diff options
author | Mauro Carvalho Chehab <mchehab+samsung@kernel.org> | 2019-04-19 21:39:29 -0300 |
---|---|---|
committer | Mauro Carvalho Chehab <mchehab+samsung@kernel.org> | 2019-07-15 11:03:01 -0300 |
commit | 4d3beaa06d3536aa8968d1828a66bd5ccb5036ac (patch) | |
tree | 3bc769db2b6214f2e7fa298e915a313225949a21 /Documentation/security | |
parent | e7751617dd0599ceadf4221cb08e04307b00aa1f (diff) | |
download | linux-stable-4d3beaa06d3536aa8968d1828a66bd5ccb5036ac.tar.gz linux-stable-4d3beaa06d3536aa8968d1828a66bd5ccb5036ac.tar.bz2 linux-stable-4d3beaa06d3536aa8968d1828a66bd5ccb5036ac.zip |
docs: security: move some books to it and update
The following files belong to security:
Documentation/security/LSM.rst -> Documentation/security/lsm-development.rst
Documentation/lsm.txt -> Documentation/security/lsm.rst
Documentation/SAK.txt -> Documentation/security/sak.rst
Documentation/siphash.txt -> Documentation/security/siphash.rst
Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Diffstat (limited to 'Documentation/security')
-rw-r--r-- | Documentation/security/index.rst | 5 | ||||
-rw-r--r-- | Documentation/security/lsm-development.rst (renamed from Documentation/security/LSM.rst) | 0 | ||||
-rw-r--r-- | Documentation/security/lsm.rst | 201 | ||||
-rw-r--r-- | Documentation/security/sak.rst | 91 | ||||
-rw-r--r-- | Documentation/security/siphash.rst | 189 | ||||
-rw-r--r-- | Documentation/security/tpm/index.rst | 1 | ||||
-rw-r--r-- | Documentation/security/tpm/xen-tpmfront.rst | 2 |
7 files changed, 486 insertions, 3 deletions
diff --git a/Documentation/security/index.rst b/Documentation/security/index.rst index aad6d92ffe31..fc503dd689a7 100644 --- a/Documentation/security/index.rst +++ b/Documentation/security/index.rst @@ -8,7 +8,10 @@ Security Documentation credentials IMA-templates keys/index - LSM + lsm + lsm-development + sak SCTP self-protection + siphash tpm/index diff --git a/Documentation/security/LSM.rst b/Documentation/security/lsm-development.rst index 31d92bc5fdd2..31d92bc5fdd2 100644 --- a/Documentation/security/LSM.rst +++ b/Documentation/security/lsm-development.rst diff --git a/Documentation/security/lsm.rst b/Documentation/security/lsm.rst new file mode 100644 index 000000000000..ad4dfd020e0d --- /dev/null +++ b/Documentation/security/lsm.rst @@ -0,0 +1,201 @@ +======================================================== +Linux Security Modules: General Security Hooks for Linux +======================================================== + +:Author: Stephen Smalley +:Author: Timothy Fraser +:Author: Chris Vance + +.. note:: + + The APIs described in this book are outdated. + +Introduction +============ + +In March 2001, the National Security Agency (NSA) gave a presentation +about Security-Enhanced Linux (SELinux) at the 2.5 Linux Kernel Summit. +SELinux is an implementation of flexible and fine-grained +nondiscretionary access controls in the Linux kernel, originally +implemented as its own particular kernel patch. Several other security +projects (e.g. RSBAC, Medusa) have also developed flexible access +control architectures for the Linux kernel, and various projects have +developed particular access control models for Linux (e.g. LIDS, DTE, +SubDomain). Each project has developed and maintained its own kernel +patch to support its security needs. + +In response to the NSA presentation, Linus Torvalds made a set of +remarks that described a security framework he would be willing to +consider for inclusion in the mainstream Linux kernel. He described a +general framework that would provide a set of security hooks to control +operations on kernel objects and a set of opaque security fields in +kernel data structures for maintaining security attributes. This +framework could then be used by loadable kernel modules to implement any +desired model of security. Linus also suggested the possibility of +migrating the Linux capabilities code into such a module. + +The Linux Security Modules (LSM) project was started by WireX to develop +such a framework. LSM is a joint development effort by several security +projects, including Immunix, SELinux, SGI and Janus, and several +individuals, including Greg Kroah-Hartman and James Morris, to develop a +Linux kernel patch that implements this framework. The patch is +currently tracking the 2.4 series and is targeted for integration into +the 2.5 development series. This technical report provides an overview +of the framework and the example capabilities security module provided +by the LSM kernel patch. + +LSM Framework +============= + +The LSM kernel patch provides a general kernel framework to support +security modules. In particular, the LSM framework is primarily focused +on supporting access control modules, although future development is +likely to address other security needs such as auditing. By itself, the +framework does not provide any additional security; it merely provides +the infrastructure to support security modules. The LSM kernel patch +also moves most of the capabilities logic into an optional security +module, with the system defaulting to the traditional superuser logic. +This capabilities module is discussed further in +`LSM Capabilities Module <#cap>`__. + +The LSM kernel patch adds security fields to kernel data structures and +inserts calls to hook functions at critical points in the kernel code to +manage the security fields and to perform access control. It also adds +functions for registering and unregistering security modules, and adds a +general :c:func:`security()` system call to support new system calls +for security-aware applications. + +The LSM security fields are simply ``void*`` pointers. For process and +program execution security information, security fields were added to +:c:type:`struct task_struct <task_struct>` and +:c:type:`struct linux_binprm <linux_binprm>`. For filesystem +security information, a security field was added to :c:type:`struct +super_block <super_block>`. For pipe, file, and socket security +information, security fields were added to :c:type:`struct inode +<inode>` and :c:type:`struct file <file>`. For packet and +network device security information, security fields were added to +:c:type:`struct sk_buff <sk_buff>` and :c:type:`struct +net_device <net_device>`. For System V IPC security information, +security fields were added to :c:type:`struct kern_ipc_perm +<kern_ipc_perm>` and :c:type:`struct msg_msg +<msg_msg>`; additionally, the definitions for :c:type:`struct +msg_msg <msg_msg>`, struct msg_queue, and struct shmid_kernel +were moved to header files (``include/linux/msg.h`` and +``include/linux/shm.h`` as appropriate) to allow the security modules to +use these definitions. + +Each LSM hook is a function pointer in a global table, security_ops. +This table is a :c:type:`struct security_operations +<security_operations>` structure as defined by +``include/linux/security.h``. Detailed documentation for each hook is +included in this header file. At present, this structure consists of a +collection of substructures that group related hooks based on the kernel +object (e.g. task, inode, file, sk_buff, etc) as well as some top-level +hook function pointers for system operations. This structure is likely +to be flattened in the future for performance. The placement of the hook +calls in the kernel code is described by the "called:" lines in the +per-hook documentation in the header file. The hook calls can also be +easily found in the kernel code by looking for the string +"security_ops->". + +Linus mentioned per-process security hooks in his original remarks as a +possible alternative to global security hooks. However, if LSM were to +start from the perspective of per-process hooks, then the base framework +would have to deal with how to handle operations that involve multiple +processes (e.g. kill), since each process might have its own hook for +controlling the operation. This would require a general mechanism for +composing hooks in the base framework. Additionally, LSM would still +need global hooks for operations that have no process context (e.g. +network input operations). Consequently, LSM provides global security +hooks, but a security module is free to implement per-process hooks +(where that makes sense) by storing a security_ops table in each +process' security field and then invoking these per-process hooks from +the global hooks. The problem of composition is thus deferred to the +module. + +The global security_ops table is initialized to a set of hook functions +provided by a dummy security module that provides traditional superuser +logic. A :c:func:`register_security()` function (in +``security/security.c``) is provided to allow a security module to set +security_ops to refer to its own hook functions, and an +:c:func:`unregister_security()` function is provided to revert +security_ops to the dummy module hooks. This mechanism is used to set +the primary security module, which is responsible for making the final +decision for each hook. + +LSM also provides a simple mechanism for stacking additional security +modules with the primary security module. It defines +:c:func:`register_security()` and +:c:func:`unregister_security()` hooks in the :c:type:`struct +security_operations <security_operations>` structure and +provides :c:func:`mod_reg_security()` and +:c:func:`mod_unreg_security()` functions that invoke these hooks +after performing some sanity checking. A security module can call these +functions in order to stack with other modules. However, the actual +details of how this stacking is handled are deferred to the module, +which can implement these hooks in any way it wishes (including always +returning an error if it does not wish to support stacking). In this +manner, LSM again defers the problem of composition to the module. + +Although the LSM hooks are organized into substructures based on kernel +object, all of the hooks can be viewed as falling into two major +categories: hooks that are used to manage the security fields and hooks +that are used to perform access control. Examples of the first category +of hooks include the :c:func:`alloc_security()` and +:c:func:`free_security()` hooks defined for each kernel data +structure that has a security field. These hooks are used to allocate +and free security structures for kernel objects. The first category of +hooks also includes hooks that set information in the security field +after allocation, such as the :c:func:`post_lookup()` hook in +:c:type:`struct inode_security_ops <inode_security_ops>`. +This hook is used to set security information for inodes after +successful lookup operations. An example of the second category of hooks +is the :c:func:`permission()` hook in :c:type:`struct +inode_security_ops <inode_security_ops>`. This hook checks +permission when accessing an inode. + +LSM Capabilities Module +======================= + +The LSM kernel patch moves most of the existing POSIX.1e capabilities +logic into an optional security module stored in the file +``security/capability.c``. This change allows users who do not want to +use capabilities to omit this code entirely from their kernel, instead +using the dummy module for traditional superuser logic or any other +module that they desire. This change also allows the developers of the +capabilities logic to maintain and enhance their code more freely, +without needing to integrate patches back into the base kernel. + +In addition to moving the capabilities logic, the LSM kernel patch could +move the capability-related fields from the kernel data structures into +the new security fields managed by the security modules. However, at +present, the LSM kernel patch leaves the capability fields in the kernel +data structures. In his original remarks, Linus suggested that this +might be preferable so that other security modules can be easily stacked +with the capabilities module without needing to chain multiple security +structures on the security field. It also avoids imposing extra overhead +on the capabilities module to manage the security fields. However, the +LSM framework could certainly support such a move if it is determined to +be desirable, with only a few additional changes described below. + +At present, the capabilities logic for computing process capabilities on +:c:func:`execve()` and :c:func:`set\*uid()`, checking +capabilities for a particular process, saving and checking capabilities +for netlink messages, and handling the :c:func:`capget()` and +:c:func:`capset()` system calls have been moved into the +capabilities module. There are still a few locations in the base kernel +where capability-related fields are directly examined or modified, but +the current version of the LSM patch does allow a security module to +completely replace the assignment and testing of capabilities. These few +locations would need to be changed if the capability-related fields were +moved into the security field. The following is a list of known +locations that still perform such direct examination or modification of +capability-related fields: + +- ``fs/open.c``::c:func:`sys_access()` + +- ``fs/lockd/host.c``::c:func:`nlm_bind_host()` + +- ``fs/nfsd/auth.c``::c:func:`nfsd_setuser()` + +- ``fs/proc/array.c``::c:func:`task_cap()` diff --git a/Documentation/security/sak.rst b/Documentation/security/sak.rst new file mode 100644 index 000000000000..260e1d3687bd --- /dev/null +++ b/Documentation/security/sak.rst @@ -0,0 +1,91 @@ +========================================= +Linux Secure Attention Key (SAK) handling +========================================= + +:Date: 18 March 2001 +:Author: Andrew Morton + +An operating system's Secure Attention Key is a security tool which is +provided as protection against trojan password capturing programs. It +is an undefeatable way of killing all programs which could be +masquerading as login applications. Users need to be taught to enter +this key sequence before they log in to the system. + +From the PC keyboard, Linux has two similar but different ways of +providing SAK. One is the ALT-SYSRQ-K sequence. You shouldn't use +this sequence. It is only available if the kernel was compiled with +sysrq support. + +The proper way of generating a SAK is to define the key sequence using +``loadkeys``. This will work whether or not sysrq support is compiled +into the kernel. + +SAK works correctly when the keyboard is in raw mode. This means that +once defined, SAK will kill a running X server. If the system is in +run level 5, the X server will restart. This is what you want to +happen. + +What key sequence should you use? Well, CTRL-ALT-DEL is used to reboot +the machine. CTRL-ALT-BACKSPACE is magical to the X server. We'll +choose CTRL-ALT-PAUSE. + +In your rc.sysinit (or rc.local) file, add the command:: + + echo "control alt keycode 101 = SAK" | /bin/loadkeys + +And that's it! Only the superuser may reprogram the SAK key. + + +.. note:: + + 1. Linux SAK is said to be not a "true SAK" as is required by + systems which implement C2 level security. This author does not + know why. + + + 2. On the PC keyboard, SAK kills all applications which have + /dev/console opened. + + Unfortunately this includes a number of things which you don't + actually want killed. This is because these applications are + incorrectly holding /dev/console open. Be sure to complain to your + Linux distributor about this! + + You can identify processes which will be killed by SAK with the + command:: + + # ls -l /proc/[0-9]*/fd/* | grep console + l-wx------ 1 root root 64 Mar 18 00:46 /proc/579/fd/0 -> /dev/console + + Then:: + + # ps aux|grep 579 + root 579 0.0 0.1 1088 436 ? S 00:43 0:00 gpm -t ps/2 + + So ``gpm`` will be killed by SAK. This is a bug in gpm. It should + be closing standard input. You can work around this by finding the + initscript which launches gpm and changing it thusly: + + Old:: + + daemon gpm + + New:: + + daemon gpm < /dev/null + + Vixie cron also seems to have this problem, and needs the same treatment. + + Also, one prominent Linux distribution has the following three + lines in its rc.sysinit and rc scripts:: + + exec 3<&0 + exec 4>&1 + exec 5>&2 + + These commands cause **all** daemons which are launched by the + initscripts to have file descriptors 3, 4 and 5 attached to + /dev/console. So SAK kills them all. A workaround is to simply + delete these lines, but this may cause system management + applications to malfunction - test everything well. + diff --git a/Documentation/security/siphash.rst b/Documentation/security/siphash.rst new file mode 100644 index 000000000000..9965821ab333 --- /dev/null +++ b/Documentation/security/siphash.rst @@ -0,0 +1,189 @@ +=========================== +SipHash - a short input PRF +=========================== + +:Author: Written by Jason A. Donenfeld <jason@zx2c4.com> + +SipHash is a cryptographically secure PRF -- a keyed hash function -- that +performs very well for short inputs, hence the name. It was designed by +cryptographers Daniel J. Bernstein and Jean-Philippe Aumasson. It is intended +as a replacement for some uses of: `jhash`, `md5_transform`, `sha_transform`, +and so forth. + +SipHash takes a secret key filled with randomly generated numbers and either +an input buffer or several input integers. It spits out an integer that is +indistinguishable from random. You may then use that integer as part of secure +sequence numbers, secure cookies, or mask it off for use in a hash table. + +Generating a key +================ + +Keys should always be generated from a cryptographically secure source of +random numbers, either using get_random_bytes or get_random_once:: + + siphash_key_t key; + get_random_bytes(&key, sizeof(key)); + +If you're not deriving your key from here, you're doing it wrong. + +Using the functions +=================== + +There are two variants of the function, one that takes a list of integers, and +one that takes a buffer:: + + u64 siphash(const void *data, size_t len, const siphash_key_t *key); + +And:: + + u64 siphash_1u64(u64, const siphash_key_t *key); + u64 siphash_2u64(u64, u64, const siphash_key_t *key); + u64 siphash_3u64(u64, u64, u64, const siphash_key_t *key); + u64 siphash_4u64(u64, u64, u64, u64, const siphash_key_t *key); + u64 siphash_1u32(u32, const siphash_key_t *key); + u64 siphash_2u32(u32, u32, const siphash_key_t *key); + u64 siphash_3u32(u32, u32, u32, const siphash_key_t *key); + u64 siphash_4u32(u32, u32, u32, u32, const siphash_key_t *key); + +If you pass the generic siphash function something of a constant length, it +will constant fold at compile-time and automatically choose one of the +optimized functions. + +Hashtable key function usage:: + + struct some_hashtable { + DECLARE_HASHTABLE(hashtable, 8); + siphash_key_t key; + }; + + void init_hashtable(struct some_hashtable *table) + { + get_random_bytes(&table->key, sizeof(table->key)); + } + + static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input) + { + return &table->hashtable[siphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)]; + } + +You may then iterate like usual over the returned hash bucket. + +Security +======== + +SipHash has a very high security margin, with its 128-bit key. So long as the +key is kept secret, it is impossible for an attacker to guess the outputs of +the function, even if being able to observe many outputs, since 2^128 outputs +is significant. + +Linux implements the "2-4" variant of SipHash. + +Struct-passing Pitfalls +======================= + +Often times the XuY functions will not be large enough, and instead you'll +want to pass a pre-filled struct to siphash. When doing this, it's important +to always ensure the struct has no padding holes. The easiest way to do this +is to simply arrange the members of the struct in descending order of size, +and to use offsetendof() instead of sizeof() for getting the size. For +performance reasons, if possible, it's probably a good thing to align the +struct to the right boundary. Here's an example:: + + const struct { + struct in6_addr saddr; + u32 counter; + u16 dport; + } __aligned(SIPHASH_ALIGNMENT) combined = { + .saddr = *(struct in6_addr *)saddr, + .counter = counter, + .dport = dport + }; + u64 h = siphash(&combined, offsetofend(typeof(combined), dport), &secret); + +Resources +========= + +Read the SipHash paper if you're interested in learning more: +https://131002.net/siphash/siphash.pdf + +------------------------------------------------------------------------------- + +=============================================== +HalfSipHash - SipHash's insecure younger cousin +=============================================== + +:Author: Written by Jason A. Donenfeld <jason@zx2c4.com> + +On the off-chance that SipHash is not fast enough for your needs, you might be +able to justify using HalfSipHash, a terrifying but potentially useful +possibility. HalfSipHash cuts SipHash's rounds down from "2-4" to "1-3" and, +even scarier, uses an easily brute-forcable 64-bit key (with a 32-bit output) +instead of SipHash's 128-bit key. However, this may appeal to some +high-performance `jhash` users. + +Danger! + +Do not ever use HalfSipHash except for as a hashtable key function, and only +then when you can be absolutely certain that the outputs will never be +transmitted out of the kernel. This is only remotely useful over `jhash` as a +means of mitigating hashtable flooding denial of service attacks. + +Generating a key +================ + +Keys should always be generated from a cryptographically secure source of +random numbers, either using get_random_bytes or get_random_once: + +hsiphash_key_t key; +get_random_bytes(&key, sizeof(key)); + +If you're not deriving your key from here, you're doing it wrong. + +Using the functions +=================== + +There are two variants of the function, one that takes a list of integers, and +one that takes a buffer:: + + u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key); + +And:: + + u32 hsiphash_1u32(u32, const hsiphash_key_t *key); + u32 hsiphash_2u32(u32, u32, const hsiphash_key_t *key); + u32 hsiphash_3u32(u32, u32, u32, const hsiphash_key_t *key); + u32 hsiphash_4u32(u32, u32, u32, u32, const hsiphash_key_t *key); + +If you pass the generic hsiphash function something of a constant length, it +will constant fold at compile-time and automatically choose one of the +optimized functions. + +Hashtable key function usage +============================ + +:: + + struct some_hashtable { + DECLARE_HASHTABLE(hashtable, 8); + hsiphash_key_t key; + }; + + void init_hashtable(struct some_hashtable *table) + { + get_random_bytes(&table->key, sizeof(table->key)); + } + + static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input) + { + return &table->hashtable[hsiphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)]; + } + +You may then iterate like usual over the returned hash bucket. + +Performance +=========== + +HalfSipHash is roughly 3 times slower than JenkinsHash. For many replacements, +this will not be a problem, as the hashtable lookup isn't the bottleneck. And +in general, this is probably a good sacrifice to make for the security and DoS +resistance of HalfSipHash. diff --git a/Documentation/security/tpm/index.rst b/Documentation/security/tpm/index.rst index af77a7bbb070..3296533e54cf 100644 --- a/Documentation/security/tpm/index.rst +++ b/Documentation/security/tpm/index.rst @@ -5,3 +5,4 @@ Trusted Platform Module documentation .. toctree:: tpm_vtpm_proxy + xen-tpmfront diff --git a/Documentation/security/tpm/xen-tpmfront.rst b/Documentation/security/tpm/xen-tpmfront.rst index 98a16ab87360..00d5b1db227d 100644 --- a/Documentation/security/tpm/xen-tpmfront.rst +++ b/Documentation/security/tpm/xen-tpmfront.rst @@ -1,5 +1,3 @@ -:orphan: - ============================= Virtual TPM interface for Xen ============================= |