diff options
author | David S. Miller <davem@davemloft.net> | 2008-10-11 12:39:35 -0700 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2008-10-11 12:39:35 -0700 |
commit | 56c5d900dbb8e042bfad035d18433476931d8f93 (patch) | |
tree | 00b793965beeef10db03e0ff021d2d965c410759 /drivers/net/sfc/tx.c | |
parent | 4dd95b63ae25c5cad6986829b5e8788e9faa0330 (diff) | |
parent | ead9d23d803ea3a73766c3cb27bf7563ac8d7266 (diff) | |
download | linux-stable-56c5d900dbb8e042bfad035d18433476931d8f93.tar.gz linux-stable-56c5d900dbb8e042bfad035d18433476931d8f93.tar.bz2 linux-stable-56c5d900dbb8e042bfad035d18433476931d8f93.zip |
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts:
sound/core/memalloc.c
Diffstat (limited to 'drivers/net/sfc/tx.c')
-rw-r--r-- | drivers/net/sfc/tx.c | 385 |
1 files changed, 204 insertions, 181 deletions
diff --git a/drivers/net/sfc/tx.c b/drivers/net/sfc/tx.c index 5e8374ab28ee..da3e9ff339f5 100644 --- a/drivers/net/sfc/tx.c +++ b/drivers/net/sfc/tx.c @@ -47,7 +47,7 @@ void efx_stop_queue(struct efx_nic *efx) * We want to be able to nest calls to netif_stop_queue(), since each * channel can have an individual stop on the queue. */ -inline void efx_wake_queue(struct efx_nic *efx) +void efx_wake_queue(struct efx_nic *efx) { local_bh_disable(); if (atomic_dec_and_lock(&efx->netif_stop_count, @@ -59,19 +59,21 @@ inline void efx_wake_queue(struct efx_nic *efx) local_bh_enable(); } -static inline void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, - struct efx_tx_buffer *buffer) +static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, + struct efx_tx_buffer *buffer) { if (buffer->unmap_len) { struct pci_dev *pci_dev = tx_queue->efx->pci_dev; + dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - + buffer->unmap_len); if (buffer->unmap_single) - pci_unmap_single(pci_dev, buffer->unmap_addr, - buffer->unmap_len, PCI_DMA_TODEVICE); + pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len, + PCI_DMA_TODEVICE); else - pci_unmap_page(pci_dev, buffer->unmap_addr, - buffer->unmap_len, PCI_DMA_TODEVICE); + pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len, + PCI_DMA_TODEVICE); buffer->unmap_len = 0; - buffer->unmap_single = 0; + buffer->unmap_single = false; } if (buffer->skb) { @@ -103,13 +105,13 @@ struct efx_tso_header { }; static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, - const struct sk_buff *skb); + struct sk_buff *skb); static void efx_fini_tso(struct efx_tx_queue *tx_queue); static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh); -static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue, - struct efx_tx_buffer *buffer) +static void efx_tsoh_free(struct efx_tx_queue *tx_queue, + struct efx_tx_buffer *buffer) { if (buffer->tsoh) { if (likely(!buffer->tsoh->unmap_len)) { @@ -136,8 +138,8 @@ static inline void efx_tsoh_free(struct efx_tx_queue *tx_queue, * Returns NETDEV_TX_OK or NETDEV_TX_BUSY * You must hold netif_tx_lock() to call this function. */ -static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, - const struct sk_buff *skb) +static int efx_enqueue_skb(struct efx_tx_queue *tx_queue, + struct sk_buff *skb) { struct efx_nic *efx = tx_queue->efx; struct pci_dev *pci_dev = efx->pci_dev; @@ -148,7 +150,7 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, unsigned int len, unmap_len = 0, fill_level, insert_ptr, misalign; dma_addr_t dma_addr, unmap_addr = 0; unsigned int dma_len; - unsigned unmap_single; + bool unmap_single; int q_space, i = 0; int rc = NETDEV_TX_OK; @@ -167,7 +169,7 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, * since this is more efficient on machines with sparse * memory. */ - unmap_single = 1; + unmap_single = true; dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); /* Process all fragments */ @@ -213,7 +215,7 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, EFX_BUG_ON_PARANOID(buffer->tsoh); EFX_BUG_ON_PARANOID(buffer->skb); EFX_BUG_ON_PARANOID(buffer->len); - EFX_BUG_ON_PARANOID(buffer->continuation != 1); + EFX_BUG_ON_PARANOID(!buffer->continuation); EFX_BUG_ON_PARANOID(buffer->unmap_len); dma_len = (((~dma_addr) & efx->type->tx_dma_mask) + 1); @@ -233,7 +235,6 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, } while (len); /* Transfer ownership of the unmapping to the final buffer */ - buffer->unmap_addr = unmap_addr; buffer->unmap_single = unmap_single; buffer->unmap_len = unmap_len; unmap_len = 0; @@ -247,14 +248,14 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, page_offset = fragment->page_offset; i++; /* Map for DMA */ - unmap_single = 0; + unmap_single = false; dma_addr = pci_map_page(pci_dev, page, page_offset, len, PCI_DMA_TODEVICE); } /* Transfer ownership of the skb to the final buffer */ buffer->skb = skb; - buffer->continuation = 0; + buffer->continuation = false; /* Pass off to hardware */ falcon_push_buffers(tx_queue); @@ -287,9 +288,14 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, } /* Free the fragment we were mid-way through pushing */ - if (unmap_len) - pci_unmap_page(pci_dev, unmap_addr, unmap_len, - PCI_DMA_TODEVICE); + if (unmap_len) { + if (unmap_single) + pci_unmap_single(pci_dev, unmap_addr, unmap_len, + PCI_DMA_TODEVICE); + else + pci_unmap_page(pci_dev, unmap_addr, unmap_len, + PCI_DMA_TODEVICE); + } return rc; } @@ -299,8 +305,8 @@ static inline int efx_enqueue_skb(struct efx_tx_queue *tx_queue, * This removes packets from the TX queue, up to and including the * specified index. */ -static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, - unsigned int index) +static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, + unsigned int index) { struct efx_nic *efx = tx_queue->efx; unsigned int stop_index, read_ptr; @@ -320,7 +326,7 @@ static inline void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, } efx_dequeue_buffer(tx_queue, buffer); - buffer->continuation = 1; + buffer->continuation = true; buffer->len = 0; ++tx_queue->read_count; @@ -367,8 +373,15 @@ inline int efx_xmit(struct efx_nic *efx, */ int efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev) { - struct efx_nic *efx = net_dev->priv; - return efx_xmit(efx, &efx->tx_queue[0], skb); + struct efx_nic *efx = netdev_priv(net_dev); + struct efx_tx_queue *tx_queue; + + if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) + tx_queue = &efx->tx_queue[EFX_TX_QUEUE_OFFLOAD_CSUM]; + else + tx_queue = &efx->tx_queue[EFX_TX_QUEUE_NO_CSUM]; + + return efx_xmit(efx, tx_queue, skb); } void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) @@ -412,30 +425,25 @@ int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) /* Allocate software ring */ txq_size = (efx->type->txd_ring_mask + 1) * sizeof(*tx_queue->buffer); tx_queue->buffer = kzalloc(txq_size, GFP_KERNEL); - if (!tx_queue->buffer) { - rc = -ENOMEM; - goto fail1; - } + if (!tx_queue->buffer) + return -ENOMEM; for (i = 0; i <= efx->type->txd_ring_mask; ++i) - tx_queue->buffer[i].continuation = 1; + tx_queue->buffer[i].continuation = true; /* Allocate hardware ring */ rc = falcon_probe_tx(tx_queue); if (rc) - goto fail2; + goto fail; return 0; - fail2: + fail: kfree(tx_queue->buffer); tx_queue->buffer = NULL; - fail1: - tx_queue->used = 0; - return rc; } -int efx_init_tx_queue(struct efx_tx_queue *tx_queue) +void efx_init_tx_queue(struct efx_tx_queue *tx_queue) { EFX_LOG(tx_queue->efx, "initialising TX queue %d\n", tx_queue->queue); @@ -446,7 +454,7 @@ int efx_init_tx_queue(struct efx_tx_queue *tx_queue) BUG_ON(tx_queue->stopped); /* Set up TX descriptor ring */ - return falcon_init_tx(tx_queue); + falcon_init_tx(tx_queue); } void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) @@ -461,7 +469,7 @@ void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->efx->type->txd_ring_mask]; efx_dequeue_buffer(tx_queue, buffer); - buffer->continuation = 1; + buffer->continuation = true; buffer->len = 0; ++tx_queue->read_count; @@ -494,7 +502,6 @@ void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) kfree(tx_queue->buffer); tx_queue->buffer = NULL; - tx_queue->used = 0; } @@ -509,7 +516,7 @@ void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) /* Number of bytes inserted at the start of a TSO header buffer, * similar to NET_IP_ALIGN. */ -#if defined(__i386__) || defined(__x86_64__) +#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS #define TSOH_OFFSET 0 #else #define TSOH_OFFSET NET_IP_ALIGN @@ -533,47 +540,37 @@ void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) /** * struct tso_state - TSO state for an SKB - * @remaining_len: Bytes of data we've yet to segment + * @out_len: Remaining length in current segment * @seqnum: Current sequence number + * @ipv4_id: Current IPv4 ID, host endian * @packet_space: Remaining space in current packet - * @ifc: Input fragment cursor. - * Where we are in the current fragment of the incoming SKB. These - * values get updated in place when we split a fragment over - * multiple packets. - * @p: Parameters. - * These values are set once at the start of the TSO send and do - * not get changed as the routine progresses. + * @dma_addr: DMA address of current position + * @in_len: Remaining length in current SKB fragment + * @unmap_len: Length of SKB fragment + * @unmap_addr: DMA address of SKB fragment + * @unmap_single: DMA single vs page mapping flag + * @header_len: Number of bytes of header + * @full_packet_size: Number of bytes to put in each outgoing segment * * The state used during segmentation. It is put into this data structure * just to make it easy to pass into inline functions. */ struct tso_state { - unsigned remaining_len; + /* Output position */ + unsigned out_len; unsigned seqnum; + unsigned ipv4_id; unsigned packet_space; - struct { - /* DMA address of current position */ - dma_addr_t dma_addr; - /* Remaining length */ - unsigned int len; - /* DMA address and length of the whole fragment */ - unsigned int unmap_len; - dma_addr_t unmap_addr; - struct page *page; - unsigned page_off; - } ifc; - - struct { - /* The number of bytes of header */ - unsigned int header_length; - - /* The number of bytes to put in each outgoing segment. */ - int full_packet_size; - - /* Current IPv4 ID, host endian. */ - unsigned ipv4_id; - } p; + /* Input position */ + dma_addr_t dma_addr; + unsigned in_len; + unsigned unmap_len; + dma_addr_t unmap_addr; + bool unmap_single; + + unsigned header_len; + int full_packet_size; }; @@ -581,11 +578,24 @@ struct tso_state { * Verify that our various assumptions about sk_buffs and the conditions * under which TSO will be attempted hold true. */ -static inline void efx_tso_check_safe(const struct sk_buff *skb) +static void efx_tso_check_safe(struct sk_buff *skb) { - EFX_BUG_ON_PARANOID(skb->protocol != htons(ETH_P_IP)); + __be16 protocol = skb->protocol; + EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != - skb->protocol); + protocol); + if (protocol == htons(ETH_P_8021Q)) { + /* Find the encapsulated protocol; reset network header + * and transport header based on that. */ + struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; + protocol = veh->h_vlan_encapsulated_proto; + skb_set_network_header(skb, sizeof(*veh)); + if (protocol == htons(ETH_P_IP)) + skb_set_transport_header(skb, sizeof(*veh) + + 4 * ip_hdr(skb)->ihl); + } + + EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IP)); EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) + (tcp_hdr(skb)->doff << 2u)) > @@ -685,18 +695,14 @@ efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) * @tx_queue: Efx TX queue * @dma_addr: DMA address of fragment * @len: Length of fragment - * @skb: Only non-null for end of last segment - * @end_of_packet: True if last fragment in a packet - * @unmap_addr: DMA address of fragment for unmapping - * @unmap_len: Only set this in last segment of a fragment + * @final_buffer: The final buffer inserted into the queue * * Push descriptors onto the TX queue. Return 0 on success or 1 if * @tx_queue full. */ static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, dma_addr_t dma_addr, unsigned len, - const struct sk_buff *skb, int end_of_packet, - dma_addr_t unmap_addr, unsigned unmap_len) + struct efx_tx_buffer **final_buffer) { struct efx_tx_buffer *buffer; struct efx_nic *efx = tx_queue->efx; @@ -724,8 +730,10 @@ static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, fill_level = (tx_queue->insert_count - tx_queue->old_read_count); q_space = efx->type->txd_ring_mask - 1 - fill_level; - if (unlikely(q_space-- <= 0)) + if (unlikely(q_space-- <= 0)) { + *final_buffer = NULL; return 1; + } smp_mb(); --tx_queue->stopped; } @@ -742,7 +750,7 @@ static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, EFX_BUG_ON_PARANOID(buffer->len); EFX_BUG_ON_PARANOID(buffer->unmap_len); EFX_BUG_ON_PARANOID(buffer->skb); - EFX_BUG_ON_PARANOID(buffer->continuation != 1); + EFX_BUG_ON_PARANOID(!buffer->continuation); EFX_BUG_ON_PARANOID(buffer->tsoh); buffer->dma_addr = dma_addr; @@ -765,10 +773,7 @@ static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, EFX_BUG_ON_PARANOID(!len); buffer->len = len; - buffer->skb = skb; - buffer->continuation = !end_of_packet; - buffer->unmap_addr = unmap_addr; - buffer->unmap_len = unmap_len; + *final_buffer = buffer; return 0; } @@ -780,8 +785,8 @@ static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, * a single fragment, and we know it doesn't cross a page boundary. It * also allows us to not worry about end-of-packet etc. */ -static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue, - struct efx_tso_header *tsoh, unsigned len) +static void efx_tso_put_header(struct efx_tx_queue *tx_queue, + struct efx_tso_header *tsoh, unsigned len) { struct efx_tx_buffer *buffer; @@ -791,7 +796,7 @@ static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue, EFX_BUG_ON_PARANOID(buffer->len); EFX_BUG_ON_PARANOID(buffer->unmap_len); EFX_BUG_ON_PARANOID(buffer->skb); - EFX_BUG_ON_PARANOID(buffer->continuation != 1); + EFX_BUG_ON_PARANOID(!buffer->continuation); EFX_BUG_ON_PARANOID(buffer->tsoh); buffer->len = len; buffer->dma_addr = tsoh->dma_addr; @@ -805,6 +810,7 @@ static inline void efx_tso_put_header(struct efx_tx_queue *tx_queue, static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) { struct efx_tx_buffer *buffer; + dma_addr_t unmap_addr; /* Work backwards until we hit the original insert pointer value */ while (tx_queue->insert_count != tx_queue->write_count) { @@ -814,11 +820,18 @@ static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) efx_tsoh_free(tx_queue, buffer); EFX_BUG_ON_PARANOID(buffer->skb); buffer->len = 0; - buffer->continuation = 1; + buffer->continuation = true; if (buffer->unmap_len) { - pci_unmap_page(tx_queue->efx->pci_dev, - buffer->unmap_addr, - buffer->unmap_len, PCI_DMA_TODEVICE); + unmap_addr = (buffer->dma_addr + buffer->len - + buffer->unmap_len); + if (buffer->unmap_single) + pci_unmap_single(tx_queue->efx->pci_dev, + unmap_addr, buffer->unmap_len, + PCI_DMA_TODEVICE); + else + pci_unmap_page(tx_queue->efx->pci_dev, + unmap_addr, buffer->unmap_len, + PCI_DMA_TODEVICE); buffer->unmap_len = 0; } } @@ -826,50 +839,57 @@ static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) /* Parse the SKB header and initialise state. */ -static inline void tso_start(struct tso_state *st, const struct sk_buff *skb) +static void tso_start(struct tso_state *st, const struct sk_buff *skb) { /* All ethernet/IP/TCP headers combined size is TCP header size * plus offset of TCP header relative to start of packet. */ - st->p.header_length = ((tcp_hdr(skb)->doff << 2u) - + PTR_DIFF(tcp_hdr(skb), skb->data)); - st->p.full_packet_size = (st->p.header_length - + skb_shinfo(skb)->gso_size); + st->header_len = ((tcp_hdr(skb)->doff << 2u) + + PTR_DIFF(tcp_hdr(skb), skb->data)); + st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size; - st->p.ipv4_id = ntohs(ip_hdr(skb)->id); + st->ipv4_id = ntohs(ip_hdr(skb)->id); st->seqnum = ntohl(tcp_hdr(skb)->seq); EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); - st->packet_space = st->p.full_packet_size; - st->remaining_len = skb->len - st->p.header_length; + st->packet_space = st->full_packet_size; + st->out_len = skb->len - st->header_len; + st->unmap_len = 0; + st->unmap_single = false; } - -/** - * tso_get_fragment - record fragment details and map for DMA - * @st: TSO state - * @efx: Efx NIC - * @data: Pointer to fragment data - * @len: Length of fragment - * - * Record fragment details and map for DMA. Return 0 on success, or - * -%ENOMEM if DMA mapping fails. - */ -static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, - int len, struct page *page, int page_off) +static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, + skb_frag_t *frag) { + st->unmap_addr = pci_map_page(efx->pci_dev, frag->page, + frag->page_offset, frag->size, + PCI_DMA_TODEVICE); + if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { + st->unmap_single = false; + st->unmap_len = frag->size; + st->in_len = frag->size; + st->dma_addr = st->unmap_addr; + return 0; + } + return -ENOMEM; +} - st->ifc.unmap_addr = pci_map_page(efx->pci_dev, page, page_off, - len, PCI_DMA_TODEVICE); - if (likely(!pci_dma_mapping_error(efx->pci_dev, st->ifc.unmap_addr))) { - st->ifc.unmap_len = len; - st->ifc.len = len; - st->ifc.dma_addr = st->ifc.unmap_addr; - st->ifc.page = page; - st->ifc.page_off = page_off; +static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, + const struct sk_buff *skb) +{ + int hl = st->header_len; + int len = skb_headlen(skb) - hl; + + st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl, + len, PCI_DMA_TODEVICE); + if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { + st->unmap_single = true; + st->unmap_len = len; + st->in_len = len; + st->dma_addr = st->unmap_addr; return 0; } return -ENOMEM; @@ -886,36 +906,45 @@ static inline int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, * of fragment or end-of-packet. Return 0 on success, 1 if not enough * space in @tx_queue. */ -static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, - const struct sk_buff *skb, - struct tso_state *st) +static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, + const struct sk_buff *skb, + struct tso_state *st) { - + struct efx_tx_buffer *buffer; int n, end_of_packet, rc; - if (st->ifc.len == 0) + if (st->in_len == 0) return 0; if (st->packet_space == 0) return 0; - EFX_BUG_ON_PARANOID(st->ifc.len <= 0); + EFX_BUG_ON_PARANOID(st->in_len <= 0); EFX_BUG_ON_PARANOID(st->packet_space <= 0); - n = min(st->ifc.len, st->packet_space); + n = min(st->in_len, st->packet_space); st->packet_space -= n; - st->remaining_len -= n; - st->ifc.len -= n; - st->ifc.page_off += n; - end_of_packet = st->remaining_len == 0 || st->packet_space == 0; - - rc = efx_tx_queue_insert(tx_queue, st->ifc.dma_addr, n, - st->remaining_len ? NULL : skb, - end_of_packet, st->ifc.unmap_addr, - st->ifc.len ? 0 : st->ifc.unmap_len); - - st->ifc.dma_addr += n; + st->out_len -= n; + st->in_len -= n; + + rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); + if (likely(rc == 0)) { + if (st->out_len == 0) + /* Transfer ownership of the skb */ + buffer->skb = skb; + + end_of_packet = st->out_len == 0 || st->packet_space == 0; + buffer->continuation = !end_of_packet; + + if (st->in_len == 0) { + /* Transfer ownership of the pci mapping */ + buffer->unmap_len = st->unmap_len; + buffer->unmap_single = st->unmap_single; + st->unmap_len = 0; + } + } + st->dma_addr += n; return rc; } @@ -929,9 +958,9 @@ static inline int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, * Generate a new header and prepare for the new packet. Return 0 on * success, or -1 if failed to alloc header. */ -static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue, - const struct sk_buff *skb, - struct tso_state *st) +static int tso_start_new_packet(struct efx_tx_queue *tx_queue, + const struct sk_buff *skb, + struct tso_state *st) { struct efx_tso_header *tsoh; struct iphdr *tsoh_iph; @@ -940,7 +969,7 @@ static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue, u8 *header; /* Allocate a DMA-mapped header buffer. */ - if (likely(TSOH_SIZE(st->p.header_length) <= TSOH_STD_SIZE)) { + if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) { if (tx_queue->tso_headers_free == NULL) { if (efx_tsoh_block_alloc(tx_queue)) return -1; @@ -951,7 +980,7 @@ static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue, tsoh->unmap_len = 0; } else { tx_queue->tso_long_headers++; - tsoh = efx_tsoh_heap_alloc(tx_queue, st->p.header_length); + tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len); if (unlikely(!tsoh)) return -1; } @@ -961,33 +990,32 @@ static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue, tsoh_iph = (struct iphdr *)(header + SKB_IPV4_OFF(skb)); /* Copy and update the headers. */ - memcpy(header, skb->data, st->p.header_length); + memcpy(header, skb->data, st->header_len); tsoh_th->seq = htonl(st->seqnum); st->seqnum += skb_shinfo(skb)->gso_size; - if (st->remaining_len > skb_shinfo(skb)->gso_size) { + if (st->out_len > skb_shinfo(skb)->gso_size) { /* This packet will not finish the TSO burst. */ - ip_length = st->p.full_packet_size - ETH_HDR_LEN(skb); + ip_length = st->full_packet_size - ETH_HDR_LEN(skb); tsoh_th->fin = 0; tsoh_th->psh = 0; } else { /* This packet will be the last in the TSO burst. */ - ip_length = (st->p.header_length - ETH_HDR_LEN(skb) - + st->remaining_len); + ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len; tsoh_th->fin = tcp_hdr(skb)->fin; tsoh_th->psh = tcp_hdr(skb)->psh; } tsoh_iph->tot_len = htons(ip_length); /* Linux leaves suitable gaps in the IP ID space for us to fill. */ - tsoh_iph->id = htons(st->p.ipv4_id); - st->p.ipv4_id++; + tsoh_iph->id = htons(st->ipv4_id); + st->ipv4_id++; st->packet_space = skb_shinfo(skb)->gso_size; ++tx_queue->tso_packets; /* Form a descriptor for this header. */ - efx_tso_put_header(tx_queue, tsoh, st->p.header_length); + efx_tso_put_header(tx_queue, tsoh, st->header_len); return 0; } @@ -1005,11 +1033,11 @@ static inline int tso_start_new_packet(struct efx_tx_queue *tx_queue, * %NETDEV_TX_OK or %NETDEV_TX_BUSY. */ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, - const struct sk_buff *skb) + struct sk_buff *skb) { + struct efx_nic *efx = tx_queue->efx; int frag_i, rc, rc2 = NETDEV_TX_OK; struct tso_state state; - skb_frag_t *f; /* Verify TSO is safe - these checks should never fail. */ efx_tso_check_safe(skb); @@ -1021,29 +1049,16 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, /* Assume that skb header area contains exactly the headers, and * all payload is in the frag list. */ - if (skb_headlen(skb) == state.p.header_length) { + if (skb_headlen(skb) == state.header_len) { /* Grab the first payload fragment. */ EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); frag_i = 0; - f = &skb_shinfo(skb)->frags[frag_i]; - rc = tso_get_fragment(&state, tx_queue->efx, - f->size, f->page, f->page_offset); + rc = tso_get_fragment(&state, efx, + skb_shinfo(skb)->frags + frag_i); if (rc) goto mem_err; } else { - /* It may look like this code fragment assumes that the - * skb->data portion does not cross a page boundary, but - * that is not the case. It is guaranteed to be direct - * mapped memory, and therefore is physically contiguous, - * and so DMA will work fine. kmap_atomic() on this region - * will just return the direct mapping, so that will work - * too. - */ - int page_off = (unsigned long)skb->data & (PAGE_SIZE - 1); - int hl = state.p.header_length; - rc = tso_get_fragment(&state, tx_queue->efx, - skb_headlen(skb) - hl, - virt_to_page(skb->data), page_off + hl); + rc = tso_get_head_fragment(&state, efx, skb); if (rc) goto mem_err; frag_i = -1; @@ -1058,13 +1073,12 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, goto stop; /* Move onto the next fragment? */ - if (state.ifc.len == 0) { + if (state.in_len == 0) { if (++frag_i >= skb_shinfo(skb)->nr_frags) /* End of payload reached. */ break; - f = &skb_shinfo(skb)->frags[frag_i]; - rc = tso_get_fragment(&state, tx_queue->efx, - f->size, f->page, f->page_offset); + rc = tso_get_fragment(&state, efx, + skb_shinfo(skb)->frags + frag_i); if (rc) goto mem_err; } @@ -1082,8 +1096,7 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, return NETDEV_TX_OK; mem_err: - EFX_ERR(tx_queue->efx, "Out of memory for TSO headers, or PCI mapping" - " error\n"); + EFX_ERR(efx, "Out of memory for TSO headers, or PCI mapping error\n"); dev_kfree_skb_any((struct sk_buff *)skb); goto unwind; @@ -1092,9 +1105,19 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, /* Stop the queue if it wasn't stopped before. */ if (tx_queue->stopped == 1) - efx_stop_queue(tx_queue->efx); + efx_stop_queue(efx); unwind: + /* Free the DMA mapping we were in the process of writing out */ + if (state.unmap_len) { + if (state.unmap_single) + pci_unmap_single(efx->pci_dev, state.unmap_addr, + state.unmap_len, PCI_DMA_TODEVICE); + else + pci_unmap_page(efx->pci_dev, state.unmap_addr, + state.unmap_len, PCI_DMA_TODEVICE); + } + efx_enqueue_unwind(tx_queue); return rc2; } |