diff options
Diffstat (limited to 'Documentation/locking/ww-mutex-design.txt')
-rw-r--r-- | Documentation/locking/ww-mutex-design.txt | 383 |
1 files changed, 0 insertions, 383 deletions
diff --git a/Documentation/locking/ww-mutex-design.txt b/Documentation/locking/ww-mutex-design.txt deleted file mode 100644 index f0ed7c30e695..000000000000 --- a/Documentation/locking/ww-mutex-design.txt +++ /dev/null @@ -1,383 +0,0 @@ -Wound/Wait Deadlock-Proof Mutex Design -====================================== - -Please read mutex-design.txt first, as it applies to wait/wound mutexes too. - -Motivation for WW-Mutexes -------------------------- - -GPU's do operations that commonly involve many buffers. Those buffers -can be shared across contexts/processes, exist in different memory -domains (for example VRAM vs system memory), and so on. And with -PRIME / dmabuf, they can even be shared across devices. So there are -a handful of situations where the driver needs to wait for buffers to -become ready. If you think about this in terms of waiting on a buffer -mutex for it to become available, this presents a problem because -there is no way to guarantee that buffers appear in a execbuf/batch in -the same order in all contexts. That is directly under control of -userspace, and a result of the sequence of GL calls that an application -makes. Which results in the potential for deadlock. The problem gets -more complex when you consider that the kernel may need to migrate the -buffer(s) into VRAM before the GPU operates on the buffer(s), which -may in turn require evicting some other buffers (and you don't want to -evict other buffers which are already queued up to the GPU), but for a -simplified understanding of the problem you can ignore this. - -The algorithm that the TTM graphics subsystem came up with for dealing with -this problem is quite simple. For each group of buffers (execbuf) that need -to be locked, the caller would be assigned a unique reservation id/ticket, -from a global counter. In case of deadlock while locking all the buffers -associated with a execbuf, the one with the lowest reservation ticket (i.e. -the oldest task) wins, and the one with the higher reservation id (i.e. the -younger task) unlocks all of the buffers that it has already locked, and then -tries again. - -In the RDBMS literature, a reservation ticket is associated with a transaction. -and the deadlock handling approach is called Wait-Die. The name is based on -the actions of a locking thread when it encounters an already locked mutex. -If the transaction holding the lock is younger, the locking transaction waits. -If the transaction holding the lock is older, the locking transaction backs off -and dies. Hence Wait-Die. -There is also another algorithm called Wound-Wait: -If the transaction holding the lock is younger, the locking transaction -wounds the transaction holding the lock, requesting it to die. -If the transaction holding the lock is older, it waits for the other -transaction. Hence Wound-Wait. -The two algorithms are both fair in that a transaction will eventually succeed. -However, the Wound-Wait algorithm is typically stated to generate fewer backoffs -compared to Wait-Die, but is, on the other hand, associated with more work than -Wait-Die when recovering from a backoff. Wound-Wait is also a preemptive -algorithm in that transactions are wounded by other transactions, and that -requires a reliable way to pick up up the wounded condition and preempt the -running transaction. Note that this is not the same as process preemption. A -Wound-Wait transaction is considered preempted when it dies (returning --EDEADLK) following a wound. - -Concepts --------- - -Compared to normal mutexes two additional concepts/objects show up in the lock -interface for w/w mutexes: - -Acquire context: To ensure eventual forward progress it is important the a task -trying to acquire locks doesn't grab a new reservation id, but keeps the one it -acquired when starting the lock acquisition. This ticket is stored in the -acquire context. Furthermore the acquire context keeps track of debugging state -to catch w/w mutex interface abuse. An acquire context is representing a -transaction. - -W/w class: In contrast to normal mutexes the lock class needs to be explicit for -w/w mutexes, since it is required to initialize the acquire context. The lock -class also specifies what algorithm to use, Wound-Wait or Wait-Die. - -Furthermore there are three different class of w/w lock acquire functions: - -* Normal lock acquisition with a context, using ww_mutex_lock. - -* Slowpath lock acquisition on the contending lock, used by the task that just - killed its transaction after having dropped all already acquired locks. - These functions have the _slow postfix. - - From a simple semantics point-of-view the _slow functions are not strictly - required, since simply calling the normal ww_mutex_lock functions on the - contending lock (after having dropped all other already acquired locks) will - work correctly. After all if no other ww mutex has been acquired yet there's - no deadlock potential and hence the ww_mutex_lock call will block and not - prematurely return -EDEADLK. The advantage of the _slow functions is in - interface safety: - - ww_mutex_lock has a __must_check int return type, whereas ww_mutex_lock_slow - has a void return type. Note that since ww mutex code needs loops/retries - anyway the __must_check doesn't result in spurious warnings, even though the - very first lock operation can never fail. - - When full debugging is enabled ww_mutex_lock_slow checks that all acquired - ww mutex have been released (preventing deadlocks) and makes sure that we - block on the contending lock (preventing spinning through the -EDEADLK - slowpath until the contended lock can be acquired). - -* Functions to only acquire a single w/w mutex, which results in the exact same - semantics as a normal mutex. This is done by calling ww_mutex_lock with a NULL - context. - - Again this is not strictly required. But often you only want to acquire a - single lock in which case it's pointless to set up an acquire context (and so - better to avoid grabbing a deadlock avoidance ticket). - -Of course, all the usual variants for handling wake-ups due to signals are also -provided. - -Usage ------ - -The algorithm (Wait-Die vs Wound-Wait) is chosen by using either -DEFINE_WW_CLASS() (Wound-Wait) or DEFINE_WD_CLASS() (Wait-Die) -As a rough rule of thumb, use Wound-Wait iff you -expect the number of simultaneous competing transactions to be typically small, -and you want to reduce the number of rollbacks. - -Three different ways to acquire locks within the same w/w class. Common -definitions for methods #1 and #2: - -static DEFINE_WW_CLASS(ww_class); - -struct obj { - struct ww_mutex lock; - /* obj data */ -}; - -struct obj_entry { - struct list_head head; - struct obj *obj; -}; - -Method 1, using a list in execbuf->buffers that's not allowed to be reordered. -This is useful if a list of required objects is already tracked somewhere. -Furthermore the lock helper can use propagate the -EALREADY return code back to -the caller as a signal that an object is twice on the list. This is useful if -the list is constructed from userspace input and the ABI requires userspace to -not have duplicate entries (e.g. for a gpu commandbuffer submission ioctl). - -int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx) -{ - struct obj *res_obj = NULL; - struct obj_entry *contended_entry = NULL; - struct obj_entry *entry; - - ww_acquire_init(ctx, &ww_class); - -retry: - list_for_each_entry (entry, list, head) { - if (entry->obj == res_obj) { - res_obj = NULL; - continue; - } - ret = ww_mutex_lock(&entry->obj->lock, ctx); - if (ret < 0) { - contended_entry = entry; - goto err; - } - } - - ww_acquire_done(ctx); - return 0; - -err: - list_for_each_entry_continue_reverse (entry, list, head) - ww_mutex_unlock(&entry->obj->lock); - - if (res_obj) - ww_mutex_unlock(&res_obj->lock); - - if (ret == -EDEADLK) { - /* we lost out in a seqno race, lock and retry.. */ - ww_mutex_lock_slow(&contended_entry->obj->lock, ctx); - res_obj = contended_entry->obj; - goto retry; - } - ww_acquire_fini(ctx); - - return ret; -} - -Method 2, using a list in execbuf->buffers that can be reordered. Same semantics -of duplicate entry detection using -EALREADY as method 1 above. But the -list-reordering allows for a bit more idiomatic code. - -int lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx) -{ - struct obj_entry *entry, *entry2; - - ww_acquire_init(ctx, &ww_class); - - list_for_each_entry (entry, list, head) { - ret = ww_mutex_lock(&entry->obj->lock, ctx); - if (ret < 0) { - entry2 = entry; - - list_for_each_entry_continue_reverse (entry2, list, head) - ww_mutex_unlock(&entry2->obj->lock); - - if (ret != -EDEADLK) { - ww_acquire_fini(ctx); - return ret; - } - - /* we lost out in a seqno race, lock and retry.. */ - ww_mutex_lock_slow(&entry->obj->lock, ctx); - - /* - * Move buf to head of the list, this will point - * buf->next to the first unlocked entry, - * restarting the for loop. - */ - list_del(&entry->head); - list_add(&entry->head, list); - } - } - - ww_acquire_done(ctx); - return 0; -} - -Unlocking works the same way for both methods #1 and #2: - -void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx) -{ - struct obj_entry *entry; - - list_for_each_entry (entry, list, head) - ww_mutex_unlock(&entry->obj->lock); - - ww_acquire_fini(ctx); -} - -Method 3 is useful if the list of objects is constructed ad-hoc and not upfront, -e.g. when adjusting edges in a graph where each node has its own ww_mutex lock, -and edges can only be changed when holding the locks of all involved nodes. w/w -mutexes are a natural fit for such a case for two reasons: -- They can handle lock-acquisition in any order which allows us to start walking - a graph from a starting point and then iteratively discovering new edges and - locking down the nodes those edges connect to. -- Due to the -EALREADY return code signalling that a given objects is already - held there's no need for additional book-keeping to break cycles in the graph - or keep track off which looks are already held (when using more than one node - as a starting point). - -Note that this approach differs in two important ways from the above methods: -- Since the list of objects is dynamically constructed (and might very well be - different when retrying due to hitting the -EDEADLK die condition) there's - no need to keep any object on a persistent list when it's not locked. We can - therefore move the list_head into the object itself. -- On the other hand the dynamic object list construction also means that the -EALREADY return - code can't be propagated. - -Note also that methods #1 and #2 and method #3 can be combined, e.g. to first lock a -list of starting nodes (passed in from userspace) using one of the above -methods. And then lock any additional objects affected by the operations using -method #3 below. The backoff/retry procedure will be a bit more involved, since -when the dynamic locking step hits -EDEADLK we also need to unlock all the -objects acquired with the fixed list. But the w/w mutex debug checks will catch -any interface misuse for these cases. - -Also, method 3 can't fail the lock acquisition step since it doesn't return --EALREADY. Of course this would be different when using the _interruptible -variants, but that's outside of the scope of these examples here. - -struct obj { - struct ww_mutex ww_mutex; - struct list_head locked_list; -}; - -static DEFINE_WW_CLASS(ww_class); - -void __unlock_objs(struct list_head *list) -{ - struct obj *entry, *temp; - - list_for_each_entry_safe (entry, temp, list, locked_list) { - /* need to do that before unlocking, since only the current lock holder is - allowed to use object */ - list_del(&entry->locked_list); - ww_mutex_unlock(entry->ww_mutex) - } -} - -void lock_objs(struct list_head *list, struct ww_acquire_ctx *ctx) -{ - struct obj *obj; - - ww_acquire_init(ctx, &ww_class); - -retry: - /* re-init loop start state */ - loop { - /* magic code which walks over a graph and decides which objects - * to lock */ - - ret = ww_mutex_lock(obj->ww_mutex, ctx); - if (ret == -EALREADY) { - /* we have that one already, get to the next object */ - continue; - } - if (ret == -EDEADLK) { - __unlock_objs(list); - - ww_mutex_lock_slow(obj, ctx); - list_add(&entry->locked_list, list); - goto retry; - } - - /* locked a new object, add it to the list */ - list_add_tail(&entry->locked_list, list); - } - - ww_acquire_done(ctx); - return 0; -} - -void unlock_objs(struct list_head *list, struct ww_acquire_ctx *ctx) -{ - __unlock_objs(list); - ww_acquire_fini(ctx); -} - -Method 4: Only lock one single objects. In that case deadlock detection and -prevention is obviously overkill, since with grabbing just one lock you can't -produce a deadlock within just one class. To simplify this case the w/w mutex -api can be used with a NULL context. - -Implementation Details ----------------------- - -Design: - ww_mutex currently encapsulates a struct mutex, this means no extra overhead for - normal mutex locks, which are far more common. As such there is only a small - increase in code size if wait/wound mutexes are not used. - - We maintain the following invariants for the wait list: - (1) Waiters with an acquire context are sorted by stamp order; waiters - without an acquire context are interspersed in FIFO order. - (2) For Wait-Die, among waiters with contexts, only the first one can have - other locks acquired already (ctx->acquired > 0). Note that this waiter - may come after other waiters without contexts in the list. - - The Wound-Wait preemption is implemented with a lazy-preemption scheme: - The wounded status of the transaction is checked only when there is - contention for a new lock and hence a true chance of deadlock. In that - situation, if the transaction is wounded, it backs off, clears the - wounded status and retries. A great benefit of implementing preemption in - this way is that the wounded transaction can identify a contending lock to - wait for before restarting the transaction. Just blindly restarting the - transaction would likely make the transaction end up in a situation where - it would have to back off again. - - In general, not much contention is expected. The locks are typically used to - serialize access to resources for devices, and optimization focus should - therefore be directed towards the uncontended cases. - -Lockdep: - Special care has been taken to warn for as many cases of api abuse - as possible. Some common api abuses will be caught with - CONFIG_DEBUG_MUTEXES, but CONFIG_PROVE_LOCKING is recommended. - - Some of the errors which will be warned about: - - Forgetting to call ww_acquire_fini or ww_acquire_init. - - Attempting to lock more mutexes after ww_acquire_done. - - Attempting to lock the wrong mutex after -EDEADLK and - unlocking all mutexes. - - Attempting to lock the right mutex after -EDEADLK, - before unlocking all mutexes. - - - Calling ww_mutex_lock_slow before -EDEADLK was returned. - - - Unlocking mutexes with the wrong unlock function. - - Calling one of the ww_acquire_* twice on the same context. - - Using a different ww_class for the mutex than for the ww_acquire_ctx. - - Normal lockdep errors that can result in deadlocks. - - Some of the lockdep errors that can result in deadlocks: - - Calling ww_acquire_init to initialize a second ww_acquire_ctx before - having called ww_acquire_fini on the first. - - 'normal' deadlocks that can occur. - -FIXME: Update this section once we have the TASK_DEADLOCK task state flag magic -implemented. |