summaryrefslogtreecommitdiffstats
path: root/UefiCpuPkg/PiSmmCpuDxeSmm/X64/PageTbl.c
blob: 6902584b1fbdf0436bab5ac260a9bf7a1f1bed9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
/** @file
Page Fault (#PF) handler for X64 processors

Copyright (c) 2009 - 2019, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>

SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "PiSmmCpuDxeSmm.h"

#define PAGE_TABLE_PAGES            8
#define ACC_MAX_BIT                 BIT3

extern UINTN mSmmShadowStackSize;

LIST_ENTRY                          mPagePool = INITIALIZE_LIST_HEAD_VARIABLE (mPagePool);
BOOLEAN                             m1GPageTableSupport = FALSE;
BOOLEAN                             mCpuSmmRestrictedMemoryAccess;
BOOLEAN                             m5LevelPagingNeeded;
X86_ASSEMBLY_PATCH_LABEL            gPatch5LevelPagingNeeded;

/**
  Disable CET.
**/
VOID
EFIAPI
DisableCet (
  VOID
  );

/**
  Enable CET.
**/
VOID
EFIAPI
EnableCet (
  VOID
  );

/**
  Check if 1-GByte pages is supported by processor or not.

  @retval TRUE   1-GByte pages is supported.
  @retval FALSE  1-GByte pages is not supported.

**/
BOOLEAN
Is1GPageSupport (
  VOID
  )
{
  UINT32         RegEax;
  UINT32         RegEdx;

  AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
  if (RegEax >= 0x80000001) {
    AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
    if ((RegEdx & BIT26) != 0) {
      return TRUE;
    }
  }
  return FALSE;
}

/**
  The routine returns TRUE when CPU supports it (CPUID[7,0].ECX.BIT[16] is set) and
  the max physical address bits is bigger than 48. Because 4-level paging can support
  to address physical address up to 2^48 - 1, there is no need to enable 5-level paging
  with max physical address bits <= 48.

  @retval TRUE  5-level paging enabling is needed.
  @retval FALSE 5-level paging enabling is not needed.
**/
BOOLEAN
Is5LevelPagingNeeded (
  VOID
  )
{
  CPUID_VIR_PHY_ADDRESS_SIZE_EAX              VirPhyAddressSize;
  CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX ExtFeatureEcx;
  UINT32                                      MaxExtendedFunctionId;

  AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedFunctionId, NULL, NULL, NULL);
  if (MaxExtendedFunctionId >= CPUID_VIR_PHY_ADDRESS_SIZE) {
    AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &VirPhyAddressSize.Uint32, NULL, NULL, NULL);
  } else {
    VirPhyAddressSize.Bits.PhysicalAddressBits = 36;
  }
  AsmCpuidEx (
    CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS,
    CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO,
    NULL, NULL, &ExtFeatureEcx.Uint32, NULL
    );
  DEBUG ((
    DEBUG_INFO, "PhysicalAddressBits = %d, 5LPageTable = %d.\n",
    VirPhyAddressSize.Bits.PhysicalAddressBits, ExtFeatureEcx.Bits.FiveLevelPage
    ));

  if (VirPhyAddressSize.Bits.PhysicalAddressBits > 4 * 9 + 12) {
    ASSERT (ExtFeatureEcx.Bits.FiveLevelPage == 1);
    return TRUE;
  } else {
    return FALSE;
  }
}

/**
  Get page table base address and the depth of the page table.

  @param[out] Base        Page table base address.
  @param[out] FiveLevels  TRUE means 5 level paging. FALSE means 4 level paging.
**/
VOID
GetPageTable (
  OUT UINTN   *Base,
  OUT BOOLEAN *FiveLevels OPTIONAL
  )
{
  IA32_CR4 Cr4;

  if (mInternalCr3 == 0) {
    *Base = AsmReadCr3 () & PAGING_4K_ADDRESS_MASK_64;
    if (FiveLevels != NULL) {
      Cr4.UintN = AsmReadCr4 ();
      *FiveLevels = (BOOLEAN)(Cr4.Bits.LA57 == 1);
    }
    return;
  }

  *Base = mInternalCr3;
  if (FiveLevels != NULL) {
    *FiveLevels = m5LevelPagingNeeded;
  }
}

/**
  Set sub-entries number in entry.

  @param[in, out] Entry        Pointer to entry
  @param[in]      SubEntryNum  Sub-entries number based on 0:
                               0 means there is 1 sub-entry under this entry
                               0x1ff means there is 512 sub-entries under this entry

**/
VOID
SetSubEntriesNum (
  IN OUT UINT64               *Entry,
  IN     UINT64               SubEntryNum
  )
{
  //
  // Sub-entries number is saved in BIT52 to BIT60 (reserved field) in Entry
  //
  *Entry = BitFieldWrite64 (*Entry, 52, 60, SubEntryNum);
}

/**
  Return sub-entries number in entry.

  @param[in] Entry        Pointer to entry

  @return Sub-entries number based on 0:
          0 means there is 1 sub-entry under this entry
          0x1ff means there is 512 sub-entries under this entry
**/
UINT64
GetSubEntriesNum (
  IN UINT64            *Entry
  )
{
  //
  // Sub-entries number is saved in BIT52 to BIT60 (reserved field) in Entry
  //
  return BitFieldRead64 (*Entry, 52, 60);
}

/**
  Calculate the maximum support address.

  @return the maximum support address.
**/
UINT8
CalculateMaximumSupportAddress (
  VOID
  )
{
  UINT32                                        RegEax;
  UINT8                                         PhysicalAddressBits;
  VOID                                          *Hob;

  //
  // Get physical address bits supported.
  //
  Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
  if (Hob != NULL) {
    PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
  } else {
    AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
    if (RegEax >= 0x80000008) {
      AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
      PhysicalAddressBits = (UINT8) RegEax;
    } else {
      PhysicalAddressBits = 36;
    }
  }
  return PhysicalAddressBits;
}

/**
  Set static page table.

  @param[in] PageTable     Address of page table.
**/
VOID
SetStaticPageTable (
  IN UINTN               PageTable
  )
{
  UINT64                                        PageAddress;
  UINTN                                         NumberOfPml5EntriesNeeded;
  UINTN                                         NumberOfPml4EntriesNeeded;
  UINTN                                         NumberOfPdpEntriesNeeded;
  UINTN                                         IndexOfPml5Entries;
  UINTN                                         IndexOfPml4Entries;
  UINTN                                         IndexOfPdpEntries;
  UINTN                                         IndexOfPageDirectoryEntries;
  UINT64                                        *PageMapLevel5Entry;
  UINT64                                        *PageMapLevel4Entry;
  UINT64                                        *PageMap;
  UINT64                                        *PageDirectoryPointerEntry;
  UINT64                                        *PageDirectory1GEntry;
  UINT64                                        *PageDirectoryEntry;

  //
  // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses
  //  when 5-Level Paging is disabled.
  //
  ASSERT (mPhysicalAddressBits <= 52);
  if (!m5LevelPagingNeeded && mPhysicalAddressBits > 48) {
    mPhysicalAddressBits = 48;
  }

  NumberOfPml5EntriesNeeded = 1;
  if (mPhysicalAddressBits > 48) {
    NumberOfPml5EntriesNeeded = (UINTN) LShiftU64 (1, mPhysicalAddressBits - 48);
    mPhysicalAddressBits = 48;
  }

  NumberOfPml4EntriesNeeded = 1;
  if (mPhysicalAddressBits > 39) {
    NumberOfPml4EntriesNeeded = (UINTN) LShiftU64 (1, mPhysicalAddressBits - 39);
    mPhysicalAddressBits = 39;
  }

  NumberOfPdpEntriesNeeded = 1;
  ASSERT (mPhysicalAddressBits > 30);
  NumberOfPdpEntriesNeeded = (UINTN) LShiftU64 (1, mPhysicalAddressBits - 30);

  //
  // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
  //
  PageMap         = (VOID *) PageTable;

  PageMapLevel4Entry = PageMap;
  PageMapLevel5Entry = NULL;
  if (m5LevelPagingNeeded) {
    //
    // By architecture only one PageMapLevel5 exists - so lets allocate storage for it.
    //
    PageMapLevel5Entry = PageMap;
  }
  PageAddress        = 0;

  for ( IndexOfPml5Entries = 0
      ; IndexOfPml5Entries < NumberOfPml5EntriesNeeded
      ; IndexOfPml5Entries++, PageMapLevel5Entry++) {
    //
    // Each PML5 entry points to a page of PML4 entires.
    // So lets allocate space for them and fill them in in the IndexOfPml4Entries loop.
    // When 5-Level Paging is disabled, below allocation happens only once.
    //
    if (m5LevelPagingNeeded) {
      PageMapLevel4Entry = (UINT64 *) ((*PageMapLevel5Entry) & ~mAddressEncMask & gPhyMask);
      if (PageMapLevel4Entry == NULL) {
        PageMapLevel4Entry = AllocatePageTableMemory (1);
        ASSERT(PageMapLevel4Entry != NULL);
        ZeroMem (PageMapLevel4Entry, EFI_PAGES_TO_SIZE(1));

        *PageMapLevel5Entry = (UINT64)(UINTN)PageMapLevel4Entry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
      }
    }

    for (IndexOfPml4Entries = 0; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512); IndexOfPml4Entries++, PageMapLevel4Entry++) {
      //
      // Each PML4 entry points to a page of Page Directory Pointer entries.
      //
      PageDirectoryPointerEntry = (UINT64 *) ((*PageMapLevel4Entry) & ~mAddressEncMask & gPhyMask);
      if (PageDirectoryPointerEntry == NULL) {
        PageDirectoryPointerEntry = AllocatePageTableMemory (1);
        ASSERT(PageDirectoryPointerEntry != NULL);
        ZeroMem (PageDirectoryPointerEntry, EFI_PAGES_TO_SIZE(1));

        *PageMapLevel4Entry = (UINT64)(UINTN)PageDirectoryPointerEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
      }

      if (m1GPageTableSupport) {
        PageDirectory1GEntry = PageDirectoryPointerEntry;
        for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
          if (IndexOfPml4Entries == 0 && IndexOfPageDirectoryEntries < 4) {
            //
            // Skip the < 4G entries
            //
            continue;
          }
          //
          // Fill in the Page Directory entries
          //
          *PageDirectory1GEntry = PageAddress | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
        }
      } else {
        PageAddress = BASE_4GB;
        for (IndexOfPdpEntries = 0; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512); IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
          if (IndexOfPml4Entries == 0 && IndexOfPdpEntries < 4) {
            //
            // Skip the < 4G entries
            //
            continue;
          }
          //
          // Each Directory Pointer entries points to a page of Page Directory entires.
          // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
          //
          PageDirectoryEntry = (UINT64 *) ((*PageDirectoryPointerEntry) & ~mAddressEncMask & gPhyMask);
          if (PageDirectoryEntry == NULL) {
            PageDirectoryEntry = AllocatePageTableMemory (1);
            ASSERT(PageDirectoryEntry != NULL);
            ZeroMem (PageDirectoryEntry, EFI_PAGES_TO_SIZE(1));

            //
            // Fill in a Page Directory Pointer Entries
            //
            *PageDirectoryPointerEntry = (UINT64)(UINTN)PageDirectoryEntry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
          }

          for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
            //
            // Fill in the Page Directory entries
            //
            *PageDirectoryEntry = PageAddress | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
          }
        }
      }
    }
  }
}

/**
  Create PageTable for SMM use.

  @return The address of PML4 (to set CR3).

**/
UINT32
SmmInitPageTable (
  VOID
  )
{
  EFI_PHYSICAL_ADDRESS              Pages;
  UINT64                            *PTEntry;
  LIST_ENTRY                        *FreePage;
  UINTN                             Index;
  UINTN                             PageFaultHandlerHookAddress;
  IA32_IDT_GATE_DESCRIPTOR          *IdtEntry;
  EFI_STATUS                        Status;
  UINT64                            *Pml4Entry;
  UINT64                            *Pml5Entry;

  //
  // Initialize spin lock
  //
  InitializeSpinLock (mPFLock);

  mCpuSmmRestrictedMemoryAccess = PcdGetBool (PcdCpuSmmRestrictedMemoryAccess);
  m1GPageTableSupport           = Is1GPageSupport ();
  m5LevelPagingNeeded           = Is5LevelPagingNeeded ();
  mPhysicalAddressBits          = CalculateMaximumSupportAddress ();
  PatchInstructionX86 (gPatch5LevelPagingNeeded, m5LevelPagingNeeded, 1);
  DEBUG ((DEBUG_INFO, "5LevelPaging Needed             - %d\n", m5LevelPagingNeeded));
  DEBUG ((DEBUG_INFO, "1GPageTable Support             - %d\n", m1GPageTableSupport));
  DEBUG ((DEBUG_INFO, "PcdCpuSmmRestrictedMemoryAccess - %d\n", mCpuSmmRestrictedMemoryAccess));
  DEBUG ((DEBUG_INFO, "PhysicalAddressBits             - %d\n", mPhysicalAddressBits));
  //
  // Generate PAE page table for the first 4GB memory space
  //
  Pages = Gen4GPageTable (FALSE);

  //
  // Set IA32_PG_PMNT bit to mask this entry
  //
  PTEntry = (UINT64*)(UINTN)Pages;
  for (Index = 0; Index < 4; Index++) {
    PTEntry[Index] |= IA32_PG_PMNT;
  }

  //
  // Fill Page-Table-Level4 (PML4) entry
  //
  Pml4Entry = (UINT64*)AllocatePageTableMemory (1);
  ASSERT (Pml4Entry != NULL);
  *Pml4Entry = Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
  ZeroMem (Pml4Entry + 1, EFI_PAGE_SIZE - sizeof (*Pml4Entry));

  //
  // Set sub-entries number
  //
  SetSubEntriesNum (Pml4Entry, 3);
  PTEntry = Pml4Entry;

  if (m5LevelPagingNeeded) {
    //
    // Fill PML5 entry
    //
    Pml5Entry = (UINT64*)AllocatePageTableMemory (1);
    ASSERT (Pml5Entry != NULL);
    *Pml5Entry = (UINTN) Pml4Entry | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
    ZeroMem (Pml5Entry + 1, EFI_PAGE_SIZE - sizeof (*Pml5Entry));
    //
    // Set sub-entries number
    //
    SetSubEntriesNum (Pml5Entry, 1);
    PTEntry = Pml5Entry;
  }

  if (mCpuSmmRestrictedMemoryAccess) {
    //
    // When access to non-SMRAM memory is restricted, create page table
    // that covers all memory space.
    //
    SetStaticPageTable ((UINTN)PTEntry);
  } else {
    //
    // Add pages to page pool
    //
    FreePage = (LIST_ENTRY*)AllocatePageTableMemory (PAGE_TABLE_PAGES);
    ASSERT (FreePage != NULL);
    for (Index = 0; Index < PAGE_TABLE_PAGES; Index++) {
      InsertTailList (&mPagePool, FreePage);
      FreePage += EFI_PAGE_SIZE / sizeof (*FreePage);
    }
  }

  if (FeaturePcdGet (PcdCpuSmmProfileEnable) ||
      HEAP_GUARD_NONSTOP_MODE ||
      NULL_DETECTION_NONSTOP_MODE) {
    //
    // Set own Page Fault entry instead of the default one, because SMM Profile
    // feature depends on IRET instruction to do Single Step
    //
    PageFaultHandlerHookAddress = (UINTN)PageFaultIdtHandlerSmmProfile;
    IdtEntry  = (IA32_IDT_GATE_DESCRIPTOR *) gcSmiIdtr.Base;
    IdtEntry += EXCEPT_IA32_PAGE_FAULT;
    IdtEntry->Bits.OffsetLow      = (UINT16)PageFaultHandlerHookAddress;
    IdtEntry->Bits.Reserved_0     = 0;
    IdtEntry->Bits.GateType       = IA32_IDT_GATE_TYPE_INTERRUPT_32;
    IdtEntry->Bits.OffsetHigh     = (UINT16)(PageFaultHandlerHookAddress >> 16);
    IdtEntry->Bits.OffsetUpper    = (UINT32)(PageFaultHandlerHookAddress >> 32);
    IdtEntry->Bits.Reserved_1     = 0;
  } else {
    //
    // Register Smm Page Fault Handler
    //
    Status = SmmRegisterExceptionHandler (&mSmmCpuService, EXCEPT_IA32_PAGE_FAULT, SmiPFHandler);
    ASSERT_EFI_ERROR (Status);
  }

  //
  // Additional SMM IDT initialization for SMM stack guard
  //
  if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
    InitializeIDTSmmStackGuard ();
  }

  //
  // Return the address of PML4/PML5 (to set CR3)
  //
  return (UINT32)(UINTN)PTEntry;
}

/**
  Set access record in entry.

  @param[in, out] Entry        Pointer to entry
  @param[in]      Acc          Access record value

**/
VOID
SetAccNum (
  IN OUT UINT64               *Entry,
  IN     UINT64               Acc
  )
{
  //
  // Access record is saved in BIT9 to BIT11 (reserved field) in Entry
  //
  *Entry = BitFieldWrite64 (*Entry, 9, 11, Acc);
}

/**
  Return access record in entry.

  @param[in] Entry        Pointer to entry

  @return Access record value.

**/
UINT64
GetAccNum (
  IN UINT64            *Entry
  )
{
  //
  // Access record is saved in BIT9 to BIT11 (reserved field) in Entry
  //
  return BitFieldRead64 (*Entry, 9, 11);
}

/**
  Return and update the access record in entry.

  @param[in, out]  Entry    Pointer to entry

  @return Access record value.

**/
UINT64
GetAndUpdateAccNum (
  IN OUT UINT64      *Entry
  )
{
  UINT64         Acc;

  Acc = GetAccNum (Entry);
  if ((*Entry & IA32_PG_A) != 0) {
    //
    // If this entry has been accessed, clear access flag in Entry and update access record
    // to the initial value 7, adding ACC_MAX_BIT is to make it larger than others
    //
    *Entry &= ~(UINT64)(UINTN)IA32_PG_A;
    SetAccNum (Entry, 0x7);
    return (0x7 + ACC_MAX_BIT);
  } else {
    if (Acc != 0) {
      //
      // If the access record is not the smallest value 0, minus 1 and update the access record field
      //
      SetAccNum (Entry, Acc - 1);
    }
  }
  return Acc;
}

/**
  Reclaim free pages for PageFault handler.

  Search the whole entries tree to find the leaf entry that has the smallest
  access record value. Insert the page pointed by this leaf entry into the
  page pool. And check its upper entries if need to be inserted into the page
  pool or not.

**/
VOID
ReclaimPages (
  VOID
  )
{
  UINT64                       Pml5Entry;
  UINT64                       *Pml5;
  UINT64                       *Pml4;
  UINT64                       *Pdpt;
  UINT64                       *Pdt;
  UINTN                        Pml5Index;
  UINTN                        Pml4Index;
  UINTN                        PdptIndex;
  UINTN                        PdtIndex;
  UINTN                        MinPml5;
  UINTN                        MinPml4;
  UINTN                        MinPdpt;
  UINTN                        MinPdt;
  UINT64                       MinAcc;
  UINT64                       Acc;
  UINT64                       SubEntriesNum;
  BOOLEAN                      PML4EIgnore;
  BOOLEAN                      PDPTEIgnore;
  UINT64                       *ReleasePageAddress;
  IA32_CR4                     Cr4;
  BOOLEAN                      Enable5LevelPaging;
  UINT64                       PFAddress;
  UINT64                       PFAddressPml5Index;
  UINT64                       PFAddressPml4Index;
  UINT64                       PFAddressPdptIndex;
  UINT64                       PFAddressPdtIndex;

  Pml4 = NULL;
  Pdpt = NULL;
  Pdt  = NULL;
  MinAcc  = (UINT64)-1;
  MinPml4 = (UINTN)-1;
  MinPml5 = (UINTN)-1;
  MinPdpt = (UINTN)-1;
  MinPdt  = (UINTN)-1;
  Acc     = 0;
  ReleasePageAddress = 0;
  PFAddress = AsmReadCr2 ();
  PFAddressPml5Index = BitFieldRead64 (PFAddress, 48, 48 + 8);
  PFAddressPml4Index = BitFieldRead64 (PFAddress, 39, 39 + 8);
  PFAddressPdptIndex = BitFieldRead64 (PFAddress, 30, 30 + 8);
  PFAddressPdtIndex = BitFieldRead64 (PFAddress, 21, 21 + 8);

  Cr4.UintN = AsmReadCr4 ();
  Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);
  Pml5 = (UINT64*)(UINTN)(AsmReadCr3 () & gPhyMask);

  if (!Enable5LevelPaging) {
    //
    // Create one fake PML5 entry for 4-Level Paging
    // so that the page table parsing logic only handles 5-Level page structure.
    //
    Pml5Entry = (UINTN) Pml5 | IA32_PG_P;
    Pml5 = &Pml5Entry;
  }

  //
  // First, find the leaf entry has the smallest access record value
  //
  for (Pml5Index = 0; Pml5Index < (Enable5LevelPaging ? (EFI_PAGE_SIZE / sizeof (*Pml4)) : 1); Pml5Index++) {
    if ((Pml5[Pml5Index] & IA32_PG_P) == 0 || (Pml5[Pml5Index] & IA32_PG_PMNT) != 0) {
      //
      // If the PML5 entry is not present or is masked, skip it
      //
      continue;
    }
    Pml4 = (UINT64*)(UINTN)(Pml5[Pml5Index] & gPhyMask);
    for (Pml4Index = 0; Pml4Index < EFI_PAGE_SIZE / sizeof (*Pml4); Pml4Index++) {
      if ((Pml4[Pml4Index] & IA32_PG_P) == 0 || (Pml4[Pml4Index] & IA32_PG_PMNT) != 0) {
        //
        // If the PML4 entry is not present or is masked, skip it
        //
        continue;
      }
      Pdpt = (UINT64*)(UINTN)(Pml4[Pml4Index] & ~mAddressEncMask & gPhyMask);
      PML4EIgnore = FALSE;
      for (PdptIndex = 0; PdptIndex < EFI_PAGE_SIZE / sizeof (*Pdpt); PdptIndex++) {
        if ((Pdpt[PdptIndex] & IA32_PG_P) == 0 || (Pdpt[PdptIndex] & IA32_PG_PMNT) != 0) {
          //
          // If the PDPT entry is not present or is masked, skip it
          //
          if ((Pdpt[PdptIndex] & IA32_PG_PMNT) != 0) {
            //
            // If the PDPT entry is masked, we will ignore checking the PML4 entry
            //
            PML4EIgnore = TRUE;
          }
          continue;
        }
        if ((Pdpt[PdptIndex] & IA32_PG_PS) == 0) {
          //
          // It's not 1-GByte pages entry, it should be a PDPT entry,
          // we will not check PML4 entry more
          //
          PML4EIgnore = TRUE;
          Pdt = (UINT64*)(UINTN)(Pdpt[PdptIndex] & ~mAddressEncMask & gPhyMask);
          PDPTEIgnore = FALSE;
          for (PdtIndex = 0; PdtIndex < EFI_PAGE_SIZE / sizeof(*Pdt); PdtIndex++) {
            if ((Pdt[PdtIndex] & IA32_PG_P) == 0 || (Pdt[PdtIndex] & IA32_PG_PMNT) != 0) {
              //
              // If the PD entry is not present or is masked, skip it
              //
              if ((Pdt[PdtIndex] & IA32_PG_PMNT) != 0) {
                //
                // If the PD entry is masked, we will not PDPT entry more
                //
                PDPTEIgnore = TRUE;
              }
              continue;
            }
            if ((Pdt[PdtIndex] & IA32_PG_PS) == 0) {
              //
              // It's not 2 MByte page table entry, it should be PD entry
              // we will find the entry has the smallest access record value
              //
              PDPTEIgnore = TRUE;
              if (PdtIndex != PFAddressPdtIndex || PdptIndex != PFAddressPdptIndex ||
                  Pml4Index != PFAddressPml4Index || Pml5Index != PFAddressPml5Index) {
                Acc = GetAndUpdateAccNum (Pdt + PdtIndex);
                if (Acc < MinAcc) {
                  //
                  // If the PD entry has the smallest access record value,
                  // save the Page address to be released
                  //
                  MinAcc  = Acc;
                  MinPml5 = Pml5Index;
                  MinPml4 = Pml4Index;
                  MinPdpt = PdptIndex;
                  MinPdt  = PdtIndex;
                  ReleasePageAddress = Pdt + PdtIndex;
                }
              }
            }
          }
          if (!PDPTEIgnore) {
            //
            // If this PDPT entry has no PDT entries pointer to 4 KByte pages,
            // it should only has the entries point to 2 MByte Pages
            //
            if (PdptIndex != PFAddressPdptIndex || Pml4Index != PFAddressPml4Index ||
                Pml5Index != PFAddressPml5Index) {
              Acc = GetAndUpdateAccNum (Pdpt + PdptIndex);
              if (Acc < MinAcc) {
                //
                // If the PDPT entry has the smallest access record value,
                // save the Page address to be released
                //
                MinAcc  = Acc;
                MinPml5 = Pml5Index;
                MinPml4 = Pml4Index;
                MinPdpt = PdptIndex;
                MinPdt  = (UINTN)-1;
                ReleasePageAddress = Pdpt + PdptIndex;
              }
            }
          }
        }
      }
      if (!PML4EIgnore) {
        //
        // If PML4 entry has no the PDPT entry pointer to 2 MByte pages,
        // it should only has the entries point to 1 GByte Pages
        //
        if (Pml4Index != PFAddressPml4Index || Pml5Index != PFAddressPml5Index) {
          Acc = GetAndUpdateAccNum (Pml4 + Pml4Index);
          if (Acc < MinAcc) {
            //
            // If the PML4 entry has the smallest access record value,
            // save the Page address to be released
            //
            MinAcc  = Acc;
            MinPml5 = Pml5Index;
            MinPml4 = Pml4Index;
            MinPdpt = (UINTN)-1;
            MinPdt  = (UINTN)-1;
            ReleasePageAddress = Pml4 + Pml4Index;
          }
        }
      }
    }
  }
  //
  // Make sure one PML4/PDPT/PD entry is selected
  //
  ASSERT (MinAcc != (UINT64)-1);

  //
  // Secondly, insert the page pointed by this entry into page pool and clear this entry
  //
  InsertTailList (&mPagePool, (LIST_ENTRY*)(UINTN)(*ReleasePageAddress & ~mAddressEncMask & gPhyMask));
  *ReleasePageAddress = 0;

  //
  // Lastly, check this entry's upper entries if need to be inserted into page pool
  // or not
  //
  while (TRUE) {
    if (MinPdt != (UINTN)-1) {
      //
      // If 4 KByte Page Table is released, check the PDPT entry
      //
      Pml4 = (UINT64 *) (UINTN) (Pml5[MinPml5] & gPhyMask);
      Pdpt = (UINT64*)(UINTN)(Pml4[MinPml4] & ~mAddressEncMask & gPhyMask);
      SubEntriesNum = GetSubEntriesNum(Pdpt + MinPdpt);
      if (SubEntriesNum == 0 &&
          (MinPdpt != PFAddressPdptIndex || MinPml4 != PFAddressPml4Index || MinPml5 != PFAddressPml5Index)) {
        //
        // Release the empty Page Directory table if there was no more 4 KByte Page Table entry
        // clear the Page directory entry
        //
        InsertTailList (&mPagePool, (LIST_ENTRY*)(UINTN)(Pdpt[MinPdpt] & ~mAddressEncMask & gPhyMask));
        Pdpt[MinPdpt] = 0;
        //
        // Go on checking the PML4 table
        //
        MinPdt = (UINTN)-1;
        continue;
      }
      //
      // Update the sub-entries filed in PDPT entry and exit
      //
      SetSubEntriesNum (Pdpt + MinPdpt, (SubEntriesNum - 1) & 0x1FF);
      break;
    }
    if (MinPdpt != (UINTN)-1) {
      //
      // One 2MB Page Table is released or Page Directory table is released, check the PML4 entry
      //
      SubEntriesNum = GetSubEntriesNum (Pml4 + MinPml4);
      if (SubEntriesNum == 0 && (MinPml4 != PFAddressPml4Index || MinPml5 != PFAddressPml5Index)) {
        //
        // Release the empty PML4 table if there was no more 1G KByte Page Table entry
        // clear the Page directory entry
        //
        InsertTailList (&mPagePool, (LIST_ENTRY*)(UINTN)(Pml4[MinPml4] & ~mAddressEncMask & gPhyMask));
        Pml4[MinPml4] = 0;
        MinPdpt = (UINTN)-1;
        continue;
      }
      //
      // Update the sub-entries filed in PML4 entry and exit
      //
      SetSubEntriesNum (Pml4 + MinPml4, (SubEntriesNum - 1) & 0x1FF);
      break;
    }
    //
    // PLM4 table has been released before, exit it
    //
    break;
  }
}

/**
  Allocate free Page for PageFault handler use.

  @return Page address.

**/
UINT64
AllocPage (
  VOID
  )
{
  UINT64                            RetVal;

  if (IsListEmpty (&mPagePool)) {
    //
    // If page pool is empty, reclaim the used pages and insert one into page pool
    //
    ReclaimPages ();
  }

  //
  // Get one free page and remove it from page pool
  //
  RetVal = (UINT64)(UINTN)mPagePool.ForwardLink;
  RemoveEntryList (mPagePool.ForwardLink);
  //
  // Clean this page and return
  //
  ZeroMem ((VOID*)(UINTN)RetVal, EFI_PAGE_SIZE);
  return RetVal;
}

/**
  Page Fault handler for SMM use.

**/
VOID
SmiDefaultPFHandler (
  VOID
  )
{
  UINT64                            *PageTable;
  UINT64                            *PageTableTop;
  UINT64                            PFAddress;
  UINTN                             StartBit;
  UINTN                             EndBit;
  UINT64                            PTIndex;
  UINTN                             Index;
  SMM_PAGE_SIZE_TYPE                PageSize;
  UINTN                             NumOfPages;
  UINTN                             PageAttribute;
  EFI_STATUS                        Status;
  UINT64                            *UpperEntry;
  BOOLEAN                           Enable5LevelPaging;
  IA32_CR4                          Cr4;

  //
  // Set default SMM page attribute
  //
  PageSize = SmmPageSize2M;
  NumOfPages = 1;
  PageAttribute = 0;

  EndBit = 0;
  PageTableTop = (UINT64*)(AsmReadCr3 () & gPhyMask);
  PFAddress = AsmReadCr2 ();

  Cr4.UintN = AsmReadCr4 ();
  Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 != 0);

  Status = GetPlatformPageTableAttribute (PFAddress, &PageSize, &NumOfPages, &PageAttribute);
  //
  // If platform not support page table attribute, set default SMM page attribute
  //
  if (Status != EFI_SUCCESS) {
    PageSize = SmmPageSize2M;
    NumOfPages = 1;
    PageAttribute = 0;
  }
  if (PageSize >= MaxSmmPageSizeType) {
    PageSize = SmmPageSize2M;
  }
  if (NumOfPages > 512) {
    NumOfPages = 512;
  }

  switch (PageSize) {
  case SmmPageSize4K:
    //
    // BIT12 to BIT20 is Page Table index
    //
    EndBit = 12;
    break;
  case SmmPageSize2M:
    //
    // BIT21 to BIT29 is Page Directory index
    //
    EndBit = 21;
    PageAttribute |= (UINTN)IA32_PG_PS;
    break;
  case SmmPageSize1G:
    if (!m1GPageTableSupport) {
      DEBUG ((DEBUG_ERROR, "1-GByte pages is not supported!"));
      ASSERT (FALSE);
    }
    //
    // BIT30 to BIT38 is Page Directory Pointer Table index
    //
    EndBit = 30;
    PageAttribute |= (UINTN)IA32_PG_PS;
    break;
  default:
    ASSERT (FALSE);
  }

  //
  // If execute-disable is enabled, set NX bit
  //
  if (mXdEnabled) {
    PageAttribute |= IA32_PG_NX;
  }

  for (Index = 0; Index < NumOfPages; Index++) {
    PageTable  = PageTableTop;
    UpperEntry = NULL;
    for (StartBit = Enable5LevelPaging ? 48 : 39; StartBit > EndBit; StartBit -= 9) {
      PTIndex = BitFieldRead64 (PFAddress, StartBit, StartBit + 8);
      if ((PageTable[PTIndex] & IA32_PG_P) == 0) {
        //
        // If the entry is not present, allocate one page from page pool for it
        //
        PageTable[PTIndex] = AllocPage () | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
      } else {
        //
        // Save the upper entry address
        //
        UpperEntry = PageTable + PTIndex;
      }
      //
      // BIT9 to BIT11 of entry is used to save access record,
      // initialize value is 7
      //
      PageTable[PTIndex] |= (UINT64)IA32_PG_A;
      SetAccNum (PageTable + PTIndex, 7);
      PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & ~mAddressEncMask & gPhyMask);
    }

    PTIndex = BitFieldRead64 (PFAddress, StartBit, StartBit + 8);
    if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
      //
      // Check if the entry has already existed, this issue may occur when the different
      // size page entries created under the same entry
      //
      DEBUG ((DEBUG_ERROR, "PageTable = %lx, PTIndex = %x, PageTable[PTIndex] = %lx\n", PageTable, PTIndex, PageTable[PTIndex]));
      DEBUG ((DEBUG_ERROR, "New page table overlapped with old page table!\n"));
      ASSERT (FALSE);
    }
    //
    // Fill the new entry
    //
    PageTable[PTIndex] = ((PFAddress | mAddressEncMask) & gPhyMask & ~((1ull << EndBit) - 1)) |
                         PageAttribute | IA32_PG_A | PAGE_ATTRIBUTE_BITS;
    if (UpperEntry != NULL) {
      SetSubEntriesNum (UpperEntry, (GetSubEntriesNum (UpperEntry) + 1) & 0x1FF);
    }
    //
    // Get the next page address if we need to create more page tables
    //
    PFAddress += (1ull << EndBit);
  }
}

/**
  ThePage Fault handler wrapper for SMM use.

  @param  InterruptType    Defines the type of interrupt or exception that
                           occurred on the processor.This parameter is processor architecture specific.
  @param  SystemContext    A pointer to the processor context when
                           the interrupt occurred on the processor.
**/
VOID
EFIAPI
SmiPFHandler (
  IN EFI_EXCEPTION_TYPE   InterruptType,
  IN EFI_SYSTEM_CONTEXT   SystemContext
  )
{
  UINTN             PFAddress;
  UINTN             GuardPageAddress;
  UINTN             ShadowStackGuardPageAddress;
  UINTN             CpuIndex;

  ASSERT (InterruptType == EXCEPT_IA32_PAGE_FAULT);

  AcquireSpinLock (mPFLock);

  PFAddress = AsmReadCr2 ();

  if (mCpuSmmRestrictedMemoryAccess && (PFAddress >= LShiftU64 (1, (mPhysicalAddressBits - 1)))) {
    DumpCpuContext (InterruptType, SystemContext);
    DEBUG ((DEBUG_ERROR, "Do not support address 0x%lx by processor!\n", PFAddress));
    CpuDeadLoop ();
    goto Exit;
  }

  //
  // If a page fault occurs in SMRAM range, it might be in a SMM stack/shadow stack guard page,
  // or SMM page protection violation.
  //
  if ((PFAddress >= mCpuHotPlugData.SmrrBase) &&
      (PFAddress < (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize))) {
    DumpCpuContext (InterruptType, SystemContext);
    CpuIndex = GetCpuIndex ();
    GuardPageAddress = (mSmmStackArrayBase + EFI_PAGE_SIZE + CpuIndex * (mSmmStackSize + mSmmShadowStackSize));
    ShadowStackGuardPageAddress = (mSmmStackArrayBase + mSmmStackSize + EFI_PAGE_SIZE + CpuIndex * (mSmmStackSize + mSmmShadowStackSize));
    if ((FeaturePcdGet (PcdCpuSmmStackGuard)) &&
        (PFAddress >= GuardPageAddress) &&
        (PFAddress < (GuardPageAddress + EFI_PAGE_SIZE))) {
      DEBUG ((DEBUG_ERROR, "SMM stack overflow!\n"));
    } else if ((FeaturePcdGet (PcdCpuSmmStackGuard)) &&
        (mSmmShadowStackSize > 0) &&
        (PFAddress >= ShadowStackGuardPageAddress) &&
        (PFAddress < (ShadowStackGuardPageAddress + EFI_PAGE_SIZE))) {
      DEBUG ((DEBUG_ERROR, "SMM shadow stack overflow!\n"));
    } else {
      if ((SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_ID) != 0) {
        DEBUG ((DEBUG_ERROR, "SMM exception at execution (0x%lx)\n", PFAddress));
        DEBUG_CODE (
          DumpModuleInfoByIp (*(UINTN *)(UINTN)SystemContext.SystemContextX64->Rsp);
        );
      } else {
        DEBUG ((DEBUG_ERROR, "SMM exception at access (0x%lx)\n", PFAddress));
        DEBUG_CODE (
          DumpModuleInfoByIp ((UINTN)SystemContext.SystemContextX64->Rip);
        );
      }

      if (HEAP_GUARD_NONSTOP_MODE) {
        GuardPagePFHandler (SystemContext.SystemContextX64->ExceptionData);
        goto Exit;
      }
    }
    CpuDeadLoop ();
    goto Exit;
  }

  //
  // If a page fault occurs in non-SMRAM range.
  //
  if ((PFAddress < mCpuHotPlugData.SmrrBase) ||
      (PFAddress >= mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize)) {
    if ((SystemContext.SystemContextX64->ExceptionData & IA32_PF_EC_ID) != 0) {
      DumpCpuContext (InterruptType, SystemContext);
      DEBUG ((DEBUG_ERROR, "Code executed on IP(0x%lx) out of SMM range after SMM is locked!\n", PFAddress));
      DEBUG_CODE (
        DumpModuleInfoByIp (*(UINTN *)(UINTN)SystemContext.SystemContextX64->Rsp);
      );
      CpuDeadLoop ();
      goto Exit;
    }

    //
    // If NULL pointer was just accessed
    //
    if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT1) != 0 &&
        (PFAddress < EFI_PAGE_SIZE)) {
      DumpCpuContext (InterruptType, SystemContext);
      DEBUG ((DEBUG_ERROR, "!!! NULL pointer access !!!\n"));
      DEBUG_CODE (
        DumpModuleInfoByIp ((UINTN)SystemContext.SystemContextX64->Rip);
      );

      if (NULL_DETECTION_NONSTOP_MODE) {
        GuardPagePFHandler (SystemContext.SystemContextX64->ExceptionData);
        goto Exit;
      }

      CpuDeadLoop ();
      goto Exit;
    }

    if (mCpuSmmRestrictedMemoryAccess && IsSmmCommBufferForbiddenAddress (PFAddress)) {
      DumpCpuContext (InterruptType, SystemContext);
      DEBUG ((DEBUG_ERROR, "Access SMM communication forbidden address (0x%lx)!\n", PFAddress));
      DEBUG_CODE (
        DumpModuleInfoByIp ((UINTN)SystemContext.SystemContextX64->Rip);
      );
      CpuDeadLoop ();
      goto Exit;
    }
  }

  if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
    SmmProfilePFHandler (
      SystemContext.SystemContextX64->Rip,
      SystemContext.SystemContextX64->ExceptionData
      );
  } else {
    SmiDefaultPFHandler ();
  }

Exit:
  ReleaseSpinLock (mPFLock);
}

/**
  This function sets memory attribute for page table.
**/
VOID
SetPageTableAttributes (
  VOID
  )
{
  UINTN                 Index2;
  UINTN                 Index3;
  UINTN                 Index4;
  UINTN                 Index5;
  UINT64                *L1PageTable;
  UINT64                *L2PageTable;
  UINT64                *L3PageTable;
  UINT64                *L4PageTable;
  UINT64                *L5PageTable;
  UINTN                 PageTableBase;
  BOOLEAN               IsSplitted;
  BOOLEAN               PageTableSplitted;
  BOOLEAN               CetEnabled;
  BOOLEAN               Enable5LevelPaging;

  //
  // Don't mark page table memory as read-only if
  //  - no restriction on access to non-SMRAM memory; or
  //  - SMM heap guard feature enabled; or
  //      BIT2: SMM page guard enabled
  //      BIT3: SMM pool guard enabled
  //  - SMM profile feature enabled
  //
  if (!mCpuSmmRestrictedMemoryAccess ||
      ((PcdGet8 (PcdHeapGuardPropertyMask) & (BIT3 | BIT2)) != 0) ||
      FeaturePcdGet (PcdCpuSmmProfileEnable)) {
    //
    // Restriction on access to non-SMRAM memory and heap guard could not be enabled at the same time.
    //
    ASSERT (!(mCpuSmmRestrictedMemoryAccess &&
              (PcdGet8 (PcdHeapGuardPropertyMask) & (BIT3 | BIT2)) != 0));

    //
    // Restriction on access to non-SMRAM memory and SMM profile could not be enabled at the same time.
    //
    ASSERT (!(mCpuSmmRestrictedMemoryAccess && FeaturePcdGet (PcdCpuSmmProfileEnable)));
    return ;
  }

  DEBUG ((DEBUG_INFO, "SetPageTableAttributes\n"));

  //
  // Disable write protection, because we need mark page table to be write protected.
  // We need *write* page table memory, to mark itself to be *read only*.
  //
  CetEnabled = ((AsmReadCr4() & CR4_CET_ENABLE) != 0) ? TRUE : FALSE;
  if (CetEnabled) {
    //
    // CET must be disabled if WP is disabled.
    //
    DisableCet();
  }
  AsmWriteCr0 (AsmReadCr0() & ~CR0_WP);

  do {
    DEBUG ((DEBUG_INFO, "Start...\n"));
    PageTableSplitted = FALSE;
    L5PageTable = NULL;

    GetPageTable (&PageTableBase, &Enable5LevelPaging);

    if (Enable5LevelPaging) {
      L5PageTable = (UINT64 *)PageTableBase;
      SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)PageTableBase, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
      PageTableSplitted = (PageTableSplitted || IsSplitted);
    }

    for (Index5 = 0; Index5 < (Enable5LevelPaging ? SIZE_4KB/sizeof(UINT64) : 1); Index5++) {
      if (Enable5LevelPaging) {
        L4PageTable = (UINT64 *)(UINTN)(L5PageTable[Index5] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
        if (L4PageTable == NULL) {
          continue;
        }
      } else {
        L4PageTable = (UINT64 *)PageTableBase;
      }
      SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L4PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
      PageTableSplitted = (PageTableSplitted || IsSplitted);

      for (Index4 = 0; Index4 < SIZE_4KB/sizeof(UINT64); Index4++) {
        L3PageTable = (UINT64 *)(UINTN)(L4PageTable[Index4] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
        if (L3PageTable == NULL) {
          continue;
        }

        SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L3PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
        PageTableSplitted = (PageTableSplitted || IsSplitted);

        for (Index3 = 0; Index3 < SIZE_4KB/sizeof(UINT64); Index3++) {
          if ((L3PageTable[Index3] & IA32_PG_PS) != 0) {
            // 1G
            continue;
          }
          L2PageTable = (UINT64 *)(UINTN)(L3PageTable[Index3] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
          if (L2PageTable == NULL) {
            continue;
          }

          SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L2PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
          PageTableSplitted = (PageTableSplitted || IsSplitted);

          for (Index2 = 0; Index2 < SIZE_4KB/sizeof(UINT64); Index2++) {
            if ((L2PageTable[Index2] & IA32_PG_PS) != 0) {
              // 2M
              continue;
            }
            L1PageTable = (UINT64 *)(UINTN)(L2PageTable[Index2] & ~mAddressEncMask & PAGING_4K_ADDRESS_MASK_64);
            if (L1PageTable == NULL) {
              continue;
            }
            SmmSetMemoryAttributesEx ((EFI_PHYSICAL_ADDRESS)(UINTN)L1PageTable, SIZE_4KB, EFI_MEMORY_RO, &IsSplitted);
            PageTableSplitted = (PageTableSplitted || IsSplitted);
          }
        }
      }
    }
  } while (PageTableSplitted);

  //
  // Enable write protection, after page table updated.
  //
  AsmWriteCr0 (AsmReadCr0() | CR0_WP);
  if (CetEnabled) {
    //
    // re-enable CET.
    //
    EnableCet();
  }

  return ;
}

/**
  This function reads CR2 register when on-demand paging is enabled.

  @param[out]  *Cr2  Pointer to variable to hold CR2 register value.
**/
VOID
SaveCr2 (
  OUT UINTN  *Cr2
  )
{
  if (!mCpuSmmRestrictedMemoryAccess) {
    //
    // On-demand paging is enabled when access to non-SMRAM is not restricted.
    //
    *Cr2 = AsmReadCr2 ();
  }
}

/**
  This function restores CR2 register when on-demand paging is enabled.

  @param[in]  Cr2  Value to write into CR2 register.
**/
VOID
RestoreCr2 (
  IN UINTN  Cr2
  )
{
  if (!mCpuSmmRestrictedMemoryAccess) {
    //
    // On-demand paging is enabled when access to non-SMRAM is not restricted.
    //
    AsmWriteCr2 (Cr2);
  }
}

/**
  Return whether access to non-SMRAM is restricted.

  @retval TRUE  Access to non-SMRAM is restricted.
  @retval FALSE Access to non-SMRAM is not restricted.
**/
BOOLEAN
IsRestrictedMemoryAccess (
  VOID
  )
{
  return mCpuSmmRestrictedMemoryAccess;
}