Capabilities) == Capabilities);
  }

  DEBUG_CODE_END ();

FreeMemorySpaceMap:
  FreePool (MemorySpaceMap);

  return Status;
}

/**
  Add and allocate CPU local APIC memory mapped space.

  @param[in]ImageHandle     Image handle this driver.

**/
VOID
AddLocalApicMemorySpace (
  IN EFI_HANDLE  ImageHandle
  )
{
  EFI_STATUS            Status;
  EFI_PHYSICAL_ADDRESS  BaseAddress;

  BaseAddress = (EFI_PHYSICAL_ADDRESS)GetLocalApicBaseAddress ();
  Status      = AddMemoryMappedIoSpace (BaseAddress, SIZE_4KB, EFI_MEMORY_UC);
  ASSERT_EFI_ERROR (Status);

  //
  // Try to allocate APIC memory mapped space, does not check return
  // status because it may be allocated by other driver, or DXE Core if
  // this range is built into Memory Allocation HOB.
  //
  Status = gDS->AllocateMemorySpace (
                  EfiGcdAllocateAddress,
                  EfiGcdMemoryTypeMemoryMappedIo,
                  0,
                  SIZE_4KB,
                  &BaseAddress,
                  ImageHandle,
                  NULL
                  );
  if (EFI_ERROR (Status)) {
    DEBUG ((
      DEBUG_INFO,
      "%a: %a: AllocateMemorySpace() Status - %r\n",
      gEfiCallerBaseName,
      __FUNCTION__,
      Status
      ));
  }
}

/**
  Initialize the state information for the CPU Architectural Protocol.

  @param ImageHandle     Image handle this driver.
  @param SystemTable     Pointer to the System Table.

  @retval EFI_SUCCESS           Thread can be successfully created
  @retval EFI_OUT_OF_RESOURCES  Cannot allocate protocol data structure
  @retval EFI_DEVICE_ERROR      Cannot create the thread

**/
EFI_STATUS
EFIAPI
InitializeCpu (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  )
{
  EFI_STATUS  Status;
  EFI_EVENT   IdleLoopEvent;

  InitializePageTableLib ();

  InitializeFloatingPointUnits ();

  //
  // Make sure interrupts are disabled
  //
  DisableInterrupts ();

  //
  // Init GDT for DXE
  //
  InitGlobalDescriptorTable ();

  //
  // Setup IDT pointer, IDT and interrupt entry points
  //
  InitInterruptDescriptorTable ();

  //
  // Install CPU Architectural Protocol
  //
  Status = gBS->InstallMultipleProtocolInterfaces (
                  &mCpuHandle,
                  &gEfiCpuArchProtocolGuid,
                  &gCpu,
                  NULL
                  );
  ASSERT_EFI_ERROR (Status);

  //
  // Refresh GCD memory space map according to MTRR value.
  //
  RefreshGcdMemoryAttributes ();

  //
  // Add and allocate local APIC memory mapped space
  //
  AddLocalApicMemorySpace (ImageHandle);

  //
  // Setup a callback for idle events
  //
  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  TPL_NOTIFY,
                  IdleLoopEventCallback,
                  NULL,
                  &gIdleLoopEventGuid,
                  &IdleLoopEvent
                  );
  ASSERT_EFI_ERROR (Status);

  InitializeMpSupport ();

  return Status;
}