// SPDX-License-Identifier: GPL-2.0-or-later /* * Linear symmetric key cipher operations. * * Generic encrypt/decrypt wrapper for ciphers. * * Copyright (c) 2023 Herbert Xu */ #include #include #include #include #include #include #include #include #include "skcipher.h" static inline struct crypto_lskcipher *__crypto_lskcipher_cast( struct crypto_tfm *tfm) { return container_of(tfm, struct crypto_lskcipher, base); } static inline struct lskcipher_alg *__crypto_lskcipher_alg( struct crypto_alg *alg) { return container_of(alg, struct lskcipher_alg, co.base); } static inline struct crypto_istat_cipher *lskcipher_get_stat( struct lskcipher_alg *alg) { return skcipher_get_stat_common(&alg->co); } static inline int crypto_lskcipher_errstat(struct lskcipher_alg *alg, int err) { struct crypto_istat_cipher *istat = lskcipher_get_stat(alg); if (!IS_ENABLED(CONFIG_CRYPTO_STATS)) return err; if (err) atomic64_inc(&istat->err_cnt); return err; } static int lskcipher_setkey_unaligned(struct crypto_lskcipher *tfm, const u8 *key, unsigned int keylen) { unsigned long alignmask = crypto_lskcipher_alignmask(tfm); struct lskcipher_alg *cipher = crypto_lskcipher_alg(tfm); u8 *buffer, *alignbuffer; unsigned long absize; int ret; absize = keylen + alignmask; buffer = kmalloc(absize, GFP_ATOMIC); if (!buffer) return -ENOMEM; alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1); memcpy(alignbuffer, key, keylen); ret = cipher->setkey(tfm, alignbuffer, keylen); kfree_sensitive(buffer); return ret; } int crypto_lskcipher_setkey(struct crypto_lskcipher *tfm, const u8 *key, unsigned int keylen) { unsigned long alignmask = crypto_lskcipher_alignmask(tfm); struct lskcipher_alg *cipher = crypto_lskcipher_alg(tfm); if (keylen < cipher->co.min_keysize || keylen > cipher->co.max_keysize) return -EINVAL; if ((unsigned long)key & alignmask) return lskcipher_setkey_unaligned(tfm, key, keylen); else return cipher->setkey(tfm, key, keylen); } EXPORT_SYMBOL_GPL(crypto_lskcipher_setkey); static int crypto_lskcipher_crypt_unaligned( struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *iv, int (*crypt)(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *iv, u32 flags)) { unsigned statesize = crypto_lskcipher_statesize(tfm); unsigned ivsize = crypto_lskcipher_ivsize(tfm); unsigned bs = crypto_lskcipher_blocksize(tfm); unsigned cs = crypto_lskcipher_chunksize(tfm); int err; u8 *tiv; u8 *p; BUILD_BUG_ON(MAX_CIPHER_BLOCKSIZE > PAGE_SIZE || MAX_CIPHER_ALIGNMASK >= PAGE_SIZE); tiv = kmalloc(PAGE_SIZE, GFP_ATOMIC); if (!tiv) return -ENOMEM; memcpy(tiv, iv, ivsize + statesize); p = kmalloc(PAGE_SIZE, GFP_ATOMIC); err = -ENOMEM; if (!p) goto out; while (len >= bs) { unsigned chunk = min((unsigned)PAGE_SIZE, len); int err; if (chunk > cs) chunk &= ~(cs - 1); memcpy(p, src, chunk); err = crypt(tfm, p, p, chunk, tiv, CRYPTO_LSKCIPHER_FLAG_FINAL); if (err) goto out; memcpy(dst, p, chunk); src += chunk; dst += chunk; len -= chunk; } err = len ? -EINVAL : 0; out: memcpy(iv, tiv, ivsize + statesize); kfree_sensitive(p); kfree_sensitive(tiv); return err; } static int crypto_lskcipher_crypt(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *iv, int (*crypt)(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *iv, u32 flags)) { unsigned long alignmask = crypto_lskcipher_alignmask(tfm); struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm); int ret; if (((unsigned long)src | (unsigned long)dst | (unsigned long)iv) & alignmask) { ret = crypto_lskcipher_crypt_unaligned(tfm, src, dst, len, iv, crypt); goto out; } ret = crypt(tfm, src, dst, len, iv, CRYPTO_LSKCIPHER_FLAG_FINAL); out: return crypto_lskcipher_errstat(alg, ret); } int crypto_lskcipher_encrypt(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *iv) { struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm); if (IS_ENABLED(CONFIG_CRYPTO_STATS)) { struct crypto_istat_cipher *istat = lskcipher_get_stat(alg); atomic64_inc(&istat->encrypt_cnt); atomic64_add(len, &istat->encrypt_tlen); } return crypto_lskcipher_crypt(tfm, src, dst, len, iv, alg->encrypt); } EXPORT_SYMBOL_GPL(crypto_lskcipher_encrypt); int crypto_lskcipher_decrypt(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *iv) { struct lskcipher_alg *alg = crypto_lskcipher_alg(tfm); if (IS_ENABLED(CONFIG_CRYPTO_STATS)) { struct crypto_istat_cipher *istat = lskcipher_get_stat(alg); atomic64_inc(&istat->decrypt_cnt); atomic64_add(len, &istat->decrypt_tlen); } return crypto_lskcipher_crypt(tfm, src, dst, len, iv, alg->decrypt); } EXPORT_SYMBOL_GPL(crypto_lskcipher_decrypt); static int crypto_lskcipher_crypt_sg(struct skcipher_request *req, int (*crypt)(struct crypto_lskcipher *tfm, const u8 *src, u8 *dst, unsigned len, u8 *ivs, u32 flags)) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher); u8 *ivs = skcipher_request_ctx(req); struct crypto_lskcipher *tfm = *ctx; struct skcipher_walk walk; unsigned ivsize; u32 flags; int err; ivsize = crypto_lskcipher_ivsize(tfm); ivs = PTR_ALIGN(ivs, crypto_skcipher_alignmask(skcipher) + 1); memcpy(ivs, req->iv, ivsize); flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP; if (req->base.flags & CRYPTO_SKCIPHER_REQ_CONT) flags |= CRYPTO_LSKCIPHER_FLAG_CONT; if (!(req->base.flags & CRYPTO_SKCIPHER_REQ_NOTFINAL)) flags |= CRYPTO_LSKCIPHER_FLAG_FINAL; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes) { err = crypt(tfm, walk.src.virt.addr, walk.dst.virt.addr, walk.nbytes, ivs, flags & ~(walk.nbytes == walk.total ? 0 : CRYPTO_LSKCIPHER_FLAG_FINAL)); err = skcipher_walk_done(&walk, err); flags |= CRYPTO_LSKCIPHER_FLAG_CONT; } memcpy(req->iv, ivs, ivsize); return err; } int crypto_lskcipher_encrypt_sg(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher); struct lskcipher_alg *alg = crypto_lskcipher_alg(*ctx); return crypto_lskcipher_crypt_sg(req, alg->encrypt); } int crypto_lskcipher_decrypt_sg(struct skcipher_request *req) { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); struct crypto_lskcipher **ctx = crypto_skcipher_ctx(skcipher); struct lskcipher_alg *alg = crypto_lskcipher_alg(*ctx); return crypto_lskcipher_crypt_sg(req, alg->decrypt); } static void crypto_lskcipher_exit_tfm(struct crypto_tfm *tfm) { struct crypto_lskcipher *skcipher = __crypto_lskcipher_cast(tfm); struct lskcipher_alg *alg = crypto_lskcipher_alg(skcipher); alg->exit(skcipher); } static int crypto_lskcipher_init_tfm(struct crypto_tfm *tfm) { struct crypto_lskcipher *skcipher = __crypto_lskcipher_cast(tfm); struct lskcipher_alg *alg = crypto_lskcipher_alg(skcipher); if (alg->exit) skcipher->base.exit = crypto_lskcipher_exit_tfm; if (alg->init) return alg->init(skcipher); return 0; } static void crypto_lskcipher_free_instance(struct crypto_instance *inst) { struct lskcipher_instance *skcipher = container_of(inst, struct lskcipher_instance, s.base); skcipher->free(skcipher); } static void __maybe_unused crypto_lskcipher_show( struct seq_file *m, struct crypto_alg *alg) { struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg); seq_printf(m, "type : lskcipher\n"); seq_printf(m, "blocksize : %u\n", alg->cra_blocksize); seq_printf(m, "min keysize : %u\n", skcipher->co.min_keysize); seq_printf(m, "max keysize : %u\n", skcipher->co.max_keysize); seq_printf(m, "ivsize : %u\n", skcipher->co.ivsize); seq_printf(m, "chunksize : %u\n", skcipher->co.chunksize); seq_printf(m, "statesize : %u\n", skcipher->co.statesize); } static int __maybe_unused crypto_lskcipher_report( struct sk_buff *skb, struct crypto_alg *alg) { struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg); struct crypto_report_blkcipher rblkcipher; memset(&rblkcipher, 0, sizeof(rblkcipher)); strscpy(rblkcipher.type, "lskcipher", sizeof(rblkcipher.type)); strscpy(rblkcipher.geniv, "", sizeof(rblkcipher.geniv)); rblkcipher.blocksize = alg->cra_blocksize; rblkcipher.min_keysize = skcipher->co.min_keysize; rblkcipher.max_keysize = skcipher->co.max_keysize; rblkcipher.ivsize = skcipher->co.ivsize; return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER, sizeof(rblkcipher), &rblkcipher); } static int __maybe_unused crypto_lskcipher_report_stat( struct sk_buff *skb, struct crypto_alg *alg) { struct lskcipher_alg *skcipher = __crypto_lskcipher_alg(alg); struct crypto_istat_cipher *istat; struct crypto_stat_cipher rcipher; istat = lskcipher_get_stat(skcipher); memset(&rcipher, 0, sizeof(rcipher)); strscpy(rcipher.type, "cipher", sizeof(rcipher.type)); rcipher.stat_encrypt_cnt = atomic64_read(&istat->encrypt_cnt); rcipher.stat_encrypt_tlen = atomic64_read(&istat->encrypt_tlen); rcipher.stat_decrypt_cnt = atomic64_read(&istat->decrypt_cnt); rcipher.stat_decrypt_tlen = atomic64_read(&istat->decrypt_tlen); rcipher.stat_err_cnt = atomic64_read(&istat->err_cnt); return nla_put(skb, CRYPTOCFGA_STAT_CIPHER, sizeof(rcipher), &rcipher); } static const struct crypto_type crypto_lskcipher_type = { .extsize = crypto_alg_extsize, .init_tfm = crypto_lskcipher_init_tfm, .free = crypto_lskcipher_free_instance, #ifdef CONFIG_PROC_FS .show = crypto_lskcipher_show, #endif #if IS_ENABLED(CONFIG_CRYPTO_USER) .report = crypto_lskcipher_report, #endif #ifdef CONFIG_CRYPTO_STATS .report_stat = crypto_lskcipher_report_stat, #endif .maskclear = ~CRYPTO_ALG_TYPE_MASK, .maskset = CRYPTO_ALG_TYPE_MASK, .type = CRYPTO_ALG_TYPE_LSKCIPHER, .tfmsize = offsetof(struct crypto_lskcipher, base), }; static void crypto_lskcipher_exit_tfm_sg(struct crypto_tfm *tfm) { struct crypto_lskcipher **ctx = crypto_tfm_ctx(tfm); crypto_free_lskcipher(*ctx); } int crypto_init_lskcipher_ops_sg(struct crypto_tfm *tfm) { struct crypto_lskcipher **ctx = crypto_tfm_ctx(tfm); struct crypto_alg *calg = tfm->__crt_alg; struct crypto_lskcipher *skcipher; if (!crypto_mod_get(calg)) return -EAGAIN; skcipher = crypto_create_tfm(calg, &crypto_lskcipher_type); if (IS_ERR(skcipher)) { crypto_mod_put(calg); return PTR_ERR(skcipher); } *ctx = skcipher; tfm->exit = crypto_lskcipher_exit_tfm_sg; return 0; } int crypto_grab_lskcipher(struct crypto_lskcipher_spawn *spawn, struct crypto_instance *inst, const char *name, u32 type, u32 mask) { spawn->base.frontend = &crypto_lskcipher_type; return crypto_grab_spawn(&spawn->base, inst, name, type, mask); } EXPORT_SYMBOL_GPL(crypto_grab_lskcipher); struct crypto_lskcipher *crypto_alloc_lskcipher(const char *alg_name, u32 type, u32 mask) { return crypto_alloc_tfm(alg_name, &crypto_lskcipher_type, type, mask); } EXPORT_SYMBOL_GPL(crypto_alloc_lskcipher); static int lskcipher_prepare_alg(struct lskcipher_alg *alg) { struct crypto_alg *base = &alg->co.base; int err; err = skcipher_prepare_alg_common(&alg->co); if (err) return err; if (alg->co.chunksize & (alg->co.chunksize - 1)) return -EINVAL; base->cra_type = &crypto_lskcipher_type; base->cra_flags |= CRYPTO_ALG_TYPE_LSKCIPHER; return 0; } int crypto_register_lskcipher(struct lskcipher_alg *alg) { struct crypto_alg *base = &alg->co.base; int err; err = lskcipher_prepare_alg(alg); if (err) return err; return crypto_register_alg(base); } EXPORT_SYMBOL_GPL(crypto_register_lskcipher); void crypto_unregister_lskcipher(struct lskcipher_alg *alg) { crypto_unregister_alg(&alg->co.base); } EXPORT_SYMBOL_GPL(crypto_unregister_lskcipher); int crypto_register_lskciphers(struct lskcipher_alg *algs, int count) { int i, ret; for (i = 0; i < count; i++) { ret = crypto_register_lskcipher(&algs[i]); if (ret) goto err; } return 0; err: for (--i; i >= 0; --i) crypto_unregister_lskcipher(&algs[i]); return ret; } EXPORT_SYMBOL_GPL(crypto_register_lskciphers); void crypto_unregister_lskciphers(struct lskcipher_alg *algs, int count) { int i; for (i = count - 1; i >= 0; --i) crypto_unregister_lskcipher(&algs[i]); } EXPORT_SYMBOL_GPL(crypto_unregister_lskciphers); int lskcipher_register_instance(struct crypto_template *tmpl, struct lskcipher_instance *inst) { int err; if (WARN_ON(!inst->free)) return -EINVAL; err = lskcipher_prepare_alg(&inst->alg); if (err) return err; return crypto_register_instance(tmpl, lskcipher_crypto_instance(inst)); } EXPORT_SYMBOL_GPL(lskcipher_register_instance); static int lskcipher_setkey_simple(struct crypto_lskcipher *tfm, const u8 *key, unsigned int keylen) { struct crypto_lskcipher *cipher = lskcipher_cipher_simple(tfm); crypto_lskcipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK); crypto_lskcipher_set_flags(cipher, crypto_lskcipher_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_lskcipher_setkey(cipher, key, keylen); } static int lskcipher_init_tfm_simple(struct crypto_lskcipher *tfm) { struct lskcipher_instance *inst = lskcipher_alg_instance(tfm); struct crypto_lskcipher **ctx = crypto_lskcipher_ctx(tfm); struct crypto_lskcipher_spawn *spawn; struct crypto_lskcipher *cipher; spawn = lskcipher_instance_ctx(inst); cipher = crypto_spawn_lskcipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); *ctx = cipher; return 0; } static void lskcipher_exit_tfm_simple(struct crypto_lskcipher *tfm) { struct crypto_lskcipher **ctx = crypto_lskcipher_ctx(tfm); crypto_free_lskcipher(*ctx); } static void lskcipher_free_instance_simple(struct lskcipher_instance *inst) { crypto_drop_lskcipher(lskcipher_instance_ctx(inst)); kfree(inst); } /** * lskcipher_alloc_instance_simple - allocate instance of simple block cipher * * Allocate an lskcipher_instance for a simple block cipher mode of operation, * e.g. cbc or ecb. The instance context will have just a single crypto_spawn, * that for the underlying cipher. The {min,max}_keysize, ivsize, blocksize, * alignmask, and priority are set from the underlying cipher but can be * overridden if needed. The tfm context defaults to * struct crypto_lskcipher *, and default ->setkey(), ->init(), and * ->exit() methods are installed. * * @tmpl: the template being instantiated * @tb: the template parameters * * Return: a pointer to the new instance, or an ERR_PTR(). The caller still * needs to register the instance. */ struct lskcipher_instance *lskcipher_alloc_instance_simple( struct crypto_template *tmpl, struct rtattr **tb) { u32 mask; struct lskcipher_instance *inst; struct crypto_lskcipher_spawn *spawn; char ecb_name[CRYPTO_MAX_ALG_NAME]; struct lskcipher_alg *cipher_alg; const char *cipher_name; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_LSKCIPHER, &mask); if (err) return ERR_PTR(err); cipher_name = crypto_attr_alg_name(tb[1]); if (IS_ERR(cipher_name)) return ERR_CAST(cipher_name); inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); if (!inst) return ERR_PTR(-ENOMEM); spawn = lskcipher_instance_ctx(inst); err = crypto_grab_lskcipher(spawn, lskcipher_crypto_instance(inst), cipher_name, 0, mask); ecb_name[0] = 0; if (err == -ENOENT && !!memcmp(tmpl->name, "ecb", 4)) { err = -ENAMETOOLONG; if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", cipher_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; err = crypto_grab_lskcipher(spawn, lskcipher_crypto_instance(inst), ecb_name, 0, mask); } if (err) goto err_free_inst; cipher_alg = crypto_lskcipher_spawn_alg(spawn); err = crypto_inst_setname(lskcipher_crypto_instance(inst), tmpl->name, &cipher_alg->co.base); if (err) goto err_free_inst; if (ecb_name[0]) { int len; err = -EINVAL; len = strscpy(ecb_name, &cipher_alg->co.base.cra_name[4], sizeof(ecb_name)); if (len < 2) goto err_free_inst; if (ecb_name[len - 1] != ')') goto err_free_inst; ecb_name[len - 1] = 0; err = -ENAMETOOLONG; if (snprintf(inst->alg.co.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", tmpl->name, ecb_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; if (strcmp(ecb_name, cipher_name) && snprintf(inst->alg.co.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", tmpl->name, cipher_name) >= CRYPTO_MAX_ALG_NAME) goto err_free_inst; } else { /* Don't allow nesting. */ err = -ELOOP; if ((cipher_alg->co.base.cra_flags & CRYPTO_ALG_INSTANCE)) goto err_free_inst; } err = -EINVAL; if (cipher_alg->co.ivsize) goto err_free_inst; inst->free = lskcipher_free_instance_simple; /* Default algorithm properties, can be overridden */ inst->alg.co.base.cra_blocksize = cipher_alg->co.base.cra_blocksize; inst->alg.co.base.cra_alignmask = cipher_alg->co.base.cra_alignmask; inst->alg.co.base.cra_priority = cipher_alg->co.base.cra_priority; inst->alg.co.min_keysize = cipher_alg->co.min_keysize; inst->alg.co.max_keysize = cipher_alg->co.max_keysize; inst->alg.co.ivsize = cipher_alg->co.base.cra_blocksize; inst->alg.co.statesize = cipher_alg->co.statesize; /* Use struct crypto_lskcipher * by default, can be overridden */ inst->alg.co.base.cra_ctxsize = sizeof(struct crypto_lskcipher *); inst->alg.setkey = lskcipher_setkey_simple; inst->alg.init = lskcipher_init_tfm_simple; inst->alg.exit = lskcipher_exit_tfm_simple; return inst; err_free_inst: lskcipher_free_instance_simple(inst); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(lskcipher_alloc_instance_simple);