/* * Cryptographic API. * * Support for OMAP SHA1/MD5 HW acceleration. * * Copyright (c) 2010 Nokia Corporation * Author: Dmitry Kasatkin * Copyright (c) 2011 Texas Instruments Incorporated * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * Some ideas are from old omap-sha1-md5.c driver. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MD5_DIGEST_SIZE 16 #define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04)) #define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04)) #define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs) #define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04)) #define SHA_REG_CTRL 0x18 #define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5) #define SHA_REG_CTRL_CLOSE_HASH (1 << 4) #define SHA_REG_CTRL_ALGO_CONST (1 << 3) #define SHA_REG_CTRL_ALGO (1 << 2) #define SHA_REG_CTRL_INPUT_READY (1 << 1) #define SHA_REG_CTRL_OUTPUT_READY (1 << 0) #define SHA_REG_REV(dd) ((dd)->pdata->rev_ofs) #define SHA_REG_MASK(dd) ((dd)->pdata->mask_ofs) #define SHA_REG_MASK_DMA_EN (1 << 3) #define SHA_REG_MASK_IT_EN (1 << 2) #define SHA_REG_MASK_SOFTRESET (1 << 1) #define SHA_REG_AUTOIDLE (1 << 0) #define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs) #define SHA_REG_SYSSTATUS_RESETDONE (1 << 0) #define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs) #define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7) #define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5) #define SHA_REG_MODE_CLOSE_HASH (1 << 4) #define SHA_REG_MODE_ALGO_CONSTANT (1 << 3) #define SHA_REG_MODE_ALGO_MASK (7 << 0) #define SHA_REG_MODE_ALGO_MD5_128 (0 << 1) #define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1) #define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1) #define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1) #define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0) #define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0) #define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs) #define SHA_REG_IRQSTATUS 0x118 #define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3) #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2) #define SHA_REG_IRQSTATUS_INPUT_RDY (1 << 1) #define SHA_REG_IRQSTATUS_OUTPUT_RDY (1 << 0) #define SHA_REG_IRQENA 0x11C #define SHA_REG_IRQENA_CTX_RDY (1 << 3) #define SHA_REG_IRQENA_PARTHASH_RDY (1 << 2) #define SHA_REG_IRQENA_INPUT_RDY (1 << 1) #define SHA_REG_IRQENA_OUTPUT_RDY (1 << 0) #define DEFAULT_TIMEOUT_INTERVAL HZ #define DEFAULT_AUTOSUSPEND_DELAY 1000 /* mostly device flags */ #define FLAGS_BUSY 0 #define FLAGS_FINAL 1 #define FLAGS_DMA_ACTIVE 2 #define FLAGS_OUTPUT_READY 3 #define FLAGS_INIT 4 #define FLAGS_CPU 5 #define FLAGS_DMA_READY 6 #define FLAGS_AUTO_XOR 7 #define FLAGS_BE32_SHA1 8 #define FLAGS_SGS_COPIED 9 #define FLAGS_SGS_ALLOCED 10 /* context flags */ #define FLAGS_FINUP 16 #define FLAGS_MODE_SHIFT 18 #define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT) #define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT) #define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT) #define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT) #define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT) #define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT) #define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT) #define FLAGS_HMAC 21 #define FLAGS_ERROR 22 #define OP_UPDATE 1 #define OP_FINAL 2 #define OMAP_ALIGN_MASK (sizeof(u32)-1) #define OMAP_ALIGNED __attribute__((aligned(sizeof(u32)))) #define BUFLEN SHA512_BLOCK_SIZE #define OMAP_SHA_DMA_THRESHOLD 256 struct omap_sham_dev; struct omap_sham_reqctx { struct omap_sham_dev *dd; unsigned long flags; unsigned long op; u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED; size_t digcnt; size_t bufcnt; size_t buflen; /* walk state */ struct scatterlist *sg; struct scatterlist sgl[2]; int offset; /* offset in current sg */ int sg_len; unsigned int total; /* total request */ u8 buffer[0] OMAP_ALIGNED; }; struct omap_sham_hmac_ctx { struct crypto_shash *shash; u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED; u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED; }; struct omap_sham_ctx { unsigned long flags; /* fallback stuff */ struct crypto_shash *fallback; struct omap_sham_hmac_ctx base[0]; }; #define OMAP_SHAM_QUEUE_LENGTH 10 struct omap_sham_algs_info { struct ahash_alg *algs_list; unsigned int size; unsigned int registered; }; struct omap_sham_pdata { struct omap_sham_algs_info *algs_info; unsigned int algs_info_size; unsigned long flags; int digest_size; void (*copy_hash)(struct ahash_request *req, int out); void (*write_ctrl)(struct omap_sham_dev *dd, size_t length, int final, int dma); void (*trigger)(struct omap_sham_dev *dd, size_t length); int (*poll_irq)(struct omap_sham_dev *dd); irqreturn_t (*intr_hdlr)(int irq, void *dev_id); u32 odigest_ofs; u32 idigest_ofs; u32 din_ofs; u32 digcnt_ofs; u32 rev_ofs; u32 mask_ofs; u32 sysstatus_ofs; u32 mode_ofs; u32 length_ofs; u32 major_mask; u32 major_shift; u32 minor_mask; u32 minor_shift; }; struct omap_sham_dev { struct list_head list; unsigned long phys_base; struct device *dev; void __iomem *io_base; int irq; spinlock_t lock; int err; struct dma_chan *dma_lch; struct tasklet_struct done_task; u8 polling_mode; u8 xmit_buf[BUFLEN] OMAP_ALIGNED; unsigned long flags; int fallback_sz; struct crypto_queue queue; struct ahash_request *req; const struct omap_sham_pdata *pdata; }; struct omap_sham_drv { struct list_head dev_list; spinlock_t lock; unsigned long flags; }; static struct omap_sham_drv sham = { .dev_list = LIST_HEAD_INIT(sham.dev_list), .lock = __SPIN_LOCK_UNLOCKED(sham.lock), }; static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset) { return __raw_readl(dd->io_base + offset); } static inline void omap_sham_write(struct omap_sham_dev *dd, u32 offset, u32 value) { __raw_writel(value, dd->io_base + offset); } static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address, u32 value, u32 mask) { u32 val; val = omap_sham_read(dd, address); val &= ~mask; val |= value; omap_sham_write(dd, address, val); } static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit) { unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL; while (!(omap_sham_read(dd, offset) & bit)) { if (time_is_before_jiffies(timeout)) return -ETIMEDOUT; } return 0; } static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd = ctx->dd; u32 *hash = (u32 *)ctx->digest; int i; for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) { if (out) hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i)); else omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]); } } static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd = ctx->dd; int i; if (ctx->flags & BIT(FLAGS_HMAC)) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req); struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct omap_sham_hmac_ctx *bctx = tctx->base; u32 *opad = (u32 *)bctx->opad; for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) { if (out) opad[i] = omap_sham_read(dd, SHA_REG_ODIGEST(dd, i)); else omap_sham_write(dd, SHA_REG_ODIGEST(dd, i), opad[i]); } } omap_sham_copy_hash_omap2(req, out); } static void omap_sham_copy_ready_hash(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); u32 *in = (u32 *)ctx->digest; u32 *hash = (u32 *)req->result; int i, d, big_endian = 0; if (!hash) return; switch (ctx->flags & FLAGS_MODE_MASK) { case FLAGS_MODE_MD5: d = MD5_DIGEST_SIZE / sizeof(u32); break; case FLAGS_MODE_SHA1: /* OMAP2 SHA1 is big endian */ if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags)) big_endian = 1; d = SHA1_DIGEST_SIZE / sizeof(u32); break; case FLAGS_MODE_SHA224: d = SHA224_DIGEST_SIZE / sizeof(u32); break; case FLAGS_MODE_SHA256: d = SHA256_DIGEST_SIZE / sizeof(u32); break; case FLAGS_MODE_SHA384: d = SHA384_DIGEST_SIZE / sizeof(u32); break; case FLAGS_MODE_SHA512: d = SHA512_DIGEST_SIZE / sizeof(u32); break; default: d = 0; } if (big_endian) for (i = 0; i < d; i++) hash[i] = be32_to_cpu(in[i]); else for (i = 0; i < d; i++) hash[i] = le32_to_cpu(in[i]); } static int omap_sham_hw_init(struct omap_sham_dev *dd) { int err; err = pm_runtime_get_sync(dd->dev); if (err < 0) { dev_err(dd->dev, "failed to get sync: %d\n", err); return err; } if (!test_bit(FLAGS_INIT, &dd->flags)) { set_bit(FLAGS_INIT, &dd->flags); dd->err = 0; } return 0; } static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length, int final, int dma) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); u32 val = length << 5, mask; if (likely(ctx->digcnt)) omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt); omap_sham_write_mask(dd, SHA_REG_MASK(dd), SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0), SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN); /* * Setting ALGO_CONST only for the first iteration * and CLOSE_HASH only for the last one. */ if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1) val |= SHA_REG_CTRL_ALGO; if (!ctx->digcnt) val |= SHA_REG_CTRL_ALGO_CONST; if (final) val |= SHA_REG_CTRL_CLOSE_HASH; mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH | SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH; omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask); } static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length) { } static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd) { return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY); } static int get_block_size(struct omap_sham_reqctx *ctx) { int d; switch (ctx->flags & FLAGS_MODE_MASK) { case FLAGS_MODE_MD5: case FLAGS_MODE_SHA1: d = SHA1_BLOCK_SIZE; break; case FLAGS_MODE_SHA224: case FLAGS_MODE_SHA256: d = SHA256_BLOCK_SIZE; break; case FLAGS_MODE_SHA384: case FLAGS_MODE_SHA512: d = SHA512_BLOCK_SIZE; break; default: d = 0; } return d; } static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset, u32 *value, int count) { for (; count--; value++, offset += 4) omap_sham_write(dd, offset, *value); } static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length, int final, int dma) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); u32 val, mask; /* * Setting ALGO_CONST only for the first iteration and * CLOSE_HASH only for the last one. Note that flags mode bits * correspond to algorithm encoding in mode register. */ val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT); if (!ctx->digcnt) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req); struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct omap_sham_hmac_ctx *bctx = tctx->base; int bs, nr_dr; val |= SHA_REG_MODE_ALGO_CONSTANT; if (ctx->flags & BIT(FLAGS_HMAC)) { bs = get_block_size(ctx); nr_dr = bs / (2 * sizeof(u32)); val |= SHA_REG_MODE_HMAC_KEY_PROC; omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0), (u32 *)bctx->ipad, nr_dr); omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0), (u32 *)bctx->ipad + nr_dr, nr_dr); ctx->digcnt += bs; } } if (final) { val |= SHA_REG_MODE_CLOSE_HASH; if (ctx->flags & BIT(FLAGS_HMAC)) val |= SHA_REG_MODE_HMAC_OUTER_HASH; } mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH | SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH | SHA_REG_MODE_HMAC_KEY_PROC; dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags); omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask); omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY); omap_sham_write_mask(dd, SHA_REG_MASK(dd), SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0), SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN); } static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length) { omap_sham_write(dd, SHA_REG_LENGTH(dd), length); } static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd) { return omap_sham_wait(dd, SHA_REG_IRQSTATUS, SHA_REG_IRQSTATUS_INPUT_RDY); } static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length, int final) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); int count, len32, bs32, offset = 0; const u32 *buffer; int mlen; struct sg_mapping_iter mi; dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n", ctx->digcnt, length, final); dd->pdata->write_ctrl(dd, length, final, 0); dd->pdata->trigger(dd, length); /* should be non-zero before next lines to disable clocks later */ ctx->digcnt += length; ctx->total -= length; if (final) set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */ set_bit(FLAGS_CPU, &dd->flags); len32 = DIV_ROUND_UP(length, sizeof(u32)); bs32 = get_block_size(ctx) / sizeof(u32); sg_miter_start(&mi, ctx->sg, ctx->sg_len, SG_MITER_FROM_SG | SG_MITER_ATOMIC); mlen = 0; while (len32) { if (dd->pdata->poll_irq(dd)) return -ETIMEDOUT; for (count = 0; count < min(len32, bs32); count++, offset++) { if (!mlen) { sg_miter_next(&mi); mlen = mi.length; if (!mlen) { pr_err("sg miter failure.\n"); return -EINVAL; } offset = 0; buffer = mi.addr; } omap_sham_write(dd, SHA_REG_DIN(dd, count), buffer[offset]); mlen -= 4; } len32 -= min(len32, bs32); } sg_miter_stop(&mi); return -EINPROGRESS; } static void omap_sham_dma_callback(void *param) { struct omap_sham_dev *dd = param; set_bit(FLAGS_DMA_READY, &dd->flags); tasklet_schedule(&dd->done_task); } static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length, int final) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); struct dma_async_tx_descriptor *tx; struct dma_slave_config cfg; int ret; dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n", ctx->digcnt, length, final); if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) { dev_err(dd->dev, "dma_map_sg error\n"); return -EINVAL; } memset(&cfg, 0, sizeof(cfg)); cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0); cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES; ret = dmaengine_slave_config(dd->dma_lch, &cfg); if (ret) { pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret); return ret; } tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!tx) { dev_err(dd->dev, "prep_slave_sg failed\n"); return -EINVAL; } tx->callback = omap_sham_dma_callback; tx->callback_param = dd; dd->pdata->write_ctrl(dd, length, final, 1); ctx->digcnt += length; ctx->total -= length; if (final) set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */ set_bit(FLAGS_DMA_ACTIVE, &dd->flags); dmaengine_submit(tx); dma_async_issue_pending(dd->dma_lch); dd->pdata->trigger(dd, length); return -EINPROGRESS; } static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx, struct scatterlist *sg, int bs, int new_len) { int n = sg_nents(sg); struct scatterlist *tmp; int offset = ctx->offset; if (ctx->bufcnt) n++; ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL); if (!ctx->sg) return -ENOMEM; sg_init_table(ctx->sg, n); tmp = ctx->sg; ctx->sg_len = 0; if (ctx->bufcnt) { sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt); tmp = sg_next(tmp); ctx->sg_len++; } while (sg && new_len) { int len = sg->length - offset; if (offset) { offset -= sg->length; if (offset < 0) offset = 0; } if (new_len < len) len = new_len; if (len > 0) { new_len -= len; sg_set_page(tmp, sg_page(sg), len, sg->offset); if (new_len <= 0) sg_mark_end(tmp); tmp = sg_next(tmp); ctx->sg_len++; } sg = sg_next(sg); } set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags); ctx->bufcnt = 0; return 0; } static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx, struct scatterlist *sg, int bs, int new_len) { int pages; void *buf; int len; len = new_len + ctx->bufcnt; pages = get_order(ctx->total); buf = (void *)__get_free_pages(GFP_ATOMIC, pages); if (!buf) { pr_err("Couldn't allocate pages for unaligned cases.\n"); return -ENOMEM; } if (ctx->bufcnt) memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt); scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset, ctx->total - ctx->bufcnt, 0); sg_init_table(ctx->sgl, 1); sg_set_buf(ctx->sgl, buf, len); ctx->sg = ctx->sgl; set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags); ctx->sg_len = 1; ctx->bufcnt = 0; ctx->offset = 0; return 0; } static int omap_sham_align_sgs(struct scatterlist *sg, int nbytes, int bs, bool final, struct omap_sham_reqctx *rctx) { int n = 0; bool aligned = true; bool list_ok = true; struct scatterlist *sg_tmp = sg; int new_len; int offset = rctx->offset; if (!sg || !sg->length || !nbytes) return 0; new_len = nbytes; if (offset) list_ok = false; if (final) new_len = DIV_ROUND_UP(new_len, bs) * bs; else new_len = (new_len - 1) / bs * bs; if (nbytes != new_len) list_ok = false; while (nbytes > 0 && sg_tmp) { n++; #ifdef CONFIG_ZONE_DMA if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) { aligned = false; break; } #endif if (offset < sg_tmp->length) { if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) { aligned = false; break; } if (!IS_ALIGNED(sg_tmp->length - offset, bs)) { aligned = false; break; } } if (offset) { offset -= sg_tmp->length; if (offset < 0) { nbytes += offset; offset = 0; } } else { nbytes -= sg_tmp->length; } sg_tmp = sg_next(sg_tmp); if (nbytes < 0) { list_ok = false; break; } } if (!aligned) return omap_sham_copy_sgs(rctx, sg, bs, new_len); else if (!list_ok) return omap_sham_copy_sg_lists(rctx, sg, bs, new_len); rctx->sg_len = n; rctx->sg = sg; return 0; } static int omap_sham_prepare_request(struct ahash_request *req, bool update) { struct omap_sham_reqctx *rctx = ahash_request_ctx(req); int bs; int ret; int nbytes; bool final = rctx->flags & BIT(FLAGS_FINUP); int xmit_len, hash_later; bs = get_block_size(rctx); if (update) nbytes = req->nbytes; else nbytes = 0; rctx->total = nbytes + rctx->bufcnt; if (!rctx->total) return 0; if (nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) { int len = bs - rctx->bufcnt % bs; if (len > nbytes) len = nbytes; scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src, 0, len, 0); rctx->bufcnt += len; nbytes -= len; rctx->offset = len; } if (rctx->bufcnt) memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt); ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx); if (ret) return ret; xmit_len = rctx->total; if (!IS_ALIGNED(xmit_len, bs)) { if (final) xmit_len = DIV_ROUND_UP(xmit_len, bs) * bs; else xmit_len = xmit_len / bs * bs; } else if (!final) { xmit_len -= bs; } hash_later = rctx->total - xmit_len; if (hash_later < 0) hash_later = 0; if (rctx->bufcnt && nbytes) { /* have data from previous operation and current */ sg_init_table(rctx->sgl, 2); sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt); sg_chain(rctx->sgl, 2, req->src); rctx->sg = rctx->sgl; rctx->sg_len++; } else if (rctx->bufcnt) { /* have buffered data only */ sg_init_table(rctx->sgl, 1); sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, xmit_len); rctx->sg = rctx->sgl; rctx->sg_len = 1; } if (hash_later) { int offset = 0; if (hash_later > req->nbytes) { memcpy(rctx->buffer, rctx->buffer + xmit_len, hash_later - req->nbytes); offset = hash_later - req->nbytes; } if (req->nbytes) { scatterwalk_map_and_copy(rctx->buffer + offset, req->src, offset + req->nbytes - hash_later, hash_later, 0); } rctx->bufcnt = hash_later; } else { rctx->bufcnt = 0; } if (!final) rctx->total = xmit_len; return 0; } static int omap_sham_update_dma_stop(struct omap_sham_dev *dd) { struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req); dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE); clear_bit(FLAGS_DMA_ACTIVE, &dd->flags); return 0; } struct omap_sham_dev *omap_sham_find_dev(struct omap_sham_reqctx *ctx) { struct omap_sham_dev *dd; if (ctx->dd) return ctx->dd; spin_lock_bh(&sham.lock); dd = list_first_entry(&sham.dev_list, struct omap_sham_dev, list); list_move_tail(&dd->list, &sham.dev_list); ctx->dd = dd; spin_unlock_bh(&sham.lock); return dd; } static int omap_sham_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd; int bs = 0; ctx->dd = NULL; dd = omap_sham_find_dev(ctx); if (!dd) return -ENODEV; ctx->flags = 0; dev_dbg(dd->dev, "init: digest size: %d\n", crypto_ahash_digestsize(tfm)); switch (crypto_ahash_digestsize(tfm)) { case MD5_DIGEST_SIZE: ctx->flags |= FLAGS_MODE_MD5; bs = SHA1_BLOCK_SIZE; break; case SHA1_DIGEST_SIZE: ctx->flags |= FLAGS_MODE_SHA1; bs = SHA1_BLOCK_SIZE; break; case SHA224_DIGEST_SIZE: ctx->flags |= FLAGS_MODE_SHA224; bs = SHA224_BLOCK_SIZE; break; case SHA256_DIGEST_SIZE: ctx->flags |= FLAGS_MODE_SHA256; bs = SHA256_BLOCK_SIZE; break; case SHA384_DIGEST_SIZE: ctx->flags |= FLAGS_MODE_SHA384; bs = SHA384_BLOCK_SIZE; break; case SHA512_DIGEST_SIZE: ctx->flags |= FLAGS_MODE_SHA512; bs = SHA512_BLOCK_SIZE; break; } ctx->bufcnt = 0; ctx->digcnt = 0; ctx->total = 0; ctx->offset = 0; ctx->buflen = BUFLEN; if (tctx->flags & BIT(FLAGS_HMAC)) { if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) { struct omap_sham_hmac_ctx *bctx = tctx->base; memcpy(ctx->buffer, bctx->ipad, bs); ctx->bufcnt = bs; } ctx->flags |= BIT(FLAGS_HMAC); } return 0; } static int omap_sham_update_req(struct omap_sham_dev *dd) { struct ahash_request *req = dd->req; struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int err; bool final = ctx->flags & BIT(FLAGS_FINUP); dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n", ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0); if (ctx->total < get_block_size(ctx) || ctx->total < dd->fallback_sz) ctx->flags |= BIT(FLAGS_CPU); if (ctx->flags & BIT(FLAGS_CPU)) err = omap_sham_xmit_cpu(dd, ctx->total, final); else err = omap_sham_xmit_dma(dd, ctx->total, final); /* wait for dma completion before can take more data */ dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt); return err; } static int omap_sham_final_req(struct omap_sham_dev *dd) { struct ahash_request *req = dd->req; struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int err = 0, use_dma = 1; if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode) /* * faster to handle last block with cpu or * use cpu when dma is not present. */ use_dma = 0; if (use_dma) err = omap_sham_xmit_dma(dd, ctx->total, 1); else err = omap_sham_xmit_cpu(dd, ctx->total, 1); ctx->bufcnt = 0; dev_dbg(dd->dev, "final_req: err: %d\n", err); return err; } static int omap_sham_finish_hmac(struct ahash_request *req) { struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct omap_sham_hmac_ctx *bctx = tctx->base; int bs = crypto_shash_blocksize(bctx->shash); int ds = crypto_shash_digestsize(bctx->shash); SHASH_DESC_ON_STACK(shash, bctx->shash); shash->tfm = bctx->shash; shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */ return crypto_shash_init(shash) ?: crypto_shash_update(shash, bctx->opad, bs) ?: crypto_shash_finup(shash, req->result, ds, req->result); } static int omap_sham_finish(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd = ctx->dd; int err = 0; if (ctx->digcnt) { omap_sham_copy_ready_hash(req); if ((ctx->flags & BIT(FLAGS_HMAC)) && !test_bit(FLAGS_AUTO_XOR, &dd->flags)) err = omap_sham_finish_hmac(req); } dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt); return err; } static void omap_sham_finish_req(struct ahash_request *req, int err) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd = ctx->dd; if (test_bit(FLAGS_SGS_COPIED, &dd->flags)) free_pages((unsigned long)sg_virt(ctx->sg), get_order(ctx->sg->length + ctx->bufcnt)); if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags)) kfree(ctx->sg); ctx->sg = NULL; dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED)); if (!err) { dd->pdata->copy_hash(req, 1); if (test_bit(FLAGS_FINAL, &dd->flags)) err = omap_sham_finish(req); } else { ctx->flags |= BIT(FLAGS_ERROR); } /* atomic operation is not needed here */ dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) | BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY)); pm_runtime_mark_last_busy(dd->dev); pm_runtime_put_autosuspend(dd->dev); if (req->base.complete) req->base.complete(&req->base, err); } static int omap_sham_handle_queue(struct omap_sham_dev *dd, struct ahash_request *req) { struct crypto_async_request *async_req, *backlog; struct omap_sham_reqctx *ctx; unsigned long flags; int err = 0, ret = 0; retry: spin_lock_irqsave(&dd->lock, flags); if (req) ret = ahash_enqueue_request(&dd->queue, req); if (test_bit(FLAGS_BUSY, &dd->flags)) { spin_unlock_irqrestore(&dd->lock, flags); return ret; } backlog = crypto_get_backlog(&dd->queue); async_req = crypto_dequeue_request(&dd->queue); if (async_req) set_bit(FLAGS_BUSY, &dd->flags); spin_unlock_irqrestore(&dd->lock, flags); if (!async_req) return ret; if (backlog) backlog->complete(backlog, -EINPROGRESS); req = ahash_request_cast(async_req); dd->req = req; ctx = ahash_request_ctx(req); err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE); if (err || !ctx->total) goto err1; dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n", ctx->op, req->nbytes); err = omap_sham_hw_init(dd); if (err) goto err1; if (ctx->digcnt) /* request has changed - restore hash */ dd->pdata->copy_hash(req, 0); if (ctx->op == OP_UPDATE) { err = omap_sham_update_req(dd); if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP))) /* no final() after finup() */ err = omap_sham_final_req(dd); } else if (ctx->op == OP_FINAL) { err = omap_sham_final_req(dd); } err1: dev_dbg(dd->dev, "exit, err: %d\n", err); if (err != -EINPROGRESS) { /* done_task will not finish it, so do it here */ omap_sham_finish_req(req, err); req = NULL; /* * Execute next request immediately if there is anything * in queue. */ goto retry; } return ret; } static int omap_sham_enqueue(struct ahash_request *req, unsigned int op) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd = ctx->dd; ctx->op = op; return omap_sham_handle_queue(dd, req); } static int omap_sham_update(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_dev *dd = omap_sham_find_dev(ctx); if (!req->nbytes) return 0; if (ctx->bufcnt + req->nbytes <= ctx->buflen) { scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src, 0, req->nbytes, 0); ctx->bufcnt += req->nbytes; return 0; } if (dd->polling_mode) ctx->flags |= BIT(FLAGS_CPU); return omap_sham_enqueue(req, OP_UPDATE); } static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags, const u8 *data, unsigned int len, u8 *out) { SHASH_DESC_ON_STACK(shash, tfm); shash->tfm = tfm; shash->flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP; return crypto_shash_digest(shash, data, len, out); } static int omap_sham_final_shash(struct ahash_request *req) { struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int offset = 0; /* * If we are running HMAC on limited hardware support, skip * the ipad in the beginning of the buffer if we are going for * software fallback algorithm. */ if (test_bit(FLAGS_HMAC, &ctx->flags) && !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags)) offset = get_block_size(ctx); return omap_sham_shash_digest(tctx->fallback, req->base.flags, ctx->buffer + offset, ctx->bufcnt - offset, req->result); } static int omap_sham_final(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); ctx->flags |= BIT(FLAGS_FINUP); if (ctx->flags & BIT(FLAGS_ERROR)) return 0; /* uncompleted hash is not needed */ /* * OMAP HW accel works only with buffers >= 9. * HMAC is always >= 9 because ipad == block size. * If buffersize is less than fallback_sz, we use fallback * SW encoding, as using DMA + HW in this case doesn't provide * any benefit. */ if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz) return omap_sham_final_shash(req); else if (ctx->bufcnt) return omap_sham_enqueue(req, OP_FINAL); /* copy ready hash (+ finalize hmac) */ return omap_sham_finish(req); } static int omap_sham_finup(struct ahash_request *req) { struct omap_sham_reqctx *ctx = ahash_request_ctx(req); int err1, err2; ctx->flags |= BIT(FLAGS_FINUP); err1 = omap_sham_update(req); if (err1 == -EINPROGRESS || err1 == -EBUSY) return err1; /* * final() has to be always called to cleanup resources * even if udpate() failed, except EINPROGRESS */ err2 = omap_sham_final(req); return err1 ?: err2; } static int omap_sham_digest(struct ahash_request *req) { return omap_sham_init(req) ?: omap_sham_finup(req); } static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm); struct omap_sham_hmac_ctx *bctx = tctx->base; int bs = crypto_shash_blocksize(bctx->shash); int ds = crypto_shash_digestsize(bctx->shash); int err, i; err = crypto_shash_setkey(tctx->fallback, key, keylen); if (err) return err; if (keylen > bs) { err = omap_sham_shash_digest(bctx->shash, crypto_shash_get_flags(bctx->shash), key, keylen, bctx->ipad); if (err) return err; keylen = ds; } else { memcpy(bctx->ipad, key, keylen); } memset(bctx->ipad + keylen, 0, bs - keylen); if (!test_bit(FLAGS_AUTO_XOR, &sham.flags)) { memcpy(bctx->opad, bctx->ipad, bs); for (i = 0; i < bs; i++) { bctx->ipad[i] ^= HMAC_IPAD_VALUE; bctx->opad[i] ^= HMAC_OPAD_VALUE; } } return err; } static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) { struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); const char *alg_name = crypto_tfm_alg_name(tfm); /* Allocate a fallback and abort if it failed. */ tctx->fallback = crypto_alloc_shash(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(tctx->fallback)) { pr_err("omap-sham: fallback driver '%s' " "could not be loaded.\n", alg_name); return PTR_ERR(tctx->fallback); } crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct omap_sham_reqctx) + BUFLEN); if (alg_base) { struct omap_sham_hmac_ctx *bctx = tctx->base; tctx->flags |= BIT(FLAGS_HMAC); bctx->shash = crypto_alloc_shash(alg_base, 0, CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(bctx->shash)) { pr_err("omap-sham: base driver '%s' " "could not be loaded.\n", alg_base); crypto_free_shash(tctx->fallback); return PTR_ERR(bctx->shash); } } return 0; } static int omap_sham_cra_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, NULL); } static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, "sha1"); } static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, "sha224"); } static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, "sha256"); } static int omap_sham_cra_md5_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, "md5"); } static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, "sha384"); } static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm) { return omap_sham_cra_init_alg(tfm, "sha512"); } static void omap_sham_cra_exit(struct crypto_tfm *tfm) { struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); crypto_free_shash(tctx->fallback); tctx->fallback = NULL; if (tctx->flags & BIT(FLAGS_HMAC)) { struct omap_sham_hmac_ctx *bctx = tctx->base; crypto_free_shash(bctx->shash); } } static int omap_sham_export(struct ahash_request *req, void *out) { struct omap_sham_reqctx *rctx = ahash_request_ctx(req); memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt); return 0; } static int omap_sham_import(struct ahash_request *req, const void *in) { struct omap_sham_reqctx *rctx = ahash_request_ctx(req); const struct omap_sham_reqctx *ctx_in = in; memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt); return 0; } static struct ahash_alg algs_sha1_md5[] = { { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "sha1", .cra_driver_name = "omap-sha1", .cra_priority = 400, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "md5", .cra_driver_name = "omap-md5", .cra_priority = 400, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .setkey = omap_sham_setkey, .halg.digestsize = SHA1_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha1)", .cra_driver_name = "omap-hmac-sha1", .cra_priority = 400, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx) + sizeof(struct omap_sham_hmac_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_sha1_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .setkey = omap_sham_setkey, .halg.digestsize = MD5_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(md5)", .cra_driver_name = "omap-hmac-md5", .cra_priority = 400, .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA1_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx) + sizeof(struct omap_sham_hmac_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_md5_init, .cra_exit = omap_sham_cra_exit, } } }; /* OMAP4 has some algs in addition to what OMAP2 has */ static struct ahash_alg algs_sha224_sha256[] = { { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "sha224", .cra_driver_name = "omap-sha224", .cra_priority = 400, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "sha256", .cra_driver_name = "omap-sha256", .cra_priority = 400, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .setkey = omap_sham_setkey, .halg.digestsize = SHA224_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha224)", .cra_driver_name = "omap-hmac-sha224", .cra_priority = 400, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA224_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx) + sizeof(struct omap_sham_hmac_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_sha224_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .setkey = omap_sham_setkey, .halg.digestsize = SHA256_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha256)", .cra_driver_name = "omap-hmac-sha256", .cra_priority = 400, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA256_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx) + sizeof(struct omap_sham_hmac_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_sha256_init, .cra_exit = omap_sham_cra_exit, } }, }; static struct ahash_alg algs_sha384_sha512[] = { { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "sha384", .cra_driver_name = "omap-sha384", .cra_priority = 400, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "sha512", .cra_driver_name = "omap-sha512", .cra_priority = 400, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .setkey = omap_sham_setkey, .halg.digestsize = SHA384_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha384)", .cra_driver_name = "omap-hmac-sha384", .cra_priority = 400, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA384_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx) + sizeof(struct omap_sham_hmac_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_sha384_init, .cra_exit = omap_sham_cra_exit, } }, { .init = omap_sham_init, .update = omap_sham_update, .final = omap_sham_final, .finup = omap_sham_finup, .digest = omap_sham_digest, .setkey = omap_sham_setkey, .halg.digestsize = SHA512_DIGEST_SIZE, .halg.base = { .cra_name = "hmac(sha512)", .cra_driver_name = "omap-hmac-sha512", .cra_priority = 400, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = SHA512_BLOCK_SIZE, .cra_ctxsize = sizeof(struct omap_sham_ctx) + sizeof(struct omap_sham_hmac_ctx), .cra_alignmask = OMAP_ALIGN_MASK, .cra_module = THIS_MODULE, .cra_init = omap_sham_cra_sha512_init, .cra_exit = omap_sham_cra_exit, } }, }; static void omap_sham_done_task(unsigned long data) { struct omap_sham_dev *dd = (struct omap_sham_dev *)data; int err = 0; if (!test_bit(FLAGS_BUSY, &dd->flags)) { omap_sham_handle_queue(dd, NULL); return; } if (test_bit(FLAGS_CPU, &dd->flags)) { if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) goto finish; } else if (test_bit(FLAGS_DMA_READY, &dd->flags)) { if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) { omap_sham_update_dma_stop(dd); if (dd->err) { err = dd->err; goto finish; } } if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) { /* hash or semi-hash ready */ clear_bit(FLAGS_DMA_READY, &dd->flags); goto finish; } } return; finish: dev_dbg(dd->dev, "update done: err: %d\n", err); /* finish curent request */ omap_sham_finish_req(dd->req, err); /* If we are not busy, process next req */ if (!test_bit(FLAGS_BUSY, &dd->flags)) omap_sham_handle_queue(dd, NULL); } static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd) { if (!test_bit(FLAGS_BUSY, &dd->flags)) { dev_warn(dd->dev, "Interrupt when no active requests.\n"); } else { set_bit(FLAGS_OUTPUT_READY, &dd->flags); tasklet_schedule(&dd->done_task); } return IRQ_HANDLED; } static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id) { struct omap_sham_dev *dd = dev_id; if (unlikely(test_bit(FLAGS_FINAL, &dd->flags))) /* final -> allow device to go to power-saving mode */ omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH); omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY, SHA_REG_CTRL_OUTPUT_READY); omap_sham_read(dd, SHA_REG_CTRL); return omap_sham_irq_common(dd); } static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id) { struct omap_sham_dev *dd = dev_id; omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN); return omap_sham_irq_common(dd); } static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = { { .algs_list = algs_sha1_md5, .size = ARRAY_SIZE(algs_sha1_md5), }, }; static const struct omap_sham_pdata omap_sham_pdata_omap2 = { .algs_info = omap_sham_algs_info_omap2, .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap2), .flags = BIT(FLAGS_BE32_SHA1), .digest_size = SHA1_DIGEST_SIZE, .copy_hash = omap_sham_copy_hash_omap2, .write_ctrl = omap_sham_write_ctrl_omap2, .trigger = omap_sham_trigger_omap2, .poll_irq = omap_sham_poll_irq_omap2, .intr_hdlr = omap_sham_irq_omap2, .idigest_ofs = 0x00, .din_ofs = 0x1c, .digcnt_ofs = 0x14, .rev_ofs = 0x5c, .mask_ofs = 0x60, .sysstatus_ofs = 0x64, .major_mask = 0xf0, .major_shift = 4, .minor_mask = 0x0f, .minor_shift = 0, }; #ifdef CONFIG_OF static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = { { .algs_list = algs_sha1_md5, .size = ARRAY_SIZE(algs_sha1_md5), }, { .algs_list = algs_sha224_sha256, .size = ARRAY_SIZE(algs_sha224_sha256), }, }; static const struct omap_sham_pdata omap_sham_pdata_omap4 = { .algs_info = omap_sham_algs_info_omap4, .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap4), .flags = BIT(FLAGS_AUTO_XOR), .digest_size = SHA256_DIGEST_SIZE, .copy_hash = omap_sham_copy_hash_omap4, .write_ctrl = omap_sham_write_ctrl_omap4, .trigger = omap_sham_trigger_omap4, .poll_irq = omap_sham_poll_irq_omap4, .intr_hdlr = omap_sham_irq_omap4, .idigest_ofs = 0x020, .odigest_ofs = 0x0, .din_ofs = 0x080, .digcnt_ofs = 0x040, .rev_ofs = 0x100, .mask_ofs = 0x110, .sysstatus_ofs = 0x114, .mode_ofs = 0x44, .length_ofs = 0x48, .major_mask = 0x0700, .major_shift = 8, .minor_mask = 0x003f, .minor_shift = 0, }; static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = { { .algs_list = algs_sha1_md5, .size = ARRAY_SIZE(algs_sha1_md5), }, { .algs_list = algs_sha224_sha256, .size = ARRAY_SIZE(algs_sha224_sha256), }, { .algs_list = algs_sha384_sha512, .size = ARRAY_SIZE(algs_sha384_sha512), }, }; static const struct omap_sham_pdata omap_sham_pdata_omap5 = { .algs_info = omap_sham_algs_info_omap5, .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5), .flags = BIT(FLAGS_AUTO_XOR), .digest_size = SHA512_DIGEST_SIZE, .copy_hash = omap_sham_copy_hash_omap4, .write_ctrl = omap_sham_write_ctrl_omap4, .trigger = omap_sham_trigger_omap4, .poll_irq = omap_sham_poll_irq_omap4, .intr_hdlr = omap_sham_irq_omap4, .idigest_ofs = 0x240, .odigest_ofs = 0x200, .din_ofs = 0x080, .digcnt_ofs = 0x280, .rev_ofs = 0x100, .mask_ofs = 0x110, .sysstatus_ofs = 0x114, .mode_ofs = 0x284, .length_ofs = 0x288, .major_mask = 0x0700, .major_shift = 8, .minor_mask = 0x003f, .minor_shift = 0, }; static const struct of_device_id omap_sham_of_match[] = { { .compatible = "ti,omap2-sham", .data = &omap_sham_pdata_omap2, }, { .compatible = "ti,omap3-sham", .data = &omap_sham_pdata_omap2, }, { .compatible = "ti,omap4-sham", .data = &omap_sham_pdata_omap4, }, { .compatible = "ti,omap5-sham", .data = &omap_sham_pdata_omap5, }, {}, }; MODULE_DEVICE_TABLE(of, omap_sham_of_match); static int omap_sham_get_res_of(struct omap_sham_dev *dd, struct device *dev, struct resource *res) { struct device_node *node = dev->of_node; int err = 0; dd->pdata = of_device_get_match_data(dev); if (!dd->pdata) { dev_err(dev, "no compatible OF match\n"); err = -EINVAL; goto err; } err = of_address_to_resource(node, 0, res); if (err < 0) { dev_err(dev, "can't translate OF node address\n"); err = -EINVAL; goto err; } dd->irq = irq_of_parse_and_map(node, 0); if (!dd->irq) { dev_err(dev, "can't translate OF irq value\n"); err = -EINVAL; goto err; } err: return err; } #else static const struct of_device_id omap_sham_of_match[] = { {}, }; static int omap_sham_get_res_of(struct omap_sham_dev *dd, struct device *dev, struct resource *res) { return -EINVAL; } #endif static int omap_sham_get_res_pdev(struct omap_sham_dev *dd, struct platform_device *pdev, struct resource *res) { struct device *dev = &pdev->dev; struct resource *r; int err = 0; /* Get the base address */ r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(dev, "no MEM resource info\n"); err = -ENODEV; goto err; } memcpy(res, r, sizeof(*res)); /* Get the IRQ */ dd->irq = platform_get_irq(pdev, 0); if (dd->irq < 0) { dev_err(dev, "no IRQ resource info\n"); err = dd->irq; goto err; } /* Only OMAP2/3 can be non-DT */ dd->pdata = &omap_sham_pdata_omap2; err: return err; } static ssize_t fallback_show(struct device *dev, struct device_attribute *attr, char *buf) { struct omap_sham_dev *dd = dev_get_drvdata(dev); return sprintf(buf, "%d\n", dd->fallback_sz); } static ssize_t fallback_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct omap_sham_dev *dd = dev_get_drvdata(dev); ssize_t status; long value; status = kstrtol(buf, 0, &value); if (status) return status; /* HW accelerator only works with buffers > 9 */ if (value < 9) { dev_err(dev, "minimum fallback size 9\n"); return -EINVAL; } dd->fallback_sz = value; return size; } static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr, char *buf) { struct omap_sham_dev *dd = dev_get_drvdata(dev); return sprintf(buf, "%d\n", dd->queue.max_qlen); } static ssize_t queue_len_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct omap_sham_dev *dd = dev_get_drvdata(dev); ssize_t status; long value; unsigned long flags; status = kstrtol(buf, 0, &value); if (status) return status; if (value < 1) return -EINVAL; /* * Changing the queue size in fly is safe, if size becomes smaller * than current size, it will just not accept new entries until * it has shrank enough. */ spin_lock_irqsave(&dd->lock, flags); dd->queue.max_qlen = value; spin_unlock_irqrestore(&dd->lock, flags); return size; } static DEVICE_ATTR_RW(queue_len); static DEVICE_ATTR_RW(fallback); static struct attribute *omap_sham_attrs[] = { &dev_attr_queue_len.attr, &dev_attr_fallback.attr, NULL, }; static struct attribute_group omap_sham_attr_group = { .attrs = omap_sham_attrs, }; static int omap_sham_probe(struct platform_device *pdev) { struct omap_sham_dev *dd; struct device *dev = &pdev->dev; struct resource res; dma_cap_mask_t mask; int err, i, j; u32 rev; dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL); if (dd == NULL) { dev_err(dev, "unable to alloc data struct.\n"); err = -ENOMEM; goto data_err; } dd->dev = dev; platform_set_drvdata(pdev, dd); INIT_LIST_HEAD(&dd->list); spin_lock_init(&dd->lock); tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd); crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH); err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) : omap_sham_get_res_pdev(dd, pdev, &res); if (err) goto data_err; dd->io_base = devm_ioremap_resource(dev, &res); if (IS_ERR(dd->io_base)) { err = PTR_ERR(dd->io_base); goto data_err; } dd->phys_base = res.start; err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr, IRQF_TRIGGER_NONE, dev_name(dev), dd); if (err) { dev_err(dev, "unable to request irq %d, err = %d\n", dd->irq, err); goto data_err; } dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); dd->dma_lch = dma_request_chan(dev, "rx"); if (IS_ERR(dd->dma_lch)) { err = PTR_ERR(dd->dma_lch); if (err == -EPROBE_DEFER) goto data_err; dd->polling_mode = 1; dev_dbg(dev, "using polling mode instead of dma\n"); } dd->flags |= dd->pdata->flags; sham.flags |= dd->pdata->flags; pm_runtime_use_autosuspend(dev); pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY); dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD; pm_runtime_enable(dev); pm_runtime_irq_safe(dev); err = pm_runtime_get_sync(dev); if (err < 0) { dev_err(dev, "failed to get sync: %d\n", err); goto err_pm; } rev = omap_sham_read(dd, SHA_REG_REV(dd)); pm_runtime_put_sync(&pdev->dev); dev_info(dev, "hw accel on OMAP rev %u.%u\n", (rev & dd->pdata->major_mask) >> dd->pdata->major_shift, (rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift); spin_lock(&sham.lock); list_add_tail(&dd->list, &sham.dev_list); spin_unlock(&sham.lock); for (i = 0; i < dd->pdata->algs_info_size; i++) { if (dd->pdata->algs_info[i].registered) break; for (j = 0; j < dd->pdata->algs_info[i].size; j++) { struct ahash_alg *alg; alg = &dd->pdata->algs_info[i].algs_list[j]; alg->export = omap_sham_export; alg->import = omap_sham_import; alg->halg.statesize = sizeof(struct omap_sham_reqctx) + BUFLEN; err = crypto_register_ahash(alg); if (err) goto err_algs; dd->pdata->algs_info[i].registered++; } } err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group); if (err) { dev_err(dev, "could not create sysfs device attrs\n"); goto err_algs; } return 0; err_algs: for (i = dd->pdata->algs_info_size - 1; i >= 0; i--) for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) crypto_unregister_ahash( &dd->pdata->algs_info[i].algs_list[j]); err_pm: pm_runtime_disable(dev); if (!dd->polling_mode) dma_release_channel(dd->dma_lch); data_err: dev_err(dev, "initialization failed.\n"); return err; } static int omap_sham_remove(struct platform_device *pdev) { struct omap_sham_dev *dd; int i, j; dd = platform_get_drvdata(pdev); if (!dd) return -ENODEV; spin_lock(&sham.lock); list_del(&dd->list); spin_unlock(&sham.lock); for (i = dd->pdata->algs_info_size - 1; i >= 0; i--) for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--) { crypto_unregister_ahash( &dd->pdata->algs_info[i].algs_list[j]); dd->pdata->algs_info[i].registered--; } tasklet_kill(&dd->done_task); pm_runtime_disable(&pdev->dev); if (!dd->polling_mode) dma_release_channel(dd->dma_lch); return 0; } #ifdef CONFIG_PM_SLEEP static int omap_sham_suspend(struct device *dev) { pm_runtime_put_sync(dev); return 0; } static int omap_sham_resume(struct device *dev) { int err = pm_runtime_get_sync(dev); if (err < 0) { dev_err(dev, "failed to get sync: %d\n", err); return err; } return 0; } #endif static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume); static struct platform_driver omap_sham_driver = { .probe = omap_sham_probe, .remove = omap_sham_remove, .driver = { .name = "omap-sham", .pm = &omap_sham_pm_ops, .of_match_table = omap_sham_of_match, }, }; module_platform_driver(omap_sham_driver); MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support."); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Dmitry Kasatkin"); MODULE_ALIAS("platform:omap-sham");