/* * This file is part of the flashrom project. * * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger * Copyright (C) 2008 coresystems GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* * Contains the common SPI chip driver functions */ #include #include #include #include "flash.h" #include "flashchips.h" #include "chipdrivers.h" #include "programmer.h" #include "spi.h" static int spi_rdid(struct flashctx *flash, unsigned char *readarr, int bytes) { static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID }; int ret; int i; ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr); if (ret) return ret; msg_cspew("RDID returned"); for (i = 0; i < bytes; i++) msg_cspew(" 0x%02x", readarr[i]); msg_cspew(". "); return 0; } static int spi_rems(struct flashctx *flash, unsigned char *readarr) { static const unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, }; int ret; ret = spi_send_command(flash, sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr); if (ret) return ret; msg_cspew("REMS returned 0x%02x 0x%02x. ", readarr[0], readarr[1]); return 0; } static int spi_res(struct flashctx *flash, unsigned char *readarr, int bytes) { static const unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, }; int ret; int i; ret = spi_send_command(flash, sizeof(cmd), bytes, cmd, readarr); if (ret) return ret; msg_cspew("RES returned"); for (i = 0; i < bytes; i++) msg_cspew(" 0x%02x", readarr[i]); msg_cspew(". "); return 0; } int spi_write_enable(struct flashctx *flash) { static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN }; int result; /* Send WREN (Write Enable) */ result = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL); if (result) msg_cerr("%s failed\n", __func__); return result; } int spi_write_disable(struct flashctx *flash) { static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI }; /* Send WRDI (Write Disable) */ return spi_send_command(flash, sizeof(cmd), 0, cmd, NULL); } static int probe_spi_rdid_generic(struct flashctx *flash, int bytes) { const struct flashchip *chip = flash->chip; unsigned char readarr[4]; uint32_t id1; uint32_t id2; if (spi_rdid(flash, readarr, bytes)) { return 0; } if (!oddparity(readarr[0])) msg_cdbg("RDID byte 0 parity violation. "); /* Check if this is a continuation vendor ID. * FIXME: Handle continuation device IDs. */ if (readarr[0] == 0x7f) { if (!oddparity(readarr[1])) msg_cdbg("RDID byte 1 parity violation. "); id1 = (readarr[0] << 8) | readarr[1]; id2 = readarr[2]; if (bytes > 3) { id2 <<= 8; id2 |= readarr[3]; } } else { id1 = readarr[0]; id2 = (readarr[1] << 8) | readarr[2]; } msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2); if (id1 == chip->manufacture_id && id2 == chip->model_id) return 1; /* Test if this is a pure vendor match. */ if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id) return 1; /* Test if there is any vendor ID. */ if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00) return 1; return 0; } int probe_spi_rdid(struct flashctx *flash) { return probe_spi_rdid_generic(flash, 3); } int probe_spi_rdid4(struct flashctx *flash) { /* Some SPI controllers do not support commands with writecnt=1 and * readcnt=4. */ switch (flash->mst->spi.type) { #if CONFIG_INTERNAL == 1 #if defined(__i386__) || defined(__x86_64__) case SPI_CONTROLLER_IT87XX: case SPI_CONTROLLER_WBSIO: msg_cinfo("4 byte RDID not supported on this SPI controller\n"); return 0; break; #endif #endif default: return probe_spi_rdid_generic(flash, 4); } return 0; } int probe_spi_rems(struct flashctx *flash) { const struct flashchip *chip = flash->chip; unsigned char readarr[JEDEC_REMS_INSIZE]; uint32_t id1, id2; if (spi_rems(flash, readarr)) { return 0; } id1 = readarr[0]; id2 = readarr[1]; msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); if (id1 == chip->manufacture_id && id2 == chip->model_id) return 1; /* Test if this is a pure vendor match. */ if (id1 == chip->manufacture_id && GENERIC_DEVICE_ID == chip->model_id) return 1; /* Test if there is any vendor ID. */ if (GENERIC_MANUF_ID == chip->manufacture_id && id1 != 0xff && id1 != 0x00) return 1; return 0; } int probe_spi_res1(struct flashctx *flash) { static const unsigned char allff[] = {0xff, 0xff, 0xff}; static const unsigned char all00[] = {0x00, 0x00, 0x00}; unsigned char readarr[3]; uint32_t id2; /* We only want one-byte RES if RDID and REMS are unusable. */ /* Check if RDID is usable and does not return 0xff 0xff 0xff or * 0x00 0x00 0x00. In that case, RES is pointless. */ if (!spi_rdid(flash, readarr, 3) && memcmp(readarr, allff, 3) && memcmp(readarr, all00, 3)) { msg_cdbg("Ignoring RES in favour of RDID.\n"); return 0; } /* Check if REMS is usable and does not return 0xff 0xff or * 0x00 0x00. In that case, RES is pointless. */ if (!spi_rems(flash, readarr) && memcmp(readarr, allff, JEDEC_REMS_INSIZE) && memcmp(readarr, all00, JEDEC_REMS_INSIZE)) { msg_cdbg("Ignoring RES in favour of REMS.\n"); return 0; } if (spi_res(flash, readarr, 1)) { return 0; } id2 = readarr[0]; msg_cdbg("%s: id 0x%x\n", __func__, id2); if (id2 != flash->chip->model_id) return 0; return 1; } int probe_spi_res2(struct flashctx *flash) { unsigned char readarr[2]; uint32_t id1, id2; if (spi_res(flash, readarr, 2)) { return 0; } id1 = readarr[0]; id2 = readarr[1]; msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id) return 0; return 1; } int probe_spi_res3(struct flashctx *flash) { unsigned char readarr[3]; uint32_t id1, id2; if (spi_res(flash, readarr, 3)) { return 0; } id1 = (readarr[0] << 8) | readarr[1]; id2 = readarr[2]; msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2); if (id1 != flash->chip->manufacture_id || id2 != flash->chip->model_id) return 0; return 1; } /* Only used for some Atmel chips. */ int probe_spi_at25f(struct flashctx *flash) { static const unsigned char cmd[AT25F_RDID_OUTSIZE] = { AT25F_RDID }; unsigned char readarr[AT25F_RDID_INSIZE]; uint32_t id1; uint32_t id2; if (spi_send_command(flash, sizeof(cmd), sizeof(readarr), cmd, readarr)) return 0; id1 = readarr[0]; id2 = readarr[1]; msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2); if (id1 == flash->chip->manufacture_id && id2 == flash->chip->model_id) return 1; return 0; } static int spi_poll_wip(struct flashctx *const flash, const unsigned int poll_delay) { /* FIXME: We can't tell if spi_read_status_register() failed. */ /* FIXME: We don't time out. */ while (spi_read_status_register(flash) & SPI_SR_WIP) programmer_delay(poll_delay); /* FIXME: Check the status register for errors. */ return 0; } /** * Execute WREN plus another one byte `op`, optionally poll WIP afterwards. * * @param flash the flash chip's context * @param op the operation to execute * @param poll_delay interval in us for polling WIP, don't poll if zero * @return 0 on success, non-zero otherwise */ static int spi_simple_write_cmd(struct flashctx *const flash, const uint8_t op, const unsigned int poll_delay) { struct spi_command cmds[] = { { .writecnt = 1, .writearr = (const unsigned char[]){ JEDEC_WREN }, }, { .writecnt = 1, .writearr = (const unsigned char[]){ op }, }, NULL_SPI_CMD, }; const int result = spi_send_multicommand(flash, cmds); if (result) msg_cerr("%s failed during command execution\n", __func__); const int status = poll_delay ? spi_poll_wip(flash, poll_delay) : 0; return result ? result : status; } static int spi_write_extended_address_register(struct flashctx *const flash, const uint8_t regdata) { struct spi_command cmds[] = { { .writecnt = 1, .writearr = (const unsigned char[]){ JEDEC_WREN }, }, { .writecnt = 2, .writearr = (const unsigned char[]){ JEDEC_WRITE_EXT_ADDR_REG, regdata }, }, NULL_SPI_CMD, }; const int result = spi_send_multicommand(flash, cmds); if (result) msg_cerr("%s failed during command execution\n", __func__); return result; } static int spi_set_extended_address(struct flashctx *const flash, const uint8_t addr_high) { if (flash->address_high_byte != addr_high && spi_write_extended_address_register(flash, addr_high)) return -1; flash->address_high_byte = addr_high; return 0; } static int spi_prepare_address(struct flashctx *const flash, uint8_t cmd_buf[], const bool native_4ba, const unsigned int addr) { if (native_4ba || flash->in_4ba_mode) { if (!spi_master_4ba(flash)) { msg_cwarn("4-byte address requested but master can't handle 4-byte addresses.\n"); return -1; } cmd_buf[1] = (addr >> 24) & 0xff; cmd_buf[2] = (addr >> 16) & 0xff; cmd_buf[3] = (addr >> 8) & 0xff; cmd_buf[4] = (addr >> 0) & 0xff; return 4; } else { if (flash->chip->feature_bits & FEATURE_4BA_EXT_ADDR) { if (spi_set_extended_address(flash, addr >> 24)) return -1; } else if (addr >> 24) { msg_cerr("Can't handle 4-byte address for opcode '0x%02x'\n" "with this chip/programmer combination.\n", cmd_buf[0]); return -1; } cmd_buf[1] = (addr >> 16) & 0xff; cmd_buf[2] = (addr >> 8) & 0xff; cmd_buf[3] = (addr >> 0) & 0xff; return 3; } } /** * Execute WREN plus another `op` that takes an address and * optional data, poll WIP afterwards. * * @param flash the flash chip's context * @param op the operation to execute * @param native_4ba whether `op` always takes a 4-byte address * @param addr the address parameter to `op` * @param out_bytes bytes to send after the address, * may be NULL if and only if `out_bytes` is 0 * @param out_bytes number of bytes to send, 256 at most, may be zero * @param poll_delay interval in us for polling WIP * @return 0 on success, non-zero otherwise */ static int spi_write_cmd(struct flashctx *const flash, const uint8_t op, const bool native_4ba, const unsigned int addr, const uint8_t *const out_bytes, const size_t out_len, const unsigned int poll_delay) { uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN + 256]; struct spi_command cmds[] = { { .writecnt = 1, .writearr = (const unsigned char[]){ JEDEC_WREN }, }, { .writearr = cmd, }, NULL_SPI_CMD, }; cmd[0] = op; const int addr_len = spi_prepare_address(flash, cmd, native_4ba, addr); if (addr_len < 0) return 1; if (1 + addr_len + out_len > sizeof(cmd)) { msg_cerr("%s called for too long a write\n", __func__); return 1; } memcpy(cmd + 1 + addr_len, out_bytes, out_len); cmds[1].writecnt = 1 + addr_len + out_len; const int result = spi_send_multicommand(flash, cmds); if (result) msg_cerr("%s failed during command execution at address 0x%x\n", __func__, addr); const int status = spi_poll_wip(flash, poll_delay); return result ? result : status; } int spi_chip_erase_60(struct flashctx *flash) { /* This usually takes 1-85s, so wait in 1s steps. */ return spi_simple_write_cmd(flash, 0x60, 1000 * 1000); } int spi_chip_erase_62(struct flashctx *flash) { /* This usually takes 2-5s, so wait in 100ms steps. */ return spi_simple_write_cmd(flash, 0x62, 100 * 1000); } int spi_chip_erase_c7(struct flashctx *flash) { /* This usually takes 1-85s, so wait in 1s steps. */ return spi_simple_write_cmd(flash, 0xc7, 1000 * 1000); } int spi_block_erase_52(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 100-4000ms, so wait in 100ms steps. */ return spi_write_cmd(flash, 0x52, false, addr, NULL, 0, 100 * 1000); } /* Block size is usually * 32M (one die) for Micron */ int spi_block_erase_c4(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 240-480s, so wait in 500ms steps. */ return spi_write_cmd(flash, 0xc4, false, addr, NULL, 0, 500 * 1000); } /* Block size is usually * 64k for Macronix * 32k for SST * 4-32k non-uniform for EON */ int spi_block_erase_d8(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 100-4000ms, so wait in 100ms steps. */ return spi_write_cmd(flash, 0xd8, false, addr, NULL, 0, 100 * 1000); } /* Block size is usually * 4k for PMC */ int spi_block_erase_d7(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 100-4000ms, so wait in 100ms steps. */ return spi_write_cmd(flash, 0xd7, false, addr, NULL, 0, 100 * 1000); } /* Page erase (usually 256B blocks) */ int spi_block_erase_db(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This takes up to 20ms usually (on worn out devices up to the 0.5s range), so wait in 1ms steps. */ return spi_write_cmd(flash, 0xdb, false, addr, NULL, 0, 1 * 1000); } /* Sector size is usually 4k, though Macronix eliteflash has 64k */ int spi_block_erase_20(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 15-800ms, so wait in 10ms steps. */ return spi_write_cmd(flash, 0x20, false, addr, NULL, 0, 10 * 1000); } int spi_block_erase_50(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 10ms, so wait in 1ms steps. */ return spi_write_cmd(flash, 0x50, false, addr, NULL, 0, 1 * 1000); } int spi_block_erase_81(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 8ms, so wait in 1ms steps. */ return spi_write_cmd(flash, 0x81, false, addr, NULL, 0, 1 * 1000); } int spi_block_erase_60(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) { msg_cerr("%s called with incorrect arguments\n", __func__); return -1; } return spi_chip_erase_60(flash); } int spi_block_erase_62(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) { msg_cerr("%s called with incorrect arguments\n", __func__); return -1; } return spi_chip_erase_62(flash); } int spi_block_erase_c7(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { if ((addr != 0) || (blocklen != flash->chip->total_size * 1024)) { msg_cerr("%s called with incorrect arguments\n", __func__); return -1; } return spi_chip_erase_c7(flash); } /* Erase 4 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */ int spi_block_erase_21(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 15-800ms, so wait in 10ms steps. */ return spi_write_cmd(flash, 0x21, true, addr, NULL, 0, 10 * 1000); } /* Erase 32 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */ int spi_block_erase_5c(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 100-4000ms, so wait in 100ms steps. */ return spi_write_cmd(flash, 0x5c, true, addr, NULL, 0, 100 * 1000); } /* Erase 64 KB of flash with 4-bytes address from ANY mode (3-bytes or 4-bytes) */ int spi_block_erase_dc(struct flashctx *flash, unsigned int addr, unsigned int blocklen) { /* This usually takes 100-4000ms, so wait in 100ms steps. */ return spi_write_cmd(flash, 0xdc, true, addr, NULL, 0, 100 * 1000); } erasefunc_t *spi_get_erasefn_from_opcode(uint8_t opcode) { switch(opcode){ case 0xff: case 0x00: /* Not specified, assuming "not supported". */ return NULL; case 0x20: return &spi_block_erase_20; case 0x21: return &spi_block_erase_21; case 0x50: return &spi_block_erase_50; case 0x52: return &spi_block_erase_52; case 0x5c: return &spi_block_erase_5c; case 0x60: return &spi_block_erase_60; case 0x62: return &spi_block_erase_62; case 0x81: return &spi_block_erase_81; case 0xc4: return &spi_block_erase_c4; case 0xc7: return &spi_block_erase_c7; case 0xd7: return &spi_block_erase_d7; case 0xd8: return &spi_block_erase_d8; case 0xdb: return &spi_block_erase_db; case 0xdc: return &spi_block_erase_dc; default: msg_cinfo("%s: unknown erase opcode (0x%02x). Please report " "this at flashrom@flashrom.org\n", __func__, opcode); return NULL; } } static int spi_nbyte_program(struct flashctx *flash, unsigned int addr, const uint8_t *bytes, unsigned int len) { const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_WRITE && spi_master_4ba(flash); const uint8_t op = native_4ba ? JEDEC_BYTE_PROGRAM_4BA : JEDEC_BYTE_PROGRAM; return spi_write_cmd(flash, op, native_4ba, addr, bytes, len, 10); } int spi_nbyte_read(struct flashctx *flash, unsigned int address, uint8_t *bytes, unsigned int len) { const bool native_4ba = flash->chip->feature_bits & FEATURE_4BA_READ && spi_master_4ba(flash); uint8_t cmd[1 + JEDEC_MAX_ADDR_LEN] = { native_4ba ? JEDEC_READ_4BA : JEDEC_READ, }; const int addr_len = spi_prepare_address(flash, cmd, native_4ba, address); if (addr_len < 0) return 1; /* Send Read */ return spi_send_command(flash, 1 + addr_len, len, cmd, bytes); } /* * Read a part of the flash chip. * FIXME: Use the chunk code from Michael Karcher instead. * Each naturally aligned area is read separately in chunks with a maximum size of chunksize. */ int spi_read_chunked(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len, unsigned int chunksize) { int rc = 0; unsigned int i, j, starthere, lenhere, toread; /* Limit for multi-die 4-byte-addressing chips. */ unsigned int area_size = min(flash->chip->total_size * 1024, 16 * 1024 * 1024); /* Warning: This loop has a very unusual condition and body. * The loop needs to go through each area with at least one affected * byte. The lowest area number is (start / area_size) since that * division rounds down. The highest area number we want is the area * where the last byte of the range lives. That last byte has the * address (start + len - 1), thus the highest area number is * (start + len - 1) / area_size. Since we want to include that last * area as well, the loop condition uses <=. */ for (i = start / area_size; i <= (start + len - 1) / area_size; i++) { /* Byte position of the first byte in the range in this area. */ /* starthere is an offset to the base address of the chip. */ starthere = max(start, i * area_size); /* Length of bytes in the range in this area. */ lenhere = min(start + len, (i + 1) * area_size) - starthere; for (j = 0; j < lenhere; j += chunksize) { toread = min(chunksize, lenhere - j); rc = spi_nbyte_read(flash, starthere + j, buf + starthere - start + j, toread); if (rc) break; } if (rc) break; } return rc; } /* * Write a part of the flash chip. * FIXME: Use the chunk code from Michael Karcher instead. * Each page is written separately in chunks with a maximum size of chunksize. */ int spi_write_chunked(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len, unsigned int chunksize) { unsigned int i, j, starthere, lenhere, towrite; /* FIXME: page_size is the wrong variable. We need max_writechunk_size * in struct flashctx to do this properly. All chips using * spi_chip_write_256 have page_size set to max_writechunk_size, so * we're OK for now. */ unsigned int page_size = flash->chip->page_size; /* Warning: This loop has a very unusual condition and body. * The loop needs to go through each page with at least one affected * byte. The lowest page number is (start / page_size) since that * division rounds down. The highest page number we want is the page * where the last byte of the range lives. That last byte has the * address (start + len - 1), thus the highest page number is * (start + len - 1) / page_size. Since we want to include that last * page as well, the loop condition uses <=. */ for (i = start / page_size; i <= (start + len - 1) / page_size; i++) { /* Byte position of the first byte in the range in this page. */ /* starthere is an offset to the base address of the chip. */ starthere = max(start, i * page_size); /* Length of bytes in the range in this page. */ lenhere = min(start + len, (i + 1) * page_size) - starthere; for (j = 0; j < lenhere; j += chunksize) { int rc; towrite = min(chunksize, lenhere - j); rc = spi_nbyte_program(flash, starthere + j, buf + starthere - start + j, towrite); if (rc) return rc; } } return 0; } /* * Program chip using byte programming. (SLOW!) * This is for chips which can only handle one byte writes * and for chips where memory mapped programming is impossible * (e.g. due to size constraints in IT87* for over 512 kB) */ /* real chunksize is 1, logical chunksize is 1 */ int spi_chip_write_1(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) { unsigned int i; for (i = start; i < start + len; i++) { if (spi_nbyte_program(flash, i, buf + i - start, 1)) return 1; } return 0; } int default_spi_write_aai(struct flashctx *flash, const uint8_t *buf, unsigned int start, unsigned int len) { uint32_t pos = start; int result; unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = { JEDEC_AAI_WORD_PROGRAM, }; switch (flash->mst->spi.type) { #if CONFIG_INTERNAL == 1 #if defined(__i386__) || defined(__x86_64__) case SPI_CONTROLLER_IT87XX: case SPI_CONTROLLER_WBSIO: msg_perr("%s: impossible with this SPI controller," " degrading to byte program\n", __func__); return spi_chip_write_1(flash, buf, start, len); #endif #endif default: break; } /* The even start address and even length requirements can be either * honored outside this function, or we can call spi_byte_program * for the first and/or last byte and use AAI for the rest. * FIXME: Move this to generic code. */ /* The data sheet requires a start address with the low bit cleared. */ if (start % 2) { msg_cerr("%s: start address not even! Please report a bug at " "flashrom@flashrom.org\n", __func__); if (spi_chip_write_1(flash, buf, start, start % 2)) return SPI_GENERIC_ERROR; pos += start % 2; /* Do not return an error for now. */ //return SPI_GENERIC_ERROR; } /* The data sheet requires total AAI write length to be even. */ if (len % 2) { msg_cerr("%s: total write length not even! Please report a " "bug at flashrom@flashrom.org\n", __func__); /* Do not return an error for now. */ //return SPI_GENERIC_ERROR; } result = spi_write_cmd(flash, JEDEC_AAI_WORD_PROGRAM, false, start, buf + pos - start, 2, 10); if (result) goto bailout; /* We already wrote 2 bytes in the multicommand step. */ pos += 2; /* Are there at least two more bytes to write? */ while (pos < start + len - 1) { cmd[1] = buf[pos++ - start]; cmd[2] = buf[pos++ - start]; result = spi_send_command(flash, JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL); if (result != 0) { msg_cerr("%s failed during followup AAI command execution: %d\n", __func__, result); goto bailout; } if (spi_poll_wip(flash, 10)) goto bailout; } /* Use WRDI to exit AAI mode. This needs to be done before issuing any other non-AAI command. */ result = spi_write_disable(flash); if (result != 0) { msg_cerr("%s failed to disable AAI mode.\n", __func__); return SPI_GENERIC_ERROR; } /* Write remaining byte (if any). */ if (pos < start + len) { if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2)) return SPI_GENERIC_ERROR; pos += pos % 2; } return 0; bailout: result = spi_write_disable(flash); if (result != 0) msg_cerr("%s failed to disable AAI mode.\n", __func__); return SPI_GENERIC_ERROR; } static int spi_enter_exit_4ba(struct flashctx *const flash, const bool enter) { const unsigned char cmd = enter ? JEDEC_ENTER_4_BYTE_ADDR_MODE : JEDEC_EXIT_4_BYTE_ADDR_MODE; int ret = 1; if (flash->chip->feature_bits & FEATURE_4BA_ENTER) ret = spi_send_command(flash, sizeof(cmd), 0, &cmd, NULL); else if (flash->chip->feature_bits & FEATURE_4BA_ENTER_WREN) ret = spi_simple_write_cmd(flash, cmd, 0); if (!ret) flash->in_4ba_mode = enter; return ret; } int spi_enter_4ba(struct flashctx *const flash) { return spi_enter_exit_4ba(flash, true); } int spi_exit_4ba(struct flashctx *flash) { return spi_enter_exit_4ba(flash, false); }