// SPDX-License-Identifier: GPL-2.0 /* * R9A06G032 clock driver * * Copyright (C) 2018 Renesas Electronics Europe Limited * * Michel Pollet , */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define R9A06G032_SYSCTRL_USB 0x00 #define R9A06G032_SYSCTRL_USB_H2MODE (1<<1) #define R9A06G032_SYSCTRL_DMAMUX 0xA0 /** * struct regbit - describe one bit in a register * @reg: offset of register relative to base address, * expressed in units of 32-bit words (not bytes), * @bit: which bit (0 to 31) in the register * * This structure is used to compactly encode the location * of a single bit in a register. Five bits are needed to * encode the bit number. With uint16_t data type, this * leaves 11 bits to encode a register offset up to 2047. * * Since registers are aligned on 32-bit boundaries, the * offset will be specified in 32-bit words rather than bytes. * This allows encoding an offset up to 0x1FFC (8188) bytes. * * Helper macro RB() takes care of converting the register * offset from bytes to 32-bit words. */ struct regbit { u16 bit:5; u16 reg:11; }; #define RB(_reg, _bit) ((struct regbit) { \ .reg = (_reg) / 4, \ .bit = (_bit) \ }) /** * struct r9a06g032_gate - clock-related control bits * @gate: clock enable/disable * @reset: clock module reset (active low) * @ready: enables NoC forwarding of read/write requests to device, * (eg. device is ready to handle read/write requests) * @midle: request to idle the NoC interconnect * * Each of these fields describes a single bit in a register, * which controls some aspect of clock gating. The @gate field * is mandatory, this one enables/disables the clock. The * other fields are optional, with zero indicating "not used". * * In most cases there is a @reset bit which needs to be * de-asserted to bring the module out of reset. * * Modules may also need to signal when they are @ready to * handle requests (read/writes) from the NoC interconnect. * * Similarly, the @midle bit is used to idle the master. */ struct r9a06g032_gate { struct regbit gate, reset, ready, midle; /* Unused fields omitted to save space */ /* struct regbit scon, mirack, mistat */; }; enum gate_type { K_GATE = 0, /* gate which enable/disable */ K_FFC, /* fixed factor clock */ K_DIV, /* divisor */ K_BITSEL, /* special for UARTs */ K_DUALGATE /* special for UARTs */ }; /** * struct r9a06g032_clkdesc - describe a single clock * @name: string describing this clock * @managed: boolean indicating if this clock should be * started/stopped as part of power management * @type: see enum @gate_type * @index: the ID of this clock element * @source: the ID+1 of the parent clock element. * Root clock uses ID of ~0 (PARENT_ID); * @gate: clock enable/disable * @div: substructure for clock divider * @div.min: smallest permitted clock divider * @div.max: largest permitted clock divider * @div.reg: clock divider register offset, in 32-bit words * @div.table: optional list of fixed clock divider values; * must be in ascending order, zero for unused * @ffc: substructure for fixed-factor clocks * @ffc.div: divisor for fixed-factor clock * @ffc.mul: multiplier for fixed-factor clock * @dual: substructure for dual clock gates * @dual.group: UART group, 0=UART0/1/2, 1=UART3/4/5/6/7 * @dual.sel: select either g1/r1 or g2/r2 as clock source * @dual.g1: 1st source gate (clock enable/disable) * @dual.r1: 1st source reset (module reset) * @dual.g2: 2nd source gate (clock enable/disable) * @dual.r2: 2nd source reset (module reset) * * Describes a single element in the clock tree hierarchy. * As there are quite a large number of clock elements, this * structure is packed tightly to conserve space. */ struct r9a06g032_clkdesc { const char *name; uint32_t managed:1; enum gate_type type:3; uint32_t index:8; uint32_t source:8; /* source index + 1 (0 == none) */ union { /* type = K_GATE */ struct r9a06g032_gate gate; /* type = K_DIV */ struct { unsigned int min:10, max:10, reg:10; u16 table[4]; } div; /* type = K_FFC */ struct { u16 div, mul; } ffc; /* type = K_DUALGATE */ struct { uint16_t group:1; struct regbit sel, g1, r1, g2, r2; } dual; }; }; /* * The last three arguments are not currently used, * but are kept in the r9a06g032_clocks table below. */ #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) { \ .gate = _clk, \ .reset = _rst, \ .ready = _rdy, \ .midle = _midle, \ /* .scon = _scon, */ \ /* .mirack = _mirack, */ \ /* .mistat = _mistat */ \ } #define D_GATE(_idx, _n, _src, ...) { \ .type = K_GATE, \ .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, \ .name = _n, \ .gate = I_GATE(__VA_ARGS__) \ } #define D_MODULE(_idx, _n, _src, ...) { \ .type = K_GATE, \ .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, \ .name = _n, \ .managed = 1, \ .gate = I_GATE(__VA_ARGS__) \ } #define D_ROOT(_idx, _n, _mul, _div) { \ .type = K_FFC, \ .index = R9A06G032_##_idx, \ .name = _n, \ .ffc.div = _div, \ .ffc.mul = _mul \ } #define D_FFC(_idx, _n, _src, _div) { \ .type = K_FFC, \ .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, \ .name = _n, \ .ffc.div = _div, \ .ffc.mul = 1 \ } #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) { \ .type = K_DIV, \ .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, \ .name = _n, \ .div.reg = _reg, \ .div.min = _min, \ .div.max = _max, \ .div.table = { __VA_ARGS__ } \ } #define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) { \ .type = K_DUALGATE, \ .index = R9A06G032_##_idx, \ .source = 1 + R9A06G032_##_src, \ .name = _n, \ .dual = { \ .group = _g, \ .g1 = _g1, \ .r1 = _r1, \ .g2 = _g2, \ .r2 = _r2 \ }, \ } /* Internal clock IDs */ #define R9A06G032_CLKOUT 0 #define R9A06G032_CLKOUT_D10 2 #define R9A06G032_CLKOUT_D16 3 #define R9A06G032_CLKOUT_D160 4 #define R9A06G032_CLKOUT_D1OR2 5 #define R9A06G032_CLKOUT_D20 6 #define R9A06G032_CLKOUT_D40 7 #define R9A06G032_CLKOUT_D5 8 #define R9A06G032_CLKOUT_D8 9 #define R9A06G032_DIV_ADC 10 #define R9A06G032_DIV_I2C 11 #define R9A06G032_DIV_NAND 12 #define R9A06G032_DIV_P1_PG 13 #define R9A06G032_DIV_P2_PG 14 #define R9A06G032_DIV_P3_PG 15 #define R9A06G032_DIV_P4_PG 16 #define R9A06G032_DIV_P5_PG 17 #define R9A06G032_DIV_P6_PG 18 #define R9A06G032_DIV_QSPI0 19 #define R9A06G032_DIV_QSPI1 20 #define R9A06G032_DIV_REF_SYNC 21 #define R9A06G032_DIV_SDIO0 22 #define R9A06G032_DIV_SDIO1 23 #define R9A06G032_DIV_SWITCH 24 #define R9A06G032_DIV_UART 25 #define R9A06G032_DIV_MOTOR 64 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78 #define R9A06G032_CLK_ECAT100_D4 79 #define R9A06G032_CLK_HSR100_D2 80 #define R9A06G032_CLK_REF_SYNC_D4 81 #define R9A06G032_CLK_REF_SYNC_D8 82 #define R9A06G032_CLK_SERCOS100_D2 83 #define R9A06G032_DIV_CA7 84 #define R9A06G032_UART_GROUP_012 154 #define R9A06G032_UART_GROUP_34567 155 #define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1) static const struct r9a06g032_clkdesc r9a06g032_clocks[] = { D_ROOT(CLKOUT, "clkout", 25, 1), D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10), D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10), D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16), D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160), D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2), D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20), D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40), D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5), D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8), D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250), D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16), D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32), D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200), D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128), D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128), D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128), D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40), D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64), D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7), D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7), D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16), D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128), D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128), D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40), D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128), D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, RB(0xe8, 9), RB(0xe8, 10), RB(0xe8, 11), RB(0x00, 0), RB(0x15c, 3), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, RB(0xe8, 12), RB(0xe8, 13), RB(0xe8, 14), RB(0x00, 0), RB(0x15c, 4), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, RB(0xe8, 15), RB(0xe8, 16), RB(0xe8, 17), RB(0x00, 0), RB(0x15c, 5), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, RB(0xe8, 18), RB(0xe8, 19), RB(0xe8, 20), RB(0x00, 0), RB(0x15c, 6), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, RB(0xe8, 21), RB(0xe8, 22), RB(0xe8, 23), RB(0x00, 0), RB(0x15c, 7), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_ADC, "clk_adc", DIV_ADC, RB(0x3c, 10), RB(0x3c, 11), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, RB(0x80, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, RB(0x90, 3), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, RB(0x3c, 6), RB(0x3c, 7), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, RB(0x3c, 8), RB(0x3c, 9), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, RB(0x68, 2), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_NAND, "clk_nand", DIV_NAND, RB(0x50, 4), RB(0x50, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, RB(0xec, 20), RB(0xec, 21), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, RB(0x10c, 2), RB(0x10c, 3), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, RB(0x10c, 4), RB(0x10c, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, RB(0x10c, 6), RB(0x10c, 7), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, RB(0x104, 4), RB(0x104, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, RB(0x104, 6), RB(0x104, 7), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, RB(0x114, 0), RB(0x114, 1), RB(0x114, 2), RB(0x00, 0), RB(0x16c, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, RB(0x114, 3), RB(0x114, 4), RB(0x114, 5), RB(0x00, 0), RB(0x16c, 1), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, RB(0x114, 6), RB(0x114, 7), RB(0x114, 8), RB(0x00, 0), RB(0x16c, 2), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, RB(0x114, 9), RB(0x114, 10), RB(0x114, 11), RB(0x00, 0), RB(0x16c, 3), RB(0x00, 0), RB(0x00, 0)), D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, RB(0x1c, 6), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, RB(0x54, 4), RB(0x54, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, RB(0x90, 4), RB(0x90, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, RB(0x68, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, RB(0x68, 1), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, RB(0x0c, 4), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, RB(0xc8, 4), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, RB(0x84, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, RB(0x10c, 0), RB(0x10c, 1), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, RB(0xfc, 0), RB(0xfc, 1), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, RB(0xfc, 2), RB(0xfc, 3), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, RB(0xfc, 4), RB(0xfc, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, RB(0xfc, 6), RB(0xfc, 7), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, RB(0x104, 0), RB(0x104, 1), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, RB(0x104, 2), RB(0x104, 3), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, RB(0x130, 2), RB(0x130, 3), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8), D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, RB(0x80, 0), RB(0x80, 1), RB(0x00, 0), RB(0x80, 2), RB(0x00, 0), RB(0x88, 0), RB(0x88, 1)), D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, RB(0xe8, 0), RB(0xe8, 1), RB(0xe8, 2), RB(0x00, 0), RB(0x15c, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, RB(0x84, 0), RB(0x84, 2), RB(0x00, 0), RB(0x84, 1), RB(0x00, 0), RB(0x8c, 0), RB(0x8c, 1)), D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, RB(0x118, 3), RB(0x118, 4), RB(0x118, 5), RB(0x00, 0), RB(0x168, 1), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, RB(0x118, 6), RB(0x118, 7), RB(0x118, 8), RB(0x00, 0), RB(0x168, 2), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, RB(0x118, 9), RB(0x118, 10), RB(0x118, 11), RB(0x00, 0), RB(0x168, 3), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, RB(0xe8, 3), RB(0xe8, 4), RB(0xe8, 5), RB(0x00, 0), RB(0x15c, 1), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, RB(0xe8, 6), RB(0xe8, 7), RB(0xe8, 8), RB(0x00, 0), RB(0x15c, 2), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, RB(0x1c, 3), RB(0x00, 0), RB(0x00, 0), RB(0x1c, 4), RB(0x00, 0), RB(0x20, 2), RB(0x20, 3)), D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, RB(0x1c, 0), RB(0x1c, 1), RB(0x00, 0), RB(0x1c, 2), RB(0x00, 0), RB(0x20, 0), RB(0x20, 1)), D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, RB(0x1c, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, RB(0xf0, 12), RB(0xf0, 13), RB(0x00, 0), RB(0xf0, 14), RB(0x00, 0), RB(0x160, 4), RB(0x160, 5)), D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, RB(0xf0, 9), RB(0xf0, 10), RB(0xf0, 11), RB(0x00, 0), RB(0x160, 3), RB(0x00, 0), RB(0x00, 0)), D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4), D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4), D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2), D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4), D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8), D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2), D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4), D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, RB(0xf0, 3), RB(0xf0, 4), RB(0xf0, 5), RB(0x00, 0), RB(0x160, 1), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, RB(0xf0, 6), RB(0xf0, 7), RB(0xf0, 8), RB(0x00, 0), RB(0x160, 2), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, RB(0x3c, 15), RB(0x3c, 16), RB(0x3c, 17), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, RB(0x3c, 12), RB(0x3c, 13), RB(0x3c, 14), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, RB(0xf0, 0), RB(0xf0, 1), RB(0xf0, 2), RB(0x00, 0), RB(0x160, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, RB(0x3c, 0), RB(0x3c, 1), RB(0x3c, 2), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, RB(0x3c, 3), RB(0x3c, 4), RB(0x3c, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640), D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, RB(0x174, 0), RB(0x174, 1), RB(0x00, 0), RB(0x174, 2), RB(0x00, 0), RB(0x178, 0), RB(0x178, 1)), D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, RB(0x64, 3), RB(0x64, 4), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, RB(0x80, 3), RB(0x80, 4), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, RB(0x90, 4), RB(0x90, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, RB(0x18c, 0), RB(0x18c, 1), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, RB(0x84, 4), RB(0x84, 3), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, RB(0x34, 15), RB(0x34, 16), RB(0x34, 17), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, RB(0x184, 0), RB(0x184, 1), RB(0x184, 2), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, RB(0x24, 3), RB(0x24, 4), RB(0x24, 5), RB(0x00, 0), RB(0x28, 2), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, RB(0x24, 0), RB(0x24, 1), RB(0x00, 0), RB(0x24, 2), RB(0x00, 0), RB(0x28, 0), RB(0x28, 1)), D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, RB(0x64, 0), RB(0x64, 2), RB(0x00, 0), RB(0x64, 1), RB(0x00, 0), RB(0x74, 0), RB(0x74, 1)), D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, RB(0x4c, 0), RB(0x4c, 1), RB(0x4c, 2), RB(0x4c, 3), RB(0x58, 0), RB(0x58, 1), RB(0x58, 2)), D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, RB(0x4c, 4), RB(0x4c, 5), RB(0x4c, 6), RB(0x4c, 7), RB(0x58, 3), RB(0x58, 4), RB(0x58, 5)), D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, RB(0x6c, 0), RB(0x6c, 1), RB(0x6c, 2), RB(0x6c, 3), RB(0x78, 0), RB(0x78, 1), RB(0x78, 2)), D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, RB(0x70, 0), RB(0x70, 1), RB(0x70, 2), RB(0x70, 3), RB(0x7c, 0), RB(0x7c, 1), RB(0x7c, 2)), D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, RB(0x40, 18), RB(0x40, 19), RB(0x40, 20), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, RB(0x40, 21), RB(0x40, 22), RB(0x40, 23), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, RB(0x44, 9), RB(0x44, 10), RB(0x44, 11), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, RB(0x90, 0), RB(0x90, 2), RB(0x00, 0), RB(0x90, 1), RB(0x00, 0), RB(0x98, 0), RB(0x98, 1)), D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, RB(0x34, 9), RB(0x34, 10), RB(0x34, 11), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, RB(0x34, 12), RB(0x34, 13), RB(0x34, 14), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, RB(0xf4, 0), RB(0xf4, 1), RB(0xf4, 2), RB(0x00, 0), RB(0x164, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, RB(0x2c, 4), RB(0x2c, 5), RB(0x2c, 6), RB(0x00, 0), RB(0x30, 3), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, RB(0x2c, 0), RB(0x2c, 1), RB(0x2c, 2), RB(0x2c, 3), RB(0x30, 0), RB(0x30, 1), RB(0x30, 2)), D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, RB(0x50, 0), RB(0x50, 1), RB(0x50, 2), RB(0x50, 3), RB(0x5c, 0), RB(0x5c, 1), RB(0x5c, 2)), D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, RB(0xf4, 12), RB(0xf4, 13), RB(0x00, 0), RB(0xf4, 14), RB(0x00, 0), RB(0x164, 4), RB(0x164, 5)), D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, RB(0x44, 12), RB(0x44, 13), RB(0x44, 14), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, RB(0x44, 15), RB(0x44, 16), RB(0x44, 17), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, RB(0xf4, 6), RB(0xf4, 7), RB(0xf4, 8), RB(0x00, 0), RB(0x164, 2), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, RB(0xf4, 9), RB(0xf4, 10), RB(0xf4, 11), RB(0x00, 0), RB(0x164, 3), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, RB(0x54, 0), RB(0x54, 1), RB(0x54, 2), RB(0x54, 3), RB(0x60, 0), RB(0x60, 1), RB(0x60, 2)), D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, RB(0x90, 0), RB(0x90, 1), RB(0x90, 2), RB(0x90, 3), RB(0x98, 0), RB(0x98, 1), RB(0x98, 2)), D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, RB(0x154, 0), RB(0x154, 1), RB(0x154, 2), RB(0x00, 0), RB(0x170, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, RB(0x140, 0), RB(0x140, 3), RB(0x00, 0), RB(0x140, 2), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, RB(0x0c, 0), RB(0x0c, 1), RB(0x0c, 2), RB(0x0c, 3), RB(0x10, 0), RB(0x10, 1), RB(0x10, 2)), D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, RB(0xc8, 0), RB(0xc8, 1), RB(0xc8, 2), RB(0xc8, 3), RB(0xcc, 0), RB(0xcc, 1), RB(0xcc, 2)), D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, RB(0xf4, 3), RB(0xf4, 4), RB(0xf4, 5), RB(0x00, 0), RB(0x164, 1), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, RB(0x40, 0), RB(0x40, 1), RB(0x40, 2), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, RB(0x40, 3), RB(0x40, 4), RB(0x40, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, RB(0x40, 6), RB(0x40, 7), RB(0x40, 8), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, RB(0x40, 9), RB(0x40, 10), RB(0x40, 11), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, RB(0x40, 12), RB(0x40, 13), RB(0x40, 14), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, RB(0x40, 15), RB(0x40, 16), RB(0x40, 17), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, RB(0x130, 0), RB(0x00, 0), RB(0x130, 1), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, RB(0x188, 0), RB(0x188, 1), RB(0x188, 2), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, RB(0x34, 0), RB(0x34, 1), RB(0x34, 2), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, RB(0x34, 3), RB(0x34, 4), RB(0x34, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, RB(0x34, 6), RB(0x34, 7), RB(0x34, 8), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, RB(0x40, 24), RB(0x40, 25), RB(0x40, 26), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, RB(0x40, 27), RB(0x40, 28), RB(0x40, 29), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, RB(0x44, 0), RB(0x44, 1), RB(0x44, 2), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, RB(0x44, 3), RB(0x44, 4), RB(0x44, 5), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, RB(0x44, 6), RB(0x44, 7), RB(0x44, 8), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)), /* * These are not hardware clocks, but are needed to handle the special * case where we have a 'selector bit' that doesn't just change the * parent for a clock, but also the gate it's supposed to use. */ { .index = R9A06G032_UART_GROUP_012, .name = "uart_group_012", .type = K_BITSEL, .source = 1 + R9A06G032_DIV_UART, /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */ .dual.sel = RB(0x34, 30), .dual.group = 0, }, { .index = R9A06G032_UART_GROUP_34567, .name = "uart_group_34567", .type = K_BITSEL, .source = 1 + R9A06G032_DIV_P2_PG, /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */ .dual.sel = RB(0xec, 24), .dual.group = 1, }, D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, RB(0x34, 18), RB(0x34, 19), RB(0x34, 20), RB(0x34, 21)), D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, RB(0x34, 22), RB(0x34, 23), RB(0x34, 24), RB(0x34, 25)), D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, RB(0x34, 26), RB(0x34, 27), RB(0x34, 28), RB(0x34, 29)), D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, RB(0xec, 0), RB(0xec, 1), RB(0xec, 2), RB(0xec, 3)), D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, RB(0xec, 4), RB(0xec, 5), RB(0xec, 6), RB(0xec, 7)), D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, RB(0xec, 8), RB(0xec, 9), RB(0xec, 10), RB(0xec, 11)), D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, RB(0xec, 12), RB(0xec, 13), RB(0xec, 14), RB(0xec, 15)), D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, RB(0xec, 16), RB(0xec, 17), RB(0xec, 18), RB(0xec, 19)), }; struct r9a06g032_priv { struct clk_onecell_data data; spinlock_t lock; /* protects concurrent access to gates */ void __iomem *reg; }; static struct r9a06g032_priv *sysctrl_priv; /* Exported helper to access the DMAMUX register */ int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val) { unsigned long flags; u32 dmamux; if (!sysctrl_priv) return -EPROBE_DEFER; spin_lock_irqsave(&sysctrl_priv->lock, flags); dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX); dmamux &= ~mask; dmamux |= val & mask; writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX); spin_unlock_irqrestore(&sysctrl_priv->lock, flags); return 0; } EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux); static void clk_rdesc_set(struct r9a06g032_priv *clocks, struct regbit rb, unsigned int on) { u32 __iomem *reg = clocks->reg + (rb.reg * 4); u32 val; if (!rb.reg && !rb.bit) return; val = readl(reg); val = (val & ~BIT(rb.bit)) | ((!!on) << rb.bit); writel(val, reg); } static int clk_rdesc_get(struct r9a06g032_priv *clocks, struct regbit rb) { u32 __iomem *reg = clocks->reg + (rb.reg * 4); u32 val = readl(reg); return !!(val & BIT(rb.bit)); } /* * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's * clock gate framework as the gates on the R9A06G032 have a special enabling * sequence, therefore we use this little proxy. */ struct r9a06g032_clk_gate { struct clk_hw hw; struct r9a06g032_priv *clocks; u16 index; struct r9a06g032_gate gate; }; #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw) static int create_add_module_clock(struct of_phandle_args *clkspec, struct device *dev) { struct clk *clk; int error; clk = of_clk_get_from_provider(clkspec); if (IS_ERR(clk)) return PTR_ERR(clk); error = pm_clk_create(dev); if (error) { clk_put(clk); return error; } error = pm_clk_add_clk(dev, clk); if (error) { pm_clk_destroy(dev); clk_put(clk); } return error; } static int r9a06g032_attach_dev(struct generic_pm_domain *pd, struct device *dev) { struct device_node *np = dev->of_node; struct of_phandle_args clkspec; int i = 0; int error; int index; while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i++, &clkspec)) { if (clkspec.np != pd->dev.of_node) continue; index = clkspec.args[0]; if (index < R9A06G032_CLOCK_COUNT && r9a06g032_clocks[index].managed) { error = create_add_module_clock(&clkspec, dev); of_node_put(clkspec.np); if (error) return error; } } return 0; } static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev) { if (!pm_clk_no_clocks(dev)) pm_clk_destroy(dev); } static int r9a06g032_add_clk_domain(struct device *dev) { struct device_node *np = dev->of_node; struct generic_pm_domain *pd; pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; pd->name = np->name; pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON | GENPD_FLAG_ACTIVE_WAKEUP; pd->attach_dev = r9a06g032_attach_dev; pd->detach_dev = r9a06g032_detach_dev; pm_genpd_init(pd, &pm_domain_always_on_gov, false); of_genpd_add_provider_simple(np, pd); return 0; } static void r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks, struct r9a06g032_gate *g, int on) { unsigned long flags; WARN_ON(!g->gate.reg && !g->gate.bit); spin_lock_irqsave(&clocks->lock, flags); clk_rdesc_set(clocks, g->gate, on); /* De-assert reset */ clk_rdesc_set(clocks, g->reset, 1); spin_unlock_irqrestore(&clocks->lock, flags); /* Hardware manual recommends 5us delay after enabling clock & reset */ udelay(5); /* If the peripheral is memory mapped (i.e. an AXI slave), there is an * associated SLVRDY bit in the System Controller that needs to be set * so that the FlexWAY bus fabric passes on the read/write requests. */ spin_lock_irqsave(&clocks->lock, flags); clk_rdesc_set(clocks, g->ready, on); /* Clear 'Master Idle Request' bit */ clk_rdesc_set(clocks, g->midle, !on); spin_unlock_irqrestore(&clocks->lock, flags); /* Note: We don't wait for FlexWAY Socket Connection signal */ } static int r9a06g032_clk_gate_enable(struct clk_hw *hw) { struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); r9a06g032_clk_gate_set(g->clocks, &g->gate, 1); return 0; } static void r9a06g032_clk_gate_disable(struct clk_hw *hw) { struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); r9a06g032_clk_gate_set(g->clocks, &g->gate, 0); } static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw) { struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw); /* if clock is in reset, the gate might be on, and still not 'be' on */ if (g->gate.reset.reg && !clk_rdesc_get(g->clocks, g->gate.reset)) return 0; return clk_rdesc_get(g->clocks, g->gate.gate); } static const struct clk_ops r9a06g032_clk_gate_ops = { .enable = r9a06g032_clk_gate_enable, .disable = r9a06g032_clk_gate_disable, .is_enabled = r9a06g032_clk_gate_is_enabled, }; static struct clk * r9a06g032_register_gate(struct r9a06g032_priv *clocks, const char *parent_name, const struct r9a06g032_clkdesc *desc) { struct clk *clk; struct r9a06g032_clk_gate *g; struct clk_init_data init = {}; g = kzalloc(sizeof(*g), GFP_KERNEL); if (!g) return NULL; init.name = desc->name; init.ops = &r9a06g032_clk_gate_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; g->clocks = clocks; g->index = desc->index; g->gate = desc->gate; g->hw.init = &init; /* * important here, some clocks are already in use by the CM3, we * have to assume they are not Linux's to play with and try to disable * at the end of the boot! */ if (r9a06g032_clk_gate_is_enabled(&g->hw)) { init.flags |= CLK_IS_CRITICAL; pr_debug("%s was enabled, making read-only\n", desc->name); } clk = clk_register(NULL, &g->hw); if (IS_ERR(clk)) { kfree(g); return NULL; } return clk; } struct r9a06g032_clk_div { struct clk_hw hw; struct r9a06g032_priv *clocks; u16 index; u16 reg; u16 min, max; u8 table_size; u16 table[8]; /* we know there are no more than 8 */ }; #define to_r9a06g032_div(_hw) \ container_of(_hw, struct r9a06g032_clk_div, hw) static unsigned long r9a06g032_div_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg); u32 div = readl(reg); if (div < clk->min) div = clk->min; else if (div > clk->max) div = clk->max; return DIV_ROUND_UP(parent_rate, div); } /* * Attempts to find a value that is in range of min,max, * and if a table of set dividers was specified for this * register, try to find the fixed divider that is the closest * to the target frequency */ static long r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk, unsigned long rate, unsigned long prate) { /* + 1 to cope with rates that have the remainder dropped */ u32 div = DIV_ROUND_UP(prate, rate + 1); int i; if (div <= clk->min) return clk->min; if (div >= clk->max) return clk->max; for (i = 0; clk->table_size && i < clk->table_size - 1; i++) { if (div >= clk->table[i] && div <= clk->table[i + 1]) { unsigned long m = rate - DIV_ROUND_UP(prate, clk->table[i]); unsigned long p = DIV_ROUND_UP(prate, clk->table[i + 1]) - rate; /* * select the divider that generates * the value closest to the ideal frequency */ div = p >= m ? clk->table[i] : clk->table[i + 1]; return div; } } return div; } static int r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate); pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__, hw->clk, req->rate, req->best_parent_rate, div); pr_devel(" min %d (%ld) max %d (%ld)\n", clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min), clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max)); div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate); /* * this is a hack. Currently the serial driver asks for a clock rate * that is 16 times the baud rate -- and that is wildly outside the * range of the UART divider, somehow there is no provision for that * case of 'let the divider as is if outside range'. * The serial driver *shouldn't* play with these clocks anyway, there's * several uarts attached to this divider, and changing this impacts * everyone. */ if (clk->index == R9A06G032_DIV_UART || clk->index == R9A06G032_DIV_P2_PG) { pr_devel("%s div uart hack!\n", __func__); req->rate = clk_get_rate(hw->clk); return 0; } req->rate = DIV_ROUND_UP(req->best_parent_rate, div); pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk, req->best_parent_rate, div, req->rate); return 0; } static int r9a06g032_div_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw); /* + 1 to cope with rates that have the remainder dropped */ u32 div = DIV_ROUND_UP(parent_rate, rate + 1); u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg); pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk, rate, parent_rate, div); /* * Need to write the bit 31 with the divider value to * latch it. Technically we should wait until it has been * cleared too. * TODO: Find whether this callback is sleepable, in case * the hardware /does/ require some sort of spinloop here. */ writel(div | BIT(31), reg); return 0; } static const struct clk_ops r9a06g032_clk_div_ops = { .recalc_rate = r9a06g032_div_recalc_rate, .determine_rate = r9a06g032_div_determine_rate, .set_rate = r9a06g032_div_set_rate, }; static struct clk * r9a06g032_register_div(struct r9a06g032_priv *clocks, const char *parent_name, const struct r9a06g032_clkdesc *desc) { struct r9a06g032_clk_div *div; struct clk *clk; struct clk_init_data init = {}; unsigned int i; div = kzalloc(sizeof(*div), GFP_KERNEL); if (!div) return NULL; init.name = desc->name; init.ops = &r9a06g032_clk_div_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; div->clocks = clocks; div->index = desc->index; div->reg = desc->div.reg; div->hw.init = &init; div->min = desc->div.min; div->max = desc->div.max; /* populate (optional) divider table fixed values */ for (i = 0; i < ARRAY_SIZE(div->table) && i < ARRAY_SIZE(desc->div.table) && desc->div.table[i]; i++) { div->table[div->table_size++] = desc->div.table[i]; } clk = clk_register(NULL, &div->hw); if (IS_ERR(clk)) { kfree(div); return NULL; } return clk; } /* * This clock provider handles the case of the R9A06G032 where you have * peripherals that have two potential clock source and two gates, one for * each of the clock source - the used clock source (for all sub clocks) * is selected by a single bit. * That single bit affects all sub-clocks, and therefore needs to change the * active gate (and turn the others off) and force a recalculation of the rates. * * This implements two clock providers, one 'bitselect' that * handles the switch between both parents, and another 'dualgate' * that knows which gate to poke at, depending on the parent's bit position. */ struct r9a06g032_clk_bitsel { struct clk_hw hw; struct r9a06g032_priv *clocks; u16 index; struct regbit selector; /* selector register + bit */ }; #define to_clk_bitselect(_hw) \ container_of(_hw, struct r9a06g032_clk_bitsel, hw) static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw) { struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw); return clk_rdesc_get(set->clocks, set->selector); } static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index) { struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw); /* a single bit in the register selects one of two parent clocks */ clk_rdesc_set(set->clocks, set->selector, !!index); return 0; } static const struct clk_ops clk_bitselect_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .get_parent = r9a06g032_clk_mux_get_parent, .set_parent = r9a06g032_clk_mux_set_parent, }; static struct clk * r9a06g032_register_bitsel(struct r9a06g032_priv *clocks, const char *parent_name, const struct r9a06g032_clkdesc *desc) { struct clk *clk; struct r9a06g032_clk_bitsel *g; struct clk_init_data init = {}; const char *names[2]; /* allocate the gate */ g = kzalloc(sizeof(*g), GFP_KERNEL); if (!g) return NULL; names[0] = parent_name; names[1] = "clk_pll_usb"; init.name = desc->name; init.ops = &clk_bitselect_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = names; init.num_parents = 2; g->clocks = clocks; g->index = desc->index; g->selector = desc->dual.sel; g->hw.init = &init; clk = clk_register(NULL, &g->hw); if (IS_ERR(clk)) { kfree(g); return NULL; } return clk; } struct r9a06g032_clk_dualgate { struct clk_hw hw; struct r9a06g032_priv *clocks; u16 index; struct regbit selector; /* selector register + bit */ struct r9a06g032_gate gate[2]; }; #define to_clk_dualgate(_hw) \ container_of(_hw, struct r9a06g032_clk_dualgate, hw) static int r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable) { u8 sel_bit = clk_rdesc_get(g->clocks, g->selector); /* we always turn off the 'other' gate, regardless */ r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0); r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable); return 0; } static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw) { struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw); r9a06g032_clk_dualgate_setenable(gate, 1); return 0; } static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw) { struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw); r9a06g032_clk_dualgate_setenable(gate, 0); } static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw) { struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw); u8 sel_bit = clk_rdesc_get(g->clocks, g->selector); return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate); } static const struct clk_ops r9a06g032_clk_dualgate_ops = { .enable = r9a06g032_clk_dualgate_enable, .disable = r9a06g032_clk_dualgate_disable, .is_enabled = r9a06g032_clk_dualgate_is_enabled, }; static struct clk * r9a06g032_register_dualgate(struct r9a06g032_priv *clocks, const char *parent_name, const struct r9a06g032_clkdesc *desc, struct regbit sel) { struct r9a06g032_clk_dualgate *g; struct clk *clk; struct clk_init_data init = {}; /* allocate the gate */ g = kzalloc(sizeof(*g), GFP_KERNEL); if (!g) return NULL; g->clocks = clocks; g->index = desc->index; g->selector = sel; g->gate[0].gate = desc->dual.g1; g->gate[0].reset = desc->dual.r1; g->gate[1].gate = desc->dual.g2; g->gate[1].reset = desc->dual.r2; init.name = desc->name; init.ops = &r9a06g032_clk_dualgate_ops; init.flags = CLK_SET_RATE_PARENT; init.parent_names = &parent_name; init.num_parents = 1; g->hw.init = &init; /* * important here, some clocks are already in use by the CM3, we * have to assume they are not Linux's to play with and try to disable * at the end of the boot! */ if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) { init.flags |= CLK_IS_CRITICAL; pr_debug("%s was enabled, making read-only\n", desc->name); } clk = clk_register(NULL, &g->hw); if (IS_ERR(clk)) { kfree(g); return NULL; } return clk; } static void r9a06g032_clocks_del_clk_provider(void *data) { of_clk_del_provider(data); } static void __init r9a06g032_init_h2mode(struct r9a06g032_priv *clocks) { struct device_node *usbf_np; u32 usb; for_each_compatible_node(usbf_np, NULL, "renesas,rzn1-usbf") { if (of_device_is_available(usbf_np)) break; } usb = readl(clocks->reg + R9A06G032_SYSCTRL_USB); if (usbf_np) { /* 1 host and 1 device mode */ usb &= ~R9A06G032_SYSCTRL_USB_H2MODE; of_node_put(usbf_np); } else { /* 2 hosts mode */ usb |= R9A06G032_SYSCTRL_USB_H2MODE; } writel(usb, clocks->reg + R9A06G032_SYSCTRL_USB); } static int __init r9a06g032_clocks_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct r9a06g032_priv *clocks; struct clk **clks; struct clk *mclk; unsigned int i; struct regbit uart_group_sel[2]; int error; clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL); clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *), GFP_KERNEL); if (!clocks || !clks) return -ENOMEM; spin_lock_init(&clocks->lock); clocks->data.clks = clks; clocks->data.clk_num = R9A06G032_CLOCK_COUNT; mclk = devm_clk_get(dev, "mclk"); if (IS_ERR(mclk)) return PTR_ERR(mclk); clocks->reg = of_iomap(np, 0); if (WARN_ON(!clocks->reg)) return -ENOMEM; r9a06g032_init_h2mode(clocks); for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) { const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i]; const char *parent_name = d->source ? __clk_get_name(clocks->data.clks[d->source - 1]) : __clk_get_name(mclk); struct clk *clk = NULL; switch (d->type) { case K_FFC: clk = clk_register_fixed_factor(NULL, d->name, parent_name, 0, d->ffc.mul, d->ffc.div); break; case K_GATE: clk = r9a06g032_register_gate(clocks, parent_name, d); break; case K_DIV: clk = r9a06g032_register_div(clocks, parent_name, d); break; case K_BITSEL: /* keep that selector register around */ uart_group_sel[d->dual.group] = d->dual.sel; clk = r9a06g032_register_bitsel(clocks, parent_name, d); break; case K_DUALGATE: clk = r9a06g032_register_dualgate(clocks, parent_name, d, uart_group_sel[d->dual.group]); break; } clocks->data.clks[d->index] = clk; } error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data); if (error) return error; error = devm_add_action_or_reset(dev, r9a06g032_clocks_del_clk_provider, np); if (error) return error; error = r9a06g032_add_clk_domain(dev); if (error) return error; sysctrl_priv = clocks; error = of_platform_populate(np, NULL, NULL, dev); if (error) dev_err(dev, "Failed to populate children (%d)\n", error); return 0; } static const struct of_device_id r9a06g032_match[] = { { .compatible = "renesas,r9a06g032-sysctrl" }, { } }; static struct platform_driver r9a06g032_clock_driver = { .driver = { .name = "renesas,r9a06g032-sysctrl", .of_match_table = r9a06g032_match, }, }; static int __init r9a06g032_clocks_init(void) { return platform_driver_probe(&r9a06g032_clock_driver, r9a06g032_clocks_probe); } subsys_initcall(r9a06g032_clocks_init);