/*
 * Emma Mobile Timer Support - STI
 *
 *  Copyright (C) 2012 Magnus Damm
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/slab.h>
#include <linux/module.h>

enum { USER_CLOCKSOURCE, USER_CLOCKEVENT, USER_NR };

struct em_sti_priv {
	void __iomem *base;
	struct clk *clk;
	struct platform_device *pdev;
	unsigned int active[USER_NR];
	unsigned long rate;
	raw_spinlock_t lock;
	struct clock_event_device ced;
	struct clocksource cs;
};

#define STI_CONTROL 0x00
#define STI_COMPA_H 0x10
#define STI_COMPA_L 0x14
#define STI_COMPB_H 0x18
#define STI_COMPB_L 0x1c
#define STI_COUNT_H 0x20
#define STI_COUNT_L 0x24
#define STI_COUNT_RAW_H 0x28
#define STI_COUNT_RAW_L 0x2c
#define STI_SET_H 0x30
#define STI_SET_L 0x34
#define STI_INTSTATUS 0x40
#define STI_INTRAWSTATUS 0x44
#define STI_INTENSET 0x48
#define STI_INTENCLR 0x4c
#define STI_INTFFCLR 0x50

static inline unsigned long em_sti_read(struct em_sti_priv *p, int offs)
{
	return ioread32(p->base + offs);
}

static inline void em_sti_write(struct em_sti_priv *p, int offs,
				unsigned long value)
{
	iowrite32(value, p->base + offs);
}

static int em_sti_enable(struct em_sti_priv *p)
{
	int ret;

	/* enable clock */
	ret = clk_enable(p->clk);
	if (ret) {
		dev_err(&p->pdev->dev, "cannot enable clock\n");
		return ret;
	}

	/* configure channel, periodic mode and maximum timeout */
	p->rate = clk_get_rate(p->clk);

	/* reset the counter */
	em_sti_write(p, STI_SET_H, 0x40000000);
	em_sti_write(p, STI_SET_L, 0x00000000);

	/* mask and clear pending interrupts */
	em_sti_write(p, STI_INTENCLR, 3);
	em_sti_write(p, STI_INTFFCLR, 3);

	/* enable updates of counter registers */
	em_sti_write(p, STI_CONTROL, 1);

	return 0;
}

static void em_sti_disable(struct em_sti_priv *p)
{
	/* mask interrupts */
	em_sti_write(p, STI_INTENCLR, 3);

	/* stop clock */
	clk_disable(p->clk);
}

static cycle_t em_sti_count(struct em_sti_priv *p)
{
	cycle_t ticks;
	unsigned long flags;

	/* the STI hardware buffers the 48-bit count, but to
	 * break it out into two 32-bit access the registers
	 * must be accessed in a certain order.
	 * Always read STI_COUNT_H before STI_COUNT_L.
	 */
	raw_spin_lock_irqsave(&p->lock, flags);
	ticks = (cycle_t)(em_sti_read(p, STI_COUNT_H) & 0xffff) << 32;
	ticks |= em_sti_read(p, STI_COUNT_L);
	raw_spin_unlock_irqrestore(&p->lock, flags);

	return ticks;
}

static cycle_t em_sti_set_next(struct em_sti_priv *p, cycle_t next)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&p->lock, flags);

	/* mask compare A interrupt */
	em_sti_write(p, STI_INTENCLR, 1);

	/* update compare A value */
	em_sti_write(p, STI_COMPA_H, next >> 32);
	em_sti_write(p, STI_COMPA_L, next & 0xffffffff);

	/* clear compare A interrupt source */
	em_sti_write(p, STI_INTFFCLR, 1);

	/* unmask compare A interrupt */
	em_sti_write(p, STI_INTENSET, 1);

	raw_spin_unlock_irqrestore(&p->lock, flags);

	return next;
}

static irqreturn_t em_sti_interrupt(int irq, void *dev_id)
{
	struct em_sti_priv *p = dev_id;

	p->ced.event_handler(&p->ced);
	return IRQ_HANDLED;
}

static int em_sti_start(struct em_sti_priv *p, unsigned int user)
{
	unsigned long flags;
	int used_before;
	int ret = 0;

	raw_spin_lock_irqsave(&p->lock, flags);
	used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
	if (!used_before)
		ret = em_sti_enable(p);

	if (!ret)
		p->active[user] = 1;
	raw_spin_unlock_irqrestore(&p->lock, flags);

	return ret;
}

static void em_sti_stop(struct em_sti_priv *p, unsigned int user)
{
	unsigned long flags;
	int used_before, used_after;

	raw_spin_lock_irqsave(&p->lock, flags);
	used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];
	p->active[user] = 0;
	used_after = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT];

	if (used_before && !used_after)
		em_sti_disable(p);
	raw_spin_unlock_irqrestore(&p->lock, flags);
}

static struct em_sti_priv *cs_to_em_sti(struct clocksource *cs)
{
	return container_of(cs, struct em_sti_priv, cs);
}

static cycle_t em_sti_clocksource_read(struct clocksource *cs)
{
	return em_sti_count(cs_to_em_sti(cs));
}

static int em_sti_clocksource_enable(struct clocksource *cs)
{
	int ret;
	struct em_sti_priv *p = cs_to_em_sti(cs);

	ret = em_sti_start(p, USER_CLOCKSOURCE);
	if (!ret)
		__clocksource_updatefreq_hz(cs, p->rate);
	return ret;
}

static void em_sti_clocksource_disable(struct clocksource *cs)
{
	em_sti_stop(cs_to_em_sti(cs), USER_CLOCKSOURCE);
}

static void em_sti_clocksource_resume(struct clocksource *cs)
{
	em_sti_clocksource_enable(cs);
}

static int em_sti_register_clocksource(struct em_sti_priv *p)
{
	struct clocksource *cs = &p->cs;

	memset(cs, 0, sizeof(*cs));
	cs->name = dev_name(&p->pdev->dev);
	cs->rating = 200;
	cs->read = em_sti_clocksource_read;
	cs->enable = em_sti_clocksource_enable;
	cs->disable = em_sti_clocksource_disable;
	cs->suspend = em_sti_clocksource_disable;
	cs->resume = em_sti_clocksource_resume;
	cs->mask = CLOCKSOURCE_MASK(48);
	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;

	dev_info(&p->pdev->dev, "used as clock source\n");

	/* Register with dummy 1 Hz value, gets updated in ->enable() */
	clocksource_register_hz(cs, 1);
	return 0;
}

static struct em_sti_priv *ced_to_em_sti(struct clock_event_device *ced)
{
	return container_of(ced, struct em_sti_priv, ced);
}

static void em_sti_clock_event_mode(enum clock_event_mode mode,
				    struct clock_event_device *ced)
{
	struct em_sti_priv *p = ced_to_em_sti(ced);

	/* deal with old setting first */
	switch (ced->mode) {
	case CLOCK_EVT_MODE_ONESHOT:
		em_sti_stop(p, USER_CLOCKEVENT);
		break;
	default:
		break;
	}

	switch (mode) {
	case CLOCK_EVT_MODE_ONESHOT:
		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
		em_sti_start(p, USER_CLOCKEVENT);
		clockevents_config(&p->ced, p->rate);
		break;
	case CLOCK_EVT_MODE_SHUTDOWN:
	case CLOCK_EVT_MODE_UNUSED:
		em_sti_stop(p, USER_CLOCKEVENT);
		break;
	default:
		break;
	}
}

static int em_sti_clock_event_next(unsigned long delta,
				   struct clock_event_device *ced)
{
	struct em_sti_priv *p = ced_to_em_sti(ced);
	cycle_t next;
	int safe;

	next = em_sti_set_next(p, em_sti_count(p) + delta);
	safe = em_sti_count(p) < (next - 1);

	return !safe;
}

static void em_sti_register_clockevent(struct em_sti_priv *p)
{
	struct clock_event_device *ced = &p->ced;

	memset(ced, 0, sizeof(*ced));
	ced->name = dev_name(&p->pdev->dev);
	ced->features = CLOCK_EVT_FEAT_ONESHOT;
	ced->rating = 200;
	ced->cpumask = cpumask_of(0);
	ced->set_next_event = em_sti_clock_event_next;
	ced->set_mode = em_sti_clock_event_mode;

	dev_info(&p->pdev->dev, "used for clock events\n");

	/* Register with dummy 1 Hz value, gets updated in ->set_mode() */
	clockevents_config_and_register(ced, 1, 2, 0xffffffff);
}

static int __devinit em_sti_probe(struct platform_device *pdev)
{
	struct em_sti_priv *p;
	struct resource *res;
	int irq, ret;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (p == NULL) {
		dev_err(&pdev->dev, "failed to allocate driver data\n");
		ret = -ENOMEM;
		goto err0;
	}

	p->pdev = pdev;
	platform_set_drvdata(pdev, p);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "failed to get I/O memory\n");
		ret = -EINVAL;
		goto err0;
	}

	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "failed to get irq\n");
		ret = -EINVAL;
		goto err0;
	}

	/* map memory, let base point to the STI instance */
	p->base = ioremap_nocache(res->start, resource_size(res));
	if (p->base == NULL) {
		dev_err(&pdev->dev, "failed to remap I/O memory\n");
		ret = -ENXIO;
		goto err0;
	}

	/* get hold of clock */
	p->clk = clk_get(&pdev->dev, "sclk");
	if (IS_ERR(p->clk)) {
		dev_err(&pdev->dev, "cannot get clock\n");
		ret = PTR_ERR(p->clk);
		goto err1;
	}

	if (request_irq(irq, em_sti_interrupt,
			IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
			dev_name(&pdev->dev), p)) {
		dev_err(&pdev->dev, "failed to request low IRQ\n");
		ret = -ENOENT;
		goto err2;
	}

	raw_spin_lock_init(&p->lock);
	em_sti_register_clockevent(p);
	em_sti_register_clocksource(p);
	return 0;

err2:
	clk_put(p->clk);
err1:
	iounmap(p->base);
err0:
	kfree(p);
	return ret;
}

static int __devexit em_sti_remove(struct platform_device *pdev)
{
	return -EBUSY; /* cannot unregister clockevent and clocksource */
}

static const struct of_device_id em_sti_dt_ids[] __devinitconst = {
	{ .compatible = "renesas,em-sti", },
	{},
};
MODULE_DEVICE_TABLE(of, em_sti_dt_ids);

static struct platform_driver em_sti_device_driver = {
	.probe		= em_sti_probe,
	.remove		= __devexit_p(em_sti_remove),
	.driver		= {
		.name	= "em_sti",
		.of_match_table = em_sti_dt_ids,
	}
};

module_platform_driver(em_sti_device_driver);

MODULE_AUTHOR("Magnus Damm");
MODULE_DESCRIPTION("Renesas Emma Mobile STI Timer Driver");
MODULE_LICENSE("GPL v2");