/* * Copyright (C) 1995 Linus Torvalds * * Pentium III FXSR, SSE support * Gareth Hughes , May 2000 * * X86-64 port * Andi Kleen. * * CPU hotplug support - ashok.raj@intel.com */ /* * This file handles the architecture-dependent parts of process handling.. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include asmlinkage extern void ret_from_fork(void); DEFINE_PER_CPU(unsigned long, old_rsp); static DEFINE_PER_CPU(unsigned char, is_idle); static ATOMIC_NOTIFIER_HEAD(idle_notifier); void idle_notifier_register(struct notifier_block *n) { atomic_notifier_chain_register(&idle_notifier, n); } EXPORT_SYMBOL_GPL(idle_notifier_register); void idle_notifier_unregister(struct notifier_block *n) { atomic_notifier_chain_unregister(&idle_notifier, n); } EXPORT_SYMBOL_GPL(idle_notifier_unregister); void enter_idle(void) { percpu_write(is_idle, 1); atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL); } static void __exit_idle(void) { if (x86_test_and_clear_bit_percpu(0, is_idle) == 0) return; atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL); } /* Called from interrupts to signify idle end */ void exit_idle(void) { /* idle loop has pid 0 */ if (current->pid) return; __exit_idle(); } #ifndef CONFIG_SMP static inline void play_dead(void) { BUG(); } #endif /* * The idle thread. There's no useful work to be * done, so just try to conserve power and have a * low exit latency (ie sit in a loop waiting for * somebody to say that they'd like to reschedule) */ void cpu_idle(void) { current_thread_info()->status |= TS_POLLING; /* * If we're the non-boot CPU, nothing set the stack canary up * for us. CPU0 already has it initialized but no harm in * doing it again. This is a good place for updating it, as * we wont ever return from this function (so the invalid * canaries already on the stack wont ever trigger). */ boot_init_stack_canary(); /* endless idle loop with no priority at all */ while (1) { tick_nohz_stop_sched_tick(1); while (!need_resched()) { rmb(); if (cpu_is_offline(smp_processor_id())) play_dead(); /* * Idle routines should keep interrupts disabled * from here on, until they go to idle. * Otherwise, idle callbacks can misfire. */ local_touch_nmi(); local_irq_disable(); enter_idle(); /* Don't trace irqs off for idle */ stop_critical_timings(); if (cpuidle_idle_call()) pm_idle(); start_critical_timings(); /* In many cases the interrupt that ended idle has already called exit_idle. But some idle loops can be woken up without interrupt. */ __exit_idle(); } tick_nohz_restart_sched_tick(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } /* Prints also some state that isn't saved in the pt_regs */ void __show_regs(struct pt_regs *regs, int all) { unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs; unsigned long d0, d1, d2, d3, d6, d7; unsigned int fsindex, gsindex; unsigned int ds, cs, es; show_regs_common(); printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip); printk_address(regs->ip, 1); printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss, regs->sp, regs->flags); printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n", regs->ax, regs->bx, regs->cx); printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n", regs->dx, regs->si, regs->di); printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n", regs->bp, regs->r8, regs->r9); printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n", regs->r10, regs->r11, regs->r12); printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n", regs->r13, regs->r14, regs->r15); asm("movl %%ds,%0" : "=r" (ds)); asm("movl %%cs,%0" : "=r" (cs)); asm("movl %%es,%0" : "=r" (es)); asm("movl %%fs,%0" : "=r" (fsindex)); asm("movl %%gs,%0" : "=r" (gsindex)); rdmsrl(MSR_FS_BASE, fs); rdmsrl(MSR_GS_BASE, gs); rdmsrl(MSR_KERNEL_GS_BASE, shadowgs); if (!all) return; cr0 = read_cr0(); cr2 = read_cr2(); cr3 = read_cr3(); cr4 = read_cr4(); printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n", fs, fsindex, gs, gsindex, shadowgs); printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, es, cr0); printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, cr4); get_debugreg(d0, 0); get_debugreg(d1, 1); get_debugreg(d2, 2); printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2); get_debugreg(d3, 3); get_debugreg(d6, 6); get_debugreg(d7, 7); printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7); } void release_thread(struct task_struct *dead_task) { if (dead_task->mm) { if (dead_task->mm->context.ldt) { printk("WARNING: dead process %8s still has LDT? <%p/%d>\n", dead_task->comm, dead_task->mm->context.ldt->entries, dead_task->mm->context.ldt->size); BUG(); } } } static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr) { struct user_desc ud = { .base_addr = addr, .limit = 0xfffff, .seg_32bit = 1, .limit_in_pages = 1, .useable = 1, }; struct desc_struct *desc = t->thread.tls_array; desc += tls; fill_ldt(desc, &ud); } static inline u32 read_32bit_tls(struct task_struct *t, int tls) { return get_desc_base(&t->thread.tls_array[tls]); } /* * This gets called before we allocate a new thread and copy * the current task into it. */ void prepare_to_copy(struct task_struct *tsk) { unlazy_fpu(tsk); } int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long unused, struct task_struct *p, struct pt_regs *regs) { int err; struct pt_regs *childregs; struct task_struct *me = current; childregs = ((struct pt_regs *) (THREAD_SIZE + task_stack_page(p))) - 1; *childregs = *regs; childregs->ax = 0; if (user_mode(regs)) childregs->sp = sp; else childregs->sp = (unsigned long)childregs; p->thread.sp = (unsigned long) childregs; p->thread.sp0 = (unsigned long) (childregs+1); p->thread.usersp = me->thread.usersp; set_tsk_thread_flag(p, TIF_FORK); p->thread.io_bitmap_ptr = NULL; savesegment(gs, p->thread.gsindex); p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs; savesegment(fs, p->thread.fsindex); p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs; savesegment(es, p->thread.es); savesegment(ds, p->thread.ds); err = -ENOMEM; memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps)); if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) { p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL); if (!p->thread.io_bitmap_ptr) { p->thread.io_bitmap_max = 0; return -ENOMEM; } memcpy(p->thread.io_bitmap_ptr, me->thread.io_bitmap_ptr, IO_BITMAP_BYTES); set_tsk_thread_flag(p, TIF_IO_BITMAP); } /* * Set a new TLS for the child thread? */ if (clone_flags & CLONE_SETTLS) { #ifdef CONFIG_IA32_EMULATION if (test_thread_flag(TIF_IA32)) err = do_set_thread_area(p, -1, (struct user_desc __user *)childregs->si, 0); else #endif err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8); if (err) goto out; } err = 0; out: if (err && p->thread.io_bitmap_ptr) { kfree(p->thread.io_bitmap_ptr); p->thread.io_bitmap_max = 0; } return err; } static void start_thread_common(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp, unsigned int _cs, unsigned int _ss, unsigned int _ds) { loadsegment(fs, 0); loadsegment(es, _ds); loadsegment(ds, _ds); load_gs_index(0); regs->ip = new_ip; regs->sp = new_sp; percpu_write(old_rsp, new_sp); regs->cs = _cs; regs->ss = _ss; regs->flags = X86_EFLAGS_IF; /* * Free the old FP and other extended state */ free_thread_xstate(current); } void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) { start_thread_common(regs, new_ip, new_sp, __USER_CS, __USER_DS, 0); } #ifdef CONFIG_IA32_EMULATION void start_thread_ia32(struct pt_regs *regs, u32 new_ip, u32 new_sp) { start_thread_common(regs, new_ip, new_sp, __USER32_CS, __USER32_DS, __USER32_DS); } #endif /* * switch_to(x,y) should switch tasks from x to y. * * This could still be optimized: * - fold all the options into a flag word and test it with a single test. * - could test fs/gs bitsliced * * Kprobes not supported here. Set the probe on schedule instead. * Function graph tracer not supported too. */ __notrace_funcgraph struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) { struct thread_struct *prev = &prev_p->thread; struct thread_struct *next = &next_p->thread; int cpu = smp_processor_id(); struct tss_struct *tss = &per_cpu(init_tss, cpu); unsigned fsindex, gsindex; fpu_switch_t fpu; fpu = switch_fpu_prepare(prev_p, next_p); /* Reload esp0 and ss1. */ load_sp0(tss, next); /* We must save %fs and %gs before load_TLS() because * %fs and %gs may be cleared by load_TLS(). * * (e.g. xen_load_tls()) */ savesegment(fs, fsindex); savesegment(gs, gsindex); /* * Load TLS before restoring any segments so that segment loads * reference the correct GDT entries. */ load_TLS(next, cpu); /* * Leave lazy mode, flushing any hypercalls made here. This * must be done after loading TLS entries in the GDT but before * loading segments that might reference them, and and it must * be done before math_state_restore, so the TS bit is up to * date. */ arch_end_context_switch(next_p); /* Switch DS and ES. * * Reading them only returns the selectors, but writing them (if * nonzero) loads the full descriptor from the GDT or LDT. The * LDT for next is loaded in switch_mm, and the GDT is loaded * above. * * We therefore need to write new values to the segment * registers on every context switch unless both the new and old * values are zero. * * Note that we don't need to do anything for CS and SS, as * those are saved and restored as part of pt_regs. */ savesegment(es, prev->es); if (unlikely(next->es | prev->es)) loadsegment(es, next->es); savesegment(ds, prev->ds); if (unlikely(next->ds | prev->ds)) loadsegment(ds, next->ds); /* * Switch FS and GS. * * These are even more complicated than FS and GS: they have * 64-bit bases are that controlled by arch_prctl. Those bases * only differ from the values in the GDT or LDT if the selector * is 0. * * Loading the segment register resets the hidden base part of * the register to 0 or the value from the GDT / LDT. If the * next base address zero, writing 0 to the segment register is * much faster than using wrmsr to explicitly zero the base. * * The thread_struct.fs and thread_struct.gs values are 0 * if the fs and gs bases respectively are not overridden * from the values implied by fsindex and gsindex. They * are nonzero, and store the nonzero base addresses, if * the bases are overridden. * * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should * be impossible. * * Therefore we need to reload the segment registers if either * the old or new selector is nonzero, and we need to override * the base address if next thread expects it to be overridden. * * This code is unnecessarily slow in the case where the old and * new indexes are zero and the new base is nonzero -- it will * unnecessarily write 0 to the selector before writing the new * base address. * * Note: This all depends on arch_prctl being the only way that * user code can override the segment base. Once wrfsbase and * wrgsbase are enabled, most of this code will need to change. */ if (unlikely(fsindex | next->fsindex | prev->fs)) { loadsegment(fs, next->fsindex); /* * If user code wrote a nonzero value to FS, then it also * cleared the overridden base address. * * XXX: if user code wrote 0 to FS and cleared the base * address itself, we won't notice and we'll incorrectly * restore the prior base address next time we reschdule * the process. */ if (fsindex) prev->fs = 0; } if (next->fs) wrmsrl(MSR_FS_BASE, next->fs); prev->fsindex = fsindex; if (unlikely(gsindex | next->gsindex | prev->gs)) { load_gs_index(next->gsindex); /* This works (and fails) the same way as fsindex above. */ if (gsindex) prev->gs = 0; } if (next->gs) wrmsrl(MSR_KERNEL_GS_BASE, next->gs); prev->gsindex = gsindex; switch_fpu_finish(next_p, fpu); /* * Switch the PDA and FPU contexts. */ prev->usersp = percpu_read(old_rsp); percpu_write(old_rsp, next->usersp); percpu_write(current_task, next_p); percpu_write(kernel_stack, (unsigned long)task_stack_page(next_p) + THREAD_SIZE - KERNEL_STACK_OFFSET); /* * Now maybe reload the debug registers and handle I/O bitmaps */ if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT || task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV)) __switch_to_xtra(prev_p, next_p, tss); #ifdef CONFIG_XEN /* * On Xen PV, IOPL bits in pt_regs->flags have no effect, and * current_pt_regs()->flags may not match the current task's * intended IOPL. We need to switch it manually. */ if (unlikely(xen_pv_domain() && prev->iopl != next->iopl)) xen_set_iopl_mask(next->iopl); #endif return prev_p; } void set_personality_64bit(void) { /* inherit personality from parent */ /* Make sure to be in 64bit mode */ clear_thread_flag(TIF_IA32); /* Ensure the corresponding mm is not marked. */ if (current->mm) current->mm->context.ia32_compat = 0; /* TBD: overwrites user setup. Should have two bits. But 64bit processes have always behaved this way, so it's not too bad. The main problem is just that 32bit childs are affected again. */ current->personality &= ~READ_IMPLIES_EXEC; } void set_personality_ia32(void) { /* inherit personality from parent */ /* Make sure to be in 32bit mode */ set_thread_flag(TIF_IA32); current->personality |= force_personality32; /* Mark the associated mm as containing 32-bit tasks. */ if (current->mm) current->mm->context.ia32_compat = 1; /* Prepare the first "return" to user space */ current_thread_info()->status |= TS_COMPAT; } /* * Called from fs/proc with a reference on @p to find the function * which called into schedule(). This needs to be done carefully * because the task might wake up and we might look at a stack * changing under us. */ unsigned long get_wchan(struct task_struct *p) { unsigned long start, bottom, top, sp, fp, ip; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; start = (unsigned long)task_stack_page(p); if (!start) return 0; /* * Layout of the stack page: * * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) * PADDING * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING * stack * ----------- bottom = start + sizeof(thread_info) * thread_info * ----------- start * * The tasks stack pointer points at the location where the * framepointer is stored. The data on the stack is: * ... IP FP ... IP FP * * We need to read FP and IP, so we need to adjust the upper * bound by another unsigned long. */ top = start + THREAD_SIZE; top -= 2 * sizeof(unsigned long); bottom = start + sizeof(struct thread_info); sp = ACCESS_ONCE(p->thread.sp); if (sp < bottom || sp > top) return 0; fp = ACCESS_ONCE(*(unsigned long *)sp); do { if (fp < bottom || fp > top) return 0; ip = ACCESS_ONCE(*(unsigned long *)(fp + sizeof(unsigned long))); if (!in_sched_functions(ip)) return ip; fp = ACCESS_ONCE(*(unsigned long *)fp); } while (count++ < 16 && p->state != TASK_RUNNING); return 0; } long do_arch_prctl(struct task_struct *task, int code, unsigned long addr) { int ret = 0; int doit = task == current; int cpu; switch (code) { case ARCH_SET_GS: if (addr >= TASK_SIZE_OF(task)) return -EPERM; cpu = get_cpu(); /* handle small bases via the GDT because that's faster to switch. */ if (addr <= 0xffffffff) { set_32bit_tls(task, GS_TLS, addr); if (doit) { load_TLS(&task->thread, cpu); load_gs_index(GS_TLS_SEL); } task->thread.gsindex = GS_TLS_SEL; task->thread.gs = 0; } else { task->thread.gsindex = 0; task->thread.gs = addr; if (doit) { load_gs_index(0); ret = checking_wrmsrl(MSR_KERNEL_GS_BASE, addr); } } put_cpu(); break; case ARCH_SET_FS: /* Not strictly needed for fs, but do it for symmetry with gs */ if (addr >= TASK_SIZE_OF(task)) return -EPERM; cpu = get_cpu(); /* handle small bases via the GDT because that's faster to switch. */ if (addr <= 0xffffffff) { set_32bit_tls(task, FS_TLS, addr); if (doit) { load_TLS(&task->thread, cpu); loadsegment(fs, FS_TLS_SEL); } task->thread.fsindex = FS_TLS_SEL; task->thread.fs = 0; } else { task->thread.fsindex = 0; task->thread.fs = addr; if (doit) { /* set the selector to 0 to not confuse __switch_to */ loadsegment(fs, 0); ret = checking_wrmsrl(MSR_FS_BASE, addr); } } put_cpu(); break; case ARCH_GET_FS: { unsigned long base; if (task->thread.fsindex == FS_TLS_SEL) base = read_32bit_tls(task, FS_TLS); else if (doit) rdmsrl(MSR_FS_BASE, base); else base = task->thread.fs; ret = put_user(base, (unsigned long __user *)addr); break; } case ARCH_GET_GS: { unsigned long base; unsigned gsindex; if (task->thread.gsindex == GS_TLS_SEL) base = read_32bit_tls(task, GS_TLS); else if (doit) { savesegment(gs, gsindex); if (gsindex) rdmsrl(MSR_KERNEL_GS_BASE, base); else base = task->thread.gs; } else base = task->thread.gs; ret = put_user(base, (unsigned long __user *)addr); break; } default: ret = -EINVAL; break; } return ret; } long sys_arch_prctl(int code, unsigned long addr) { return do_arch_prctl(current, code, addr); } unsigned long KSTK_ESP(struct task_struct *task) { return (test_tsk_thread_flag(task, TIF_IA32)) ? (task_pt_regs(task)->sp) : ((task)->thread.usersp); }