summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/PiSmmCpuDxeSmm/CpuS3.c
blob: 240eee6a7d2f5fe57b3c94065db5a02fb89ca590 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
/** @file
Code for Processor S3 restoration

Copyright (c) 2006 - 2023, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "PiSmmCpuDxeSmm.h"

#pragma pack(1)
typedef struct {
  UINTN              Lock;
  VOID               *StackStart;
  UINTN              StackSize;
  VOID               *ApFunction;
  IA32_DESCRIPTOR    GdtrProfile;
  IA32_DESCRIPTOR    IdtrProfile;
  UINT32             BufferStart;
  UINT32             Cr3;
  UINTN              InitializeFloatingPointUnitsAddress;
} MP_CPU_EXCHANGE_INFO;
#pragma pack()

typedef struct {
  UINT8    *RendezvousFunnelAddress;
  UINTN    PModeEntryOffset;
  UINTN    FlatJumpOffset;
  UINTN    Size;
  UINTN    LModeEntryOffset;
  UINTN    LongJumpOffset;
} MP_ASSEMBLY_ADDRESS_MAP;

//
// Flags used when program the register.
//
typedef struct {
  volatile UINTN     MemoryMappedLock;              // Spinlock used to program mmio
  volatile UINT32    *CoreSemaphoreCount;           // Semaphore container used to program
                                                    // core level semaphore.
  volatile UINT32    *PackageSemaphoreCount;        // Semaphore container used to program
                                                    // package level semaphore.
} PROGRAM_CPU_REGISTER_FLAGS;

//
// Signal that SMM BASE relocation is complete.
//
volatile BOOLEAN  mInitApsAfterSmmBaseReloc;

/**
  Get starting address and size of the rendezvous entry for APs.
  Information for fixing a jump instruction in the code is also returned.

  @param AddressMap  Output buffer for address map information.
**/
VOID *
EFIAPI
AsmGetAddressMap (
  MP_ASSEMBLY_ADDRESS_MAP  *AddressMap
  );

#define LEGACY_REGION_SIZE  (2 * 0x1000)
#define LEGACY_REGION_BASE  (0xA0000 - LEGACY_REGION_SIZE)

PROGRAM_CPU_REGISTER_FLAGS  mCpuFlags;
ACPI_CPU_DATA               mAcpiCpuData;
volatile UINT32             mNumberToFinish;
MP_CPU_EXCHANGE_INFO        *mExchangeInfo;
BOOLEAN                     mRestoreSmmConfigurationInS3 = FALSE;

//
// S3 boot flag
//
BOOLEAN  mSmmS3Flag = FALSE;

//
// Pointer to structure used during S3 Resume
//
SMM_S3_RESUME_STATE  *mSmmS3ResumeState = NULL;

BOOLEAN  mAcpiS3Enable = TRUE;

UINT8  *mApHltLoopCode          = NULL;
UINT8  mApHltLoopCodeTemplate[] = {
  0x8B, 0x44, 0x24, 0x04, // mov  eax, dword ptr [esp+4]
  0xF0, 0xFF, 0x08,       // lock dec  dword ptr [eax]
  0xFA,                   // cli
  0xF4,                   // hlt
  0xEB, 0xFC              // jmp $-2
};

/**
  Sync up the MTRR values for all processors.

  @param MtrrTable  Table holding fixed/variable MTRR values to be loaded.
**/
VOID
EFIAPI
LoadMtrrData (
  EFI_PHYSICAL_ADDRESS  MtrrTable
  )

/*++

Routine Description:

  Sync up the MTRR values for all processors.

Arguments:

Returns:
    None

--*/
{
  MTRR_SETTINGS  *MtrrSettings;

  MtrrSettings = (MTRR_SETTINGS *)(UINTN)MtrrTable;
  MtrrSetAllMtrrs (MtrrSettings);
}

/**
  Increment semaphore by 1.

  @param      Sem            IN:  32-bit unsigned integer

**/
VOID
S3ReleaseSemaphore (
  IN OUT  volatile UINT32  *Sem
  )
{
  InterlockedIncrement (Sem);
}

/**
  Decrement the semaphore by 1 if it is not zero.

  Performs an atomic decrement operation for semaphore.
  The compare exchange operation must be performed using
  MP safe mechanisms.

  @param      Sem            IN:  32-bit unsigned integer

**/
VOID
S3WaitForSemaphore (
  IN OUT  volatile UINT32  *Sem
  )
{
  UINT32  Value;

  do {
    Value = *Sem;
  } while (Value == 0 ||
           InterlockedCompareExchange32 (
             Sem,
             Value,
             Value - 1
             ) != Value);
}

/**
  Read / write CR value.

  @param[in]      CrIndex         The CR index which need to read/write.
  @param[in]      Read            Read or write. TRUE is read.
  @param[in,out]  CrValue         CR value.

  @retval    EFI_SUCCESS means read/write success, else return EFI_UNSUPPORTED.
**/
UINTN
ReadWriteCr (
  IN     UINT32   CrIndex,
  IN     BOOLEAN  Read,
  IN OUT UINTN    *CrValue
  )
{
  switch (CrIndex) {
    case 0:
      if (Read) {
        *CrValue = AsmReadCr0 ();
      } else {
        AsmWriteCr0 (*CrValue);
      }

      break;
    case 2:
      if (Read) {
        *CrValue = AsmReadCr2 ();
      } else {
        AsmWriteCr2 (*CrValue);
      }

      break;
    case 3:
      if (Read) {
        *CrValue = AsmReadCr3 ();
      } else {
        AsmWriteCr3 (*CrValue);
      }

      break;
    case 4:
      if (Read) {
        *CrValue = AsmReadCr4 ();
      } else {
        AsmWriteCr4 (*CrValue);
      }

      break;
    default:
      return EFI_UNSUPPORTED;
  }

  return EFI_SUCCESS;
}

/**
  Initialize the CPU registers from a register table.

  @param[in]  RegisterTable         The register table for this AP.
  @param[in]  ApLocation            AP location info for this ap.
  @param[in]  CpuStatus             CPU status info for this CPU.
  @param[in]  CpuFlags              Flags data structure used when program the register.

  @note This service could be called by BSP/APs.
**/
VOID
ProgramProcessorRegister (
  IN CPU_REGISTER_TABLE          *RegisterTable,
  IN EFI_CPU_PHYSICAL_LOCATION   *ApLocation,
  IN CPU_STATUS_INFORMATION      *CpuStatus,
  IN PROGRAM_CPU_REGISTER_FLAGS  *CpuFlags
  )
{
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntry;
  UINTN                     Index;
  UINTN                     Value;
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntryHead;
  volatile UINT32           *SemaphorePtr;
  UINT32                    FirstThread;
  UINT32                    CurrentThread;
  UINT32                    CurrentCore;
  UINTN                     ProcessorIndex;
  UINT32                    *ThreadCountPerPackage;
  UINT8                     *ThreadCountPerCore;
  EFI_STATUS                Status;
  UINT64                    CurrentValue;

  //
  // Traverse Register Table of this logical processor
  //
  RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *)(UINTN)RegisterTable->RegisterTableEntry;

  for (Index = 0; Index < RegisterTable->TableLength; Index++) {
    RegisterTableEntry = &RegisterTableEntryHead[Index];

    //
    // Check the type of specified register
    //
    switch (RegisterTableEntry->RegisterType) {
      //
      // The specified register is Control Register
      //
      case ControlRegister:
        Status = ReadWriteCr (RegisterTableEntry->Index, TRUE, &Value);
        if (EFI_ERROR (Status)) {
          break;
        }

        if (RegisterTableEntry->TestThenWrite) {
          CurrentValue = BitFieldRead64 (
                           Value,
                           RegisterTableEntry->ValidBitStart,
                           RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
                           );
          if (CurrentValue == RegisterTableEntry->Value) {
            break;
          }
        }

        Value = (UINTN)BitFieldWrite64 (
                         Value,
                         RegisterTableEntry->ValidBitStart,
                         RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
                         RegisterTableEntry->Value
                         );
        ReadWriteCr (RegisterTableEntry->Index, FALSE, &Value);
        break;
      //
      // The specified register is Model Specific Register
      //
      case Msr:
        if (RegisterTableEntry->TestThenWrite) {
          Value = (UINTN)AsmReadMsr64 (RegisterTableEntry->Index);
          if (RegisterTableEntry->ValidBitLength >= 64) {
            if (Value == RegisterTableEntry->Value) {
              break;
            }
          } else {
            CurrentValue = BitFieldRead64 (
                             Value,
                             RegisterTableEntry->ValidBitStart,
                             RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
                             );
            if (CurrentValue == RegisterTableEntry->Value) {
              break;
            }
          }
        }

        //
        // If this function is called to restore register setting after INIT signal,
        // there is no need to restore MSRs in register table.
        //
        if (RegisterTableEntry->ValidBitLength >= 64) {
          //
          // If length is not less than 64 bits, then directly write without reading
          //
          AsmWriteMsr64 (
            RegisterTableEntry->Index,
            RegisterTableEntry->Value
            );
        } else {
          //
          // Set the bit section according to bit start and length
          //
          AsmMsrBitFieldWrite64 (
            RegisterTableEntry->Index,
            RegisterTableEntry->ValidBitStart,
            RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
            RegisterTableEntry->Value
            );
        }

        break;
      //
      // MemoryMapped operations
      //
      case MemoryMapped:
        AcquireSpinLock (&CpuFlags->MemoryMappedLock);
        MmioBitFieldWrite32 (
          (UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
          RegisterTableEntry->ValidBitStart,
          RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
          (UINT32)RegisterTableEntry->Value
          );
        ReleaseSpinLock (&CpuFlags->MemoryMappedLock);
        break;
      //
      // Enable or disable cache
      //
      case CacheControl:
        //
        // If value of the entry is 0, then disable cache.  Otherwise, enable cache.
        //
        if (RegisterTableEntry->Value == 0) {
          AsmDisableCache ();
        } else {
          AsmEnableCache ();
        }

        break;

      case Semaphore:
        // Semaphore works logic like below:
        //
        //  V(x) = LibReleaseSemaphore (Semaphore[FirstThread + x]);
        //  P(x) = LibWaitForSemaphore (Semaphore[FirstThread + x]);
        //
        //  All threads (T0...Tn) waits in P() line and continues running
        //  together.
        //
        //
        //  T0             T1            ...           Tn
        //
        //  V(0...n)       V(0...n)      ...           V(0...n)
        //  n * P(0)       n * P(1)      ...           n * P(n)
        //
        ASSERT (
          (ApLocation != NULL) &&
          (CpuStatus->ThreadCountPerPackage != 0) &&
          (CpuStatus->ThreadCountPerCore != 0) &&
          (CpuFlags->CoreSemaphoreCount != NULL) &&
          (CpuFlags->PackageSemaphoreCount != NULL)
          );
        switch (RegisterTableEntry->Value) {
          case CoreDepType:
            SemaphorePtr       = CpuFlags->CoreSemaphoreCount;
            ThreadCountPerCore = (UINT8 *)(UINTN)CpuStatus->ThreadCountPerCore;

            CurrentCore = ApLocation->Package * CpuStatus->MaxCoreCount + ApLocation->Core;
            //
            // Get Offset info for the first thread in the core which current thread belongs to.
            //
            FirstThread   = CurrentCore * CpuStatus->MaxThreadCount;
            CurrentThread = FirstThread + ApLocation->Thread;

            //
            // Different cores may have different valid threads in them. If driver maintail clearly
            // thread index in different cores, the logic will be much complicated.
            // Here driver just simply records the max thread number in all cores and use it as expect
            // thread number for all cores.
            // In below two steps logic, first current thread will Release semaphore for each thread
            // in current core. Maybe some threads are not valid in this core, but driver don't
            // care. Second, driver will let current thread wait semaphore for all valid threads in
            // current core. Because only the valid threads will do release semaphore for this
            // thread, driver here only need to wait the valid thread count.
            //

            //
            // First Notify ALL THREADs in current Core that this thread is ready.
            //
            for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex++) {
              S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
            }

            //
            // Second, check whether all VALID THREADs (not all threads) in current core are ready.
            //
            for (ProcessorIndex = 0; ProcessorIndex < ThreadCountPerCore[CurrentCore]; ProcessorIndex++) {
              S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
            }

            break;

          case PackageDepType:
            SemaphorePtr          = CpuFlags->PackageSemaphoreCount;
            ThreadCountPerPackage = (UINT32 *)(UINTN)CpuStatus->ThreadCountPerPackage;
            //
            // Get Offset info for the first thread in the package which current thread belongs to.
            //
            FirstThread = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount;
            //
            // Get the possible threads count for current package.
            //
            CurrentThread = FirstThread + CpuStatus->MaxThreadCount * ApLocation->Core + ApLocation->Thread;

            //
            // Different packages may have different valid threads in them. If driver maintail clearly
            // thread index in different packages, the logic will be much complicated.
            // Here driver just simply records the max thread number in all packages and use it as expect
            // thread number for all packages.
            // In below two steps logic, first current thread will Release semaphore for each thread
            // in current package. Maybe some threads are not valid in this package, but driver don't
            // care. Second, driver will let current thread wait semaphore for all valid threads in
            // current package. Because only the valid threads will do release semaphore for this
            // thread, driver here only need to wait the valid thread count.
            //

            //
            // First Notify ALL THREADS in current package that this thread is ready.
            //
            for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount * CpuStatus->MaxCoreCount; ProcessorIndex++) {
              S3ReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
            }

            //
            // Second, check whether VALID THREADS (not all threads) in current package are ready.
            //
            for (ProcessorIndex = 0; ProcessorIndex < ThreadCountPerPackage[ApLocation->Package]; ProcessorIndex++) {
              S3WaitForSemaphore (&SemaphorePtr[CurrentThread]);
            }

            break;

          default:
            break;
        }

        break;

      default:
        break;
    }
  }
}

/**

  Set Processor register for one AP.

  @param     PreSmmRegisterTable     Use pre Smm register table or register table.

**/
VOID
SetRegister (
  IN BOOLEAN  PreSmmRegisterTable
  )
{
  CPU_FEATURE_INIT_DATA  *FeatureInitData;
  CPU_REGISTER_TABLE     *RegisterTable;
  CPU_REGISTER_TABLE     *RegisterTables;
  UINT32                 InitApicId;
  UINTN                  ProcIndex;
  UINTN                  Index;

  FeatureInitData = &mAcpiCpuData.CpuFeatureInitData;

  if (PreSmmRegisterTable) {
    RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)FeatureInitData->PreSmmInitRegisterTable;
  } else {
    RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)FeatureInitData->RegisterTable;
  }

  if (RegisterTables == NULL) {
    return;
  }

  InitApicId    = GetInitialApicId ();
  RegisterTable = NULL;
  ProcIndex     = (UINTN)-1;
  for (Index = 0; Index < mAcpiCpuData.NumberOfCpus; Index++) {
    if (RegisterTables[Index].InitialApicId == InitApicId) {
      RegisterTable = &RegisterTables[Index];
      ProcIndex     = Index;
      break;
    }
  }

  ASSERT (RegisterTable != NULL);

  if (FeatureInitData->ApLocation != 0) {
    ProgramProcessorRegister (
      RegisterTable,
      (EFI_CPU_PHYSICAL_LOCATION *)(UINTN)FeatureInitData->ApLocation + ProcIndex,
      &FeatureInitData->CpuStatus,
      &mCpuFlags
      );
  } else {
    ProgramProcessorRegister (
      RegisterTable,
      NULL,
      &FeatureInitData->CpuStatus,
      &mCpuFlags
      );
  }
}

/**
  AP initialization before then after SMBASE relocation in the S3 boot path.
**/
VOID
InitializeAp (
  VOID
  )
{
  UINTN  TopOfStack;
  UINT8  Stack[128];

  LoadMtrrData (mAcpiCpuData.MtrrTable);

  SetRegister (TRUE);

  //
  // Count down the number with lock mechanism.
  //
  InterlockedDecrement (&mNumberToFinish);

  //
  // Wait for BSP to signal SMM Base relocation done.
  //
  while (!mInitApsAfterSmmBaseReloc) {
    CpuPause ();
  }

  ProgramVirtualWireMode ();
  DisableLvtInterrupts ();

  SetRegister (FALSE);

  //
  // Place AP into the safe code, count down the number with lock mechanism in the safe code.
  //
  TopOfStack  = (UINTN)Stack + sizeof (Stack);
  TopOfStack &= ~(UINTN)(CPU_STACK_ALIGNMENT - 1);
  CopyMem ((VOID *)(UINTN)mApHltLoopCode, mApHltLoopCodeTemplate, sizeof (mApHltLoopCodeTemplate));
  TransferApToSafeState ((UINTN)mApHltLoopCode, TopOfStack, (UINTN)&mNumberToFinish);
}

/**
  Prepares startup vector for APs.

  This function prepares startup vector for APs.

  @param  WorkingBuffer  The address of the work buffer.
**/
VOID
PrepareApStartupVector (
  EFI_PHYSICAL_ADDRESS  WorkingBuffer
  )
{
  EFI_PHYSICAL_ADDRESS     StartupVector;
  MP_ASSEMBLY_ADDRESS_MAP  AddressMap;

  //
  // Get the address map of startup code for AP,
  // including code size, and offset of long jump instructions to redirect.
  //
  ZeroMem (&AddressMap, sizeof (AddressMap));
  AsmGetAddressMap (&AddressMap);

  StartupVector = WorkingBuffer;

  //
  // Copy AP startup code to startup vector, and then redirect the long jump
  // instructions for mode switching.
  //
  CopyMem ((VOID *)(UINTN)StartupVector, AddressMap.RendezvousFunnelAddress, AddressMap.Size);
  *(UINT32 *)(UINTN)(StartupVector + AddressMap.FlatJumpOffset + 3) = (UINT32)(StartupVector + AddressMap.PModeEntryOffset);
  if (AddressMap.LongJumpOffset != 0) {
    *(UINT32 *)(UINTN)(StartupVector + AddressMap.LongJumpOffset + 2) = (UINT32)(StartupVector + AddressMap.LModeEntryOffset);
  }

  //
  // Get the start address of exchange data between BSP and AP.
  //
  mExchangeInfo = (MP_CPU_EXCHANGE_INFO *)(UINTN)(StartupVector + AddressMap.Size);
  ZeroMem ((VOID *)mExchangeInfo, sizeof (MP_CPU_EXCHANGE_INFO));

  CopyMem ((VOID *)(UINTN)&mExchangeInfo->GdtrProfile, (VOID *)(UINTN)mAcpiCpuData.GdtrProfile, sizeof (IA32_DESCRIPTOR));
  CopyMem ((VOID *)(UINTN)&mExchangeInfo->IdtrProfile, (VOID *)(UINTN)mAcpiCpuData.IdtrProfile, sizeof (IA32_DESCRIPTOR));

  mExchangeInfo->StackStart                          = (VOID *)(UINTN)mAcpiCpuData.StackAddress;
  mExchangeInfo->StackSize                           = mAcpiCpuData.StackSize;
  mExchangeInfo->BufferStart                         = (UINT32)StartupVector;
  mExchangeInfo->Cr3                                 = (UINT32)(AsmReadCr3 ());
  mExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
}

/**
  The function is invoked before SMBASE relocation in S3 path to restores CPU status.

  The function is invoked before SMBASE relocation in S3 path. It does first time microcode load
  and restores MTRRs for both BSP and APs.

**/
VOID
InitializeCpuBeforeRebase (
  VOID
  )
{
  LoadMtrrData (mAcpiCpuData.MtrrTable);

  SetRegister (TRUE);

  ProgramVirtualWireMode ();

  PrepareApStartupVector (mAcpiCpuData.StartupVector);

  if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
    ASSERT (mNumberOfCpus <= mAcpiCpuData.NumberOfCpus);
  } else {
    ASSERT (mNumberOfCpus == mAcpiCpuData.NumberOfCpus);
  }

  mNumberToFinish           = (UINT32)(mNumberOfCpus - 1);
  mExchangeInfo->ApFunction = (VOID *)(UINTN)InitializeAp;

  //
  // Execute code for before SmmBaseReloc. Note: This flag is maintained across S3 boots.
  //
  mInitApsAfterSmmBaseReloc = FALSE;

  //
  // Send INIT IPI - SIPI to all APs
  //
  SendInitSipiSipiAllExcludingSelf ((UINT32)mAcpiCpuData.StartupVector);

  while (mNumberToFinish > 0) {
    CpuPause ();
  }
}

/**
  The function is invoked after SMBASE relocation in S3 path to restores CPU status.

  The function is invoked after SMBASE relocation in S3 path. It restores configuration according to
  data saved by normal boot path for both BSP and APs.

**/
VOID
InitializeCpuAfterRebase (
  VOID
  )
{
  if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
    ASSERT (mNumberOfCpus <= mAcpiCpuData.NumberOfCpus);
  } else {
    ASSERT (mNumberOfCpus == mAcpiCpuData.NumberOfCpus);
  }

  mNumberToFinish = (UINT32)(mNumberOfCpus - 1);

  //
  // Signal that SMM base relocation is complete and to continue initialization for all APs.
  //
  mInitApsAfterSmmBaseReloc = TRUE;

  //
  // Must begin set register after all APs have continue their initialization.
  // This is a requirement to support semaphore mechanism in register table.
  // Because if semaphore's dependence type is package type, semaphore will wait
  // for all Aps in one package finishing their tasks before set next register
  // for all APs. If the Aps not begin its task during BSP doing its task, the
  // BSP thread will hang because it is waiting for other Aps in the same
  // package finishing their task.
  //
  SetRegister (FALSE);

  while (mNumberToFinish > 0) {
    CpuPause ();
  }
}

/**
  Restore SMM Configuration in S3 boot path.

**/
VOID
RestoreSmmConfigurationInS3 (
  VOID
  )
{
  if (!mAcpiS3Enable) {
    return;
  }

  //
  // Restore SMM Configuration in S3 boot path.
  //
  if (mRestoreSmmConfigurationInS3) {
    //
    // Need make sure gSmst is correct because below function may use them.
    //
    gSmst->SmmStartupThisAp      = gSmmCpuPrivate->SmmCoreEntryContext.SmmStartupThisAp;
    gSmst->CurrentlyExecutingCpu = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
    gSmst->NumberOfCpus          = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
    gSmst->CpuSaveStateSize      = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveStateSize;
    gSmst->CpuSaveState          = gSmmCpuPrivate->SmmCoreEntryContext.CpuSaveState;

    //
    // Configure SMM Code Access Check feature if available.
    //
    ConfigSmmCodeAccessCheck ();

    SmmCpuFeaturesCompleteSmmReadyToLock ();

    mRestoreSmmConfigurationInS3 = FALSE;
  }
}

/**
  Perform SMM initialization for all processors in the S3 boot path.

  For a native platform, MP initialization in the S3 boot path is also performed in this function.
**/
VOID
EFIAPI
SmmRestoreCpu (
  VOID
  )
{
  SMM_S3_RESUME_STATE       *SmmS3ResumeState;
  IA32_DESCRIPTOR           Ia32Idtr;
  IA32_DESCRIPTOR           X64Idtr;
  IA32_IDT_GATE_DESCRIPTOR  IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
  EFI_STATUS                Status;

  DEBUG ((DEBUG_INFO, "SmmRestoreCpu()\n"));

  mSmmS3Flag = TRUE;

  //
  // See if there is enough context to resume PEI Phase
  //
  if (mSmmS3ResumeState == NULL) {
    DEBUG ((DEBUG_ERROR, "No context to return to PEI Phase\n"));
    CpuDeadLoop ();
  }

  SmmS3ResumeState = mSmmS3ResumeState;
  ASSERT (SmmS3ResumeState != NULL);

  //
  // Setup 64bit IDT in 64bit SMM env when called from 32bit PEI.
  // Note: 64bit PEI and 32bit DXE is not a supported combination.
  //
  if ((SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) && (FeaturePcdGet (PcdDxeIplSwitchToLongMode) == TRUE)) {
    //
    // Save the IA32 IDT Descriptor
    //
    AsmReadIdtr ((IA32_DESCRIPTOR *)&Ia32Idtr);

    //
    // Setup X64 IDT table
    //
    ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
    X64Idtr.Base  = (UINTN)IdtEntryTable;
    X64Idtr.Limit = (UINT16)(sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
    AsmWriteIdtr ((IA32_DESCRIPTOR *)&X64Idtr);

    //
    // Setup the default exception handler
    //
    Status = InitializeCpuExceptionHandlers (NULL);
    ASSERT_EFI_ERROR (Status);

    //
    // Initialize Debug Agent to support source level debug
    //
    InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
  }

  //
  // Skip initialization if mAcpiCpuData is not valid
  //
  if (mAcpiCpuData.NumberOfCpus > 0) {
    //
    // First time microcode load and restore MTRRs
    //
    InitializeCpuBeforeRebase ();
  }

  DEBUG ((DEBUG_INFO, "SmmRestoreCpu: mSmmRelocated is %d\n", mSmmRelocated));

  //
  // Check whether Smm Relocation is done or not.
  // If not, will do the SmmBases Relocation here!!!
  //
  if (!mSmmRelocated) {
    //
    // Restore SMBASE for BSP and all APs
    //
    SmmRelocateBases ();
  } else {
    //
    // Issue SMI IPI (All Excluding  Self SMM IPI + BSP SMM IPI) to execute first SMI init.
    //
    ExecuteFirstSmiInit ();
  }

  //
  // Skip initialization if mAcpiCpuData is not valid
  //
  if (mAcpiCpuData.NumberOfCpus > 0) {
    //
    // Restore MSRs for BSP and all APs
    //
    InitializeCpuAfterRebase ();
  }

  //
  // Set a flag to restore SMM configuration in S3 path.
  //
  mRestoreSmmConfigurationInS3 = TRUE;

  DEBUG ((DEBUG_INFO, "SMM S3 Return CS                = %x\n", SmmS3ResumeState->ReturnCs));
  DEBUG ((DEBUG_INFO, "SMM S3 Return Entry Point       = %x\n", SmmS3ResumeState->ReturnEntryPoint));
  DEBUG ((DEBUG_INFO, "SMM S3 Return Context1          = %x\n", SmmS3ResumeState->ReturnContext1));
  DEBUG ((DEBUG_INFO, "SMM S3 Return Context2          = %x\n", SmmS3ResumeState->ReturnContext2));
  DEBUG ((DEBUG_INFO, "SMM S3 Return Stack Pointer     = %x\n", SmmS3ResumeState->ReturnStackPointer));

  //
  // If SMM is in 32-bit mode or PcdDxeIplSwitchToLongMode is FALSE, then use SwitchStack() to resume PEI Phase.
  // Note: 64bit PEI and 32bit DXE is not a supported combination.
  //
  if ((SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) || (FeaturePcdGet (PcdDxeIplSwitchToLongMode) == FALSE)) {
    DEBUG ((DEBUG_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));

    SwitchStack (
      (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
      (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
      (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
      (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
      );
  }

  //
  // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
  //
  if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
    DEBUG ((DEBUG_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
    //
    // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
    //
    SaveAndSetDebugTimerInterrupt (FALSE);
    //
    // Restore IA32 IDT table
    //
    AsmWriteIdtr ((IA32_DESCRIPTOR *)&Ia32Idtr);
    AsmDisablePaging64 (
      SmmS3ResumeState->ReturnCs,
      (UINT32)SmmS3ResumeState->ReturnEntryPoint,
      (UINT32)SmmS3ResumeState->ReturnContext1,
      (UINT32)SmmS3ResumeState->ReturnContext2,
      (UINT32)SmmS3ResumeState->ReturnStackPointer
      );
  }

  //
  // Can not resume PEI Phase
  //
  DEBUG ((DEBUG_ERROR, "No context to return to PEI Phase\n"));
  CpuDeadLoop ();
}

/**
  Initialize SMM S3 resume state structure used during S3 Resume.

  @param[in] Cr3    The base address of the page tables to use in SMM.

**/
VOID
InitSmmS3ResumeState (
  IN UINT32  Cr3
  )
{
  VOID                  *GuidHob;
  EFI_SMRAM_DESCRIPTOR  *SmramDescriptor;
  SMM_S3_RESUME_STATE   *SmmS3ResumeState;
  EFI_PHYSICAL_ADDRESS  Address;
  EFI_STATUS            Status;

  if (!mAcpiS3Enable) {
    return;
  }

  GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
  if (GuidHob == NULL) {
    DEBUG ((
      DEBUG_ERROR,
      "ERROR:%a(): HOB(gEfiAcpiVariableGuid=%g) needed by S3 resume doesn't exist!\n",
      __FUNCTION__,
      &gEfiAcpiVariableGuid
      ));
    CpuDeadLoop ();
  } else {
    SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *)GET_GUID_HOB_DATA (GuidHob);

    DEBUG ((DEBUG_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
    DEBUG ((DEBUG_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));

    SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
    ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));

    mSmmS3ResumeState      = SmmS3ResumeState;
    SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;

    SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;

    SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
    SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
    if (SmmS3ResumeState->SmmS3StackBase == 0) {
      SmmS3ResumeState->SmmS3StackSize = 0;
    }

    SmmS3ResumeState->SmmS3Cr0 = mSmmCr0;
    SmmS3ResumeState->SmmS3Cr3 = Cr3;
    SmmS3ResumeState->SmmS3Cr4 = mSmmCr4;

    if (sizeof (UINTN) == sizeof (UINT64)) {
      SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
    }

    if (sizeof (UINTN) == sizeof (UINT32)) {
      SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
    }

    //
    // Patch SmmS3ResumeState->SmmS3Cr3
    //
    InitSmmS3Cr3 ();
  }

  //
  // Allocate safe memory in ACPI NVS for AP to execute hlt loop in
  // protected mode on S3 path
  //
  Address = BASE_4GB - 1;
  Status  = gBS->AllocatePages (
                   AllocateMaxAddress,
                   EfiACPIMemoryNVS,
                   EFI_SIZE_TO_PAGES (sizeof (mApHltLoopCodeTemplate)),
                   &Address
                   );
  ASSERT_EFI_ERROR (Status);
  mApHltLoopCode = (UINT8 *)(UINTN)Address;
}

/**
  Copy register table from non-SMRAM into SMRAM.

  @param[in] DestinationRegisterTableList  Points to destination register table.
  @param[in] SourceRegisterTableList       Points to source register table.
  @param[in] NumberOfCpus                  Number of CPUs.

**/
VOID
CopyRegisterTable (
  IN CPU_REGISTER_TABLE  *DestinationRegisterTableList,
  IN CPU_REGISTER_TABLE  *SourceRegisterTableList,
  IN UINT32              NumberOfCpus
  )
{
  UINTN                     Index;
  CPU_REGISTER_TABLE_ENTRY  *RegisterTableEntry;

  CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
  for (Index = 0; Index < NumberOfCpus; Index++) {
    if (DestinationRegisterTableList[Index].TableLength != 0) {
      DestinationRegisterTableList[Index].AllocatedSize = DestinationRegisterTableList[Index].TableLength * sizeof (CPU_REGISTER_TABLE_ENTRY);
      RegisterTableEntry                                = AllocateCopyPool (
                                                            DestinationRegisterTableList[Index].AllocatedSize,
                                                            (VOID *)(UINTN)SourceRegisterTableList[Index].RegisterTableEntry
                                                            );
      ASSERT (RegisterTableEntry != NULL);
      DestinationRegisterTableList[Index].RegisterTableEntry = (EFI_PHYSICAL_ADDRESS)(UINTN)RegisterTableEntry;
    }
  }
}

/**
  Check whether the register table is empty or not.

  @param[in] RegisterTable  Point to the register table.
  @param[in] NumberOfCpus   Number of CPUs.

  @retval TRUE              The register table is empty.
  @retval FALSE             The register table is not empty.
**/
BOOLEAN
IsRegisterTableEmpty (
  IN CPU_REGISTER_TABLE  *RegisterTable,
  IN UINT32              NumberOfCpus
  )
{
  UINTN  Index;

  if (RegisterTable != NULL) {
    for (Index = 0; Index < NumberOfCpus; Index++) {
      if (RegisterTable[Index].TableLength != 0) {
        return FALSE;
      }
    }
  }

  return TRUE;
}

/**
  Copy the data used to initialize processor register into SMRAM.

  @param[in,out]  CpuFeatureInitDataDst   Pointer to the destination CPU_FEATURE_INIT_DATA structure.
  @param[in]      CpuFeatureInitDataSrc   Pointer to the source CPU_FEATURE_INIT_DATA structure.

**/
VOID
CopyCpuFeatureInitDatatoSmram (
  IN OUT CPU_FEATURE_INIT_DATA  *CpuFeatureInitDataDst,
  IN     CPU_FEATURE_INIT_DATA  *CpuFeatureInitDataSrc
  )
{
  CPU_STATUS_INFORMATION  *CpuStatus;

  if (!IsRegisterTableEmpty ((CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataSrc->PreSmmInitRegisterTable, mAcpiCpuData.NumberOfCpus)) {
    CpuFeatureInitDataDst->PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
    ASSERT (CpuFeatureInitDataDst->PreSmmInitRegisterTable != 0);

    CopyRegisterTable (
      (CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataDst->PreSmmInitRegisterTable,
      (CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataSrc->PreSmmInitRegisterTable,
      mAcpiCpuData.NumberOfCpus
      );
  }

  if (!IsRegisterTableEmpty ((CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataSrc->RegisterTable, mAcpiCpuData.NumberOfCpus)) {
    CpuFeatureInitDataDst->RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
    ASSERT (CpuFeatureInitDataDst->RegisterTable != 0);

    CopyRegisterTable (
      (CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataDst->RegisterTable,
      (CPU_REGISTER_TABLE *)(UINTN)CpuFeatureInitDataSrc->RegisterTable,
      mAcpiCpuData.NumberOfCpus
      );
  }

  CpuStatus = &CpuFeatureInitDataDst->CpuStatus;
  CopyMem (CpuStatus, &CpuFeatureInitDataSrc->CpuStatus, sizeof (CPU_STATUS_INFORMATION));

  if (CpuFeatureInitDataSrc->CpuStatus.ThreadCountPerPackage != 0) {
    CpuStatus->ThreadCountPerPackage = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
                                                                      sizeof (UINT32) * CpuStatus->PackageCount,
                                                                      (UINT32 *)(UINTN)CpuFeatureInitDataSrc->CpuStatus.ThreadCountPerPackage
                                                                      );
    ASSERT (CpuStatus->ThreadCountPerPackage != 0);
  }

  if (CpuFeatureInitDataSrc->CpuStatus.ThreadCountPerCore != 0) {
    CpuStatus->ThreadCountPerCore = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
                                                                   sizeof (UINT8) * (CpuStatus->PackageCount * CpuStatus->MaxCoreCount),
                                                                   (UINT32 *)(UINTN)CpuFeatureInitDataSrc->CpuStatus.ThreadCountPerCore
                                                                   );
    ASSERT (CpuStatus->ThreadCountPerCore != 0);
  }

  if (CpuFeatureInitDataSrc->ApLocation != 0) {
    CpuFeatureInitDataDst->ApLocation = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocateCopyPool (
                                                                       mAcpiCpuData.NumberOfCpus * sizeof (EFI_CPU_PHYSICAL_LOCATION),
                                                                       (EFI_CPU_PHYSICAL_LOCATION *)(UINTN)CpuFeatureInitDataSrc->ApLocation
                                                                       );
    ASSERT (CpuFeatureInitDataDst->ApLocation != 0);
  }
}

/**
  Get ACPI CPU data.

**/
VOID
GetAcpiCpuData (
  VOID
  )
{
  ACPI_CPU_DATA           *AcpiCpuData;
  IA32_DESCRIPTOR         *Gdtr;
  IA32_DESCRIPTOR         *Idtr;
  VOID                    *GdtForAp;
  VOID                    *IdtForAp;
  VOID                    *MachineCheckHandlerForAp;
  CPU_STATUS_INFORMATION  *CpuStatus;

  if (!mAcpiS3Enable) {
    return;
  }

  //
  // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
  //
  mAcpiCpuData.NumberOfCpus = 0;

  //
  // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
  //
  AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
  if (AcpiCpuData == 0) {
    return;
  }

  //
  // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
  //
  CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));

  mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
  ASSERT (mAcpiCpuData.MtrrTable != 0);

  CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));

  mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
  ASSERT (mAcpiCpuData.GdtrProfile != 0);

  CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));

  mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
  ASSERT (mAcpiCpuData.IdtrProfile != 0);

  CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));

  //
  // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
  //
  Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
  Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;

  GdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) + mAcpiCpuData.ApMachineCheckHandlerSize);
  ASSERT (GdtForAp != NULL);
  IdtForAp                 = (VOID *)((UINTN)GdtForAp + (Gdtr->Limit + 1));
  MachineCheckHandlerForAp = (VOID *)((UINTN)IdtForAp + (Idtr->Limit + 1));

  CopyMem (GdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
  CopyMem (IdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
  CopyMem (MachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);

  Gdtr->Base                             = (UINTN)GdtForAp;
  Idtr->Base                             = (UINTN)IdtForAp;
  mAcpiCpuData.ApMachineCheckHandlerBase = (EFI_PHYSICAL_ADDRESS)(UINTN)MachineCheckHandlerForAp;

  ZeroMem (&mAcpiCpuData.CpuFeatureInitData, sizeof (CPU_FEATURE_INIT_DATA));

  if (!PcdGetBool (PcdCpuFeaturesInitOnS3Resume)) {
    //
    // If the CPU features will not be initialized by CpuFeaturesPei module during
    // next ACPI S3 resume, copy the CPU features initialization data into SMRAM,
    // which will be consumed in SmmRestoreCpu during next S3 resume.
    //
    CopyCpuFeatureInitDatatoSmram (&mAcpiCpuData.CpuFeatureInitData, &AcpiCpuData->CpuFeatureInitData);

    CpuStatus = &mAcpiCpuData.CpuFeatureInitData.CpuStatus;

    mCpuFlags.CoreSemaphoreCount = AllocateZeroPool (
                                     sizeof (UINT32) * CpuStatus->PackageCount *
                                     CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount
                                     );
    ASSERT (mCpuFlags.CoreSemaphoreCount != NULL);

    mCpuFlags.PackageSemaphoreCount = AllocateZeroPool (
                                        sizeof (UINT32) * CpuStatus->PackageCount *
                                        CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount
                                        );
    ASSERT (mCpuFlags.PackageSemaphoreCount != NULL);

    InitializeSpinLock ((SPIN_LOCK *)&mCpuFlags.MemoryMappedLock);
  }
}

/**
  Get ACPI S3 enable flag.

**/
VOID
GetAcpiS3EnableFlag (
  VOID
  )
{
  mAcpiS3Enable = PcdGetBool (PcdAcpiS3Enable);
}