/* SPDX-License-Identifier: GPL-2.0+ */ /* * Copyright 2013-2014 Freescale Semiconductor, Inc. * Copyright 2018 Angelo Dureghello */ #ifndef _FSL_EDMA_COMMON_H_ #define _FSL_EDMA_COMMON_H_ #include #include #include "virt-dma.h" #define EDMA_CR_EDBG BIT(1) #define EDMA_CR_ERCA BIT(2) #define EDMA_CR_ERGA BIT(3) #define EDMA_CR_HOE BIT(4) #define EDMA_CR_HALT BIT(5) #define EDMA_CR_CLM BIT(6) #define EDMA_CR_EMLM BIT(7) #define EDMA_CR_ECX BIT(16) #define EDMA_CR_CX BIT(17) #define EDMA_SEEI_SEEI(x) ((x) & GENMASK(4, 0)) #define EDMA_CEEI_CEEI(x) ((x) & GENMASK(4, 0)) #define EDMA_CINT_CINT(x) ((x) & GENMASK(4, 0)) #define EDMA_CERR_CERR(x) ((x) & GENMASK(4, 0)) #define EDMA_TCD_ATTR_DSIZE(x) (((x) & GENMASK(2, 0))) #define EDMA_TCD_ATTR_DMOD(x) (((x) & GENMASK(4, 0)) << 3) #define EDMA_TCD_ATTR_SSIZE(x) (((x) & GENMASK(2, 0)) << 8) #define EDMA_TCD_ATTR_SMOD(x) (((x) & GENMASK(4, 0)) << 11) #define EDMA_TCD_ITER_MASK GENMASK(14, 0) #define EDMA_TCD_CITER_CITER(x) ((x) & EDMA_TCD_ITER_MASK) #define EDMA_TCD_BITER_BITER(x) ((x) & EDMA_TCD_ITER_MASK) #define EDMA_TCD_CSR_START BIT(0) #define EDMA_TCD_CSR_INT_MAJOR BIT(1) #define EDMA_TCD_CSR_INT_HALF BIT(2) #define EDMA_TCD_CSR_D_REQ BIT(3) #define EDMA_TCD_CSR_E_SG BIT(4) #define EDMA_TCD_CSR_E_LINK BIT(5) #define EDMA_TCD_CSR_ACTIVE BIT(6) #define EDMA_TCD_CSR_DONE BIT(7) #define EDMA_V3_TCD_NBYTES_MLOFF_NBYTES(x) ((x) & GENMASK(9, 0)) #define EDMA_V3_TCD_NBYTES_MLOFF(x) (x << 10) #define EDMA_V3_TCD_NBYTES_DMLOE (1 << 30) #define EDMA_V3_TCD_NBYTES_SMLOE (1 << 31) #define EDMAMUX_CHCFG_DIS 0x0 #define EDMAMUX_CHCFG_ENBL 0x80 #define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F) #define DMAMUX_NR 2 #define EDMA_TCD 0x1000 #define FSL_EDMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) #define EDMA_V3_CH_SBR_RD BIT(22) #define EDMA_V3_CH_SBR_WR BIT(21) #define EDMA_V3_CH_CSR_ERQ BIT(0) #define EDMA_V3_CH_CSR_EARQ BIT(1) #define EDMA_V3_CH_CSR_EEI BIT(2) #define EDMA_V3_CH_CSR_DONE BIT(30) #define EDMA_V3_CH_CSR_ACTIVE BIT(31) enum fsl_edma_pm_state { RUNNING = 0, SUSPENDED, }; struct fsl_edma_hw_tcd { __le32 saddr; __le16 soff; __le16 attr; __le32 nbytes; __le32 slast; __le32 daddr; __le16 doff; __le16 citer; __le32 dlast_sga; __le16 csr; __le16 biter; }; struct fsl_edma_hw_tcd64 { __le64 saddr; __le16 soff; __le16 attr; __le32 nbytes; __le64 slast; __le64 daddr; __le64 dlast_sga; __le16 doff; __le16 citer; __le16 csr; __le16 biter; } __packed; struct fsl_edma3_ch_reg { __le32 ch_csr; __le32 ch_es; __le32 ch_int; __le32 ch_sbr; __le32 ch_pri; __le32 ch_mux; __le32 ch_mattr; /* edma4, reserved for edma3 */ __le32 ch_reserved; union { struct fsl_edma_hw_tcd tcd; struct fsl_edma_hw_tcd64 tcd64; }; } __packed; /* * These are iomem pointers, for both v32 and v64. */ struct edma_regs { void __iomem *cr; void __iomem *es; void __iomem *erqh; void __iomem *erql; /* aka erq on v32 */ void __iomem *eeih; void __iomem *eeil; /* aka eei on v32 */ void __iomem *seei; void __iomem *ceei; void __iomem *serq; void __iomem *cerq; void __iomem *cint; void __iomem *cerr; void __iomem *ssrt; void __iomem *cdne; void __iomem *inth; void __iomem *intl; void __iomem *errh; void __iomem *errl; }; struct fsl_edma_sw_tcd { dma_addr_t ptcd; void *vtcd; }; struct fsl_edma_chan { struct virt_dma_chan vchan; enum dma_status status; enum fsl_edma_pm_state pm_state; bool idle; u32 slave_id; struct fsl_edma_engine *edma; struct fsl_edma_desc *edesc; struct dma_slave_config cfg; u32 attr; bool is_sw; struct dma_pool *tcd_pool; dma_addr_t dma_dev_addr; u32 dma_dev_size; enum dma_data_direction dma_dir; char chan_name[32]; void __iomem *tcd; void __iomem *mux_addr; u32 real_count; struct work_struct issue_worker; struct platform_device *pdev; struct device *pd_dev; u32 srcid; struct clk *clk; int priority; int hw_chanid; int txirq; bool is_rxchan; bool is_remote; bool is_multi_fifo; }; struct fsl_edma_desc { struct virt_dma_desc vdesc; struct fsl_edma_chan *echan; bool iscyclic; enum dma_transfer_direction dirn; unsigned int n_tcds; struct fsl_edma_sw_tcd tcd[]; }; #define FSL_EDMA_DRV_HAS_DMACLK BIT(0) #define FSL_EDMA_DRV_MUX_SWAP BIT(1) #define FSL_EDMA_DRV_CONFIG32 BIT(2) #define FSL_EDMA_DRV_WRAP_IO BIT(3) #define FSL_EDMA_DRV_EDMA64 BIT(4) #define FSL_EDMA_DRV_HAS_PD BIT(5) #define FSL_EDMA_DRV_HAS_CHCLK BIT(6) #define FSL_EDMA_DRV_HAS_CHMUX BIT(7) /* imx8 QM audio edma remote local swapped */ #define FSL_EDMA_DRV_QUIRK_SWAPPED BIT(8) /* control and status register is in tcd address space, edma3 reg layout */ #define FSL_EDMA_DRV_SPLIT_REG BIT(9) #define FSL_EDMA_DRV_BUS_8BYTE BIT(10) #define FSL_EDMA_DRV_DEV_TO_DEV BIT(11) #define FSL_EDMA_DRV_ALIGN_64BYTE BIT(12) /* Need clean CHn_CSR DONE before enable TCD's ESG */ #define FSL_EDMA_DRV_CLEAR_DONE_E_SG BIT(13) /* Need clean CHn_CSR DONE before enable TCD's MAJORELINK */ #define FSL_EDMA_DRV_CLEAR_DONE_E_LINK BIT(14) #define FSL_EDMA_DRV_TCD64 BIT(15) #define FSL_EDMA_DRV_EDMA3 (FSL_EDMA_DRV_SPLIT_REG | \ FSL_EDMA_DRV_BUS_8BYTE | \ FSL_EDMA_DRV_DEV_TO_DEV | \ FSL_EDMA_DRV_ALIGN_64BYTE | \ FSL_EDMA_DRV_CLEAR_DONE_E_SG | \ FSL_EDMA_DRV_CLEAR_DONE_E_LINK) #define FSL_EDMA_DRV_EDMA4 (FSL_EDMA_DRV_SPLIT_REG | \ FSL_EDMA_DRV_BUS_8BYTE | \ FSL_EDMA_DRV_DEV_TO_DEV | \ FSL_EDMA_DRV_ALIGN_64BYTE | \ FSL_EDMA_DRV_CLEAR_DONE_E_LINK) struct fsl_edma_drvdata { u32 dmamuxs; /* only used before v3 */ u32 chreg_off; u32 chreg_space_sz; u32 flags; u32 mux_off; /* channel mux register offset */ u32 mux_skip; /* how much skip for each channel */ int (*setup_irq)(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma); }; struct fsl_edma_engine { struct dma_device dma_dev; void __iomem *membase; void __iomem *muxbase[DMAMUX_NR]; struct clk *muxclk[DMAMUX_NR]; struct clk *dmaclk; struct clk *chclk; struct mutex fsl_edma_mutex; const struct fsl_edma_drvdata *drvdata; u32 n_chans; int txirq; int errirq; bool big_endian; struct edma_regs regs; u64 chan_masked; struct fsl_edma_chan chans[] __counted_by(n_chans); }; #define edma_read_tcdreg_c(chan, _tcd, __name) \ (sizeof((_tcd)->__name) == sizeof(u64) ? \ edma_readq(chan->edma, &(_tcd)->__name) : \ ((sizeof((_tcd)->__name) == sizeof(u32)) ? \ edma_readl(chan->edma, &(_tcd)->__name) : \ edma_readw(chan->edma, &(_tcd)->__name) \ )) #define edma_read_tcdreg(chan, __name) \ ((fsl_edma_drvflags(chan) & FSL_EDMA_DRV_TCD64) ? \ edma_read_tcdreg_c(chan, ((struct fsl_edma_hw_tcd64 __iomem *)chan->tcd), __name) : \ edma_read_tcdreg_c(chan, ((struct fsl_edma_hw_tcd __iomem *)chan->tcd), __name) \ ) #define edma_write_tcdreg_c(chan, _tcd, _val, __name) \ do { \ switch (sizeof(_tcd->__name)) { \ case sizeof(u64): \ edma_writeq(chan->edma, (u64 __force)_val, &_tcd->__name); \ break; \ case sizeof(u32): \ edma_writel(chan->edma, (u32 __force)_val, &_tcd->__name); \ break; \ case sizeof(u16): \ edma_writew(chan->edma, (u16 __force)_val, &_tcd->__name); \ break; \ case sizeof(u8): \ edma_writeb(chan->edma, (u8 __force)_val, &_tcd->__name); \ break; \ } \ } while (0) #define edma_write_tcdreg(chan, val, __name) \ do { \ struct fsl_edma_hw_tcd64 __iomem *tcd64_r = (struct fsl_edma_hw_tcd64 __iomem *)chan->tcd; \ struct fsl_edma_hw_tcd __iomem *tcd_r = (struct fsl_edma_hw_tcd __iomem *)chan->tcd; \ \ if (fsl_edma_drvflags(chan) & FSL_EDMA_DRV_TCD64) \ edma_write_tcdreg_c(chan, tcd64_r, val, __name); \ else \ edma_write_tcdreg_c(chan, tcd_r, val, __name); \ } while (0) #define edma_cp_tcd_to_reg(chan, __tcd, __name) \ do { \ struct fsl_edma_hw_tcd64 __iomem *tcd64_r = (struct fsl_edma_hw_tcd64 __iomem *)chan->tcd; \ struct fsl_edma_hw_tcd __iomem *tcd_r = (struct fsl_edma_hw_tcd __iomem *)chan->tcd; \ struct fsl_edma_hw_tcd64 *tcd64_m = (struct fsl_edma_hw_tcd64 *)__tcd; \ struct fsl_edma_hw_tcd *tcd_m = (struct fsl_edma_hw_tcd *)__tcd; \ \ if (fsl_edma_drvflags(chan) & FSL_EDMA_DRV_TCD64) \ edma_write_tcdreg_c(chan, tcd64_r, tcd64_m->__name, __name); \ else \ edma_write_tcdreg_c(chan, tcd_r, tcd_m->__name, __name); \ } while (0) #define edma_readl_chreg(chan, __name) \ edma_readl(chan->edma, \ (void __iomem *)&(container_of(((__force void *)chan->tcd),\ struct fsl_edma3_ch_reg, tcd)->__name)) #define edma_writel_chreg(chan, val, __name) \ edma_writel(chan->edma, val, \ (void __iomem *)&(container_of(((__force void *)chan->tcd),\ struct fsl_edma3_ch_reg, tcd)->__name)) #define fsl_edma_get_tcd(_chan, _tcd, _field) \ (fsl_edma_drvflags(_chan) & FSL_EDMA_DRV_TCD64 ? (((struct fsl_edma_hw_tcd64 *)_tcd)->_field) : \ (((struct fsl_edma_hw_tcd *)_tcd)->_field)) #define fsl_edma_le_to_cpu(x) \ (sizeof(x) == sizeof(u64) ? le64_to_cpu((__force __le64)(x)) : \ (sizeof(x) == sizeof(u32) ? le32_to_cpu((__force __le32)(x)) : \ le16_to_cpu((__force __le16)(x)))) #define fsl_edma_get_tcd_to_cpu(_chan, _tcd, _field) \ (fsl_edma_drvflags(_chan) & FSL_EDMA_DRV_TCD64 ? \ fsl_edma_le_to_cpu(((struct fsl_edma_hw_tcd64 *)_tcd)->_field) : \ fsl_edma_le_to_cpu(((struct fsl_edma_hw_tcd *)_tcd)->_field)) #define fsl_edma_set_tcd_to_le_c(_tcd, _val, _field) \ do { \ switch (sizeof((_tcd)->_field)) { \ case sizeof(u64): \ *(__force __le64 *)(&((_tcd)->_field)) = cpu_to_le64(_val); \ break; \ case sizeof(u32): \ *(__force __le32 *)(&((_tcd)->_field)) = cpu_to_le32(_val); \ break; \ case sizeof(u16): \ *(__force __le16 *)(&((_tcd)->_field)) = cpu_to_le16(_val); \ break; \ } \ } while (0) #define fsl_edma_set_tcd_to_le(_chan, _tcd, _val, _field) \ do { \ if (fsl_edma_drvflags(_chan) & FSL_EDMA_DRV_TCD64) \ fsl_edma_set_tcd_to_le_c((struct fsl_edma_hw_tcd64 *)_tcd, _val, _field); \ else \ fsl_edma_set_tcd_to_le_c((struct fsl_edma_hw_tcd *)_tcd, _val, _field); \ } while (0) /* * R/W functions for big- or little-endian registers: * The eDMA controller's endian is independent of the CPU core's endian. * For the big-endian IP module, the offset for 8-bit or 16-bit registers * should also be swapped opposite to that in little-endian IP. */ static inline u64 edma_readq(struct fsl_edma_engine *edma, void __iomem *addr) { u64 l, h; if (edma->big_endian) { l = ioread32be(addr); h = ioread32be(addr + 4); } else { l = ioread32(addr); h = ioread32(addr + 4); } return (h << 32) | l; } static inline u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr) { if (edma->big_endian) return ioread32be(addr); else return ioread32(addr); } static inline u16 edma_readw(struct fsl_edma_engine *edma, void __iomem *addr) { if (edma->big_endian) return ioread16be(addr); else return ioread16(addr); } static inline void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr) { /* swap the reg offset for these in big-endian mode */ if (edma->big_endian) iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3)); else iowrite8(val, addr); } static inline void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr) { /* swap the reg offset for these in big-endian mode */ if (edma->big_endian) iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2)); else iowrite16(val, addr); } static inline void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr) { if (edma->big_endian) iowrite32be(val, addr); else iowrite32(val, addr); } static inline void edma_writeq(struct fsl_edma_engine *edma, u64 val, void __iomem *addr) { if (edma->big_endian) { iowrite32be(val & 0xFFFFFFFF, addr); iowrite32be(val >> 32, addr + 4); } else { iowrite32(val & 0xFFFFFFFF, addr); iowrite32(val >> 32, addr + 4); } } static inline struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan) { return container_of(chan, struct fsl_edma_chan, vchan.chan); } static inline u32 fsl_edma_drvflags(struct fsl_edma_chan *fsl_chan) { return fsl_chan->edma->drvdata->flags; } static inline struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd) { return container_of(vd, struct fsl_edma_desc, vdesc); } static inline void fsl_edma_err_chan_handler(struct fsl_edma_chan *fsl_chan) { fsl_chan->status = DMA_ERROR; fsl_chan->idle = true; } void fsl_edma_tx_chan_handler(struct fsl_edma_chan *fsl_chan); void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan); void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan, unsigned int slot, bool enable); void fsl_edma_free_desc(struct virt_dma_desc *vdesc); int fsl_edma_terminate_all(struct dma_chan *chan); int fsl_edma_pause(struct dma_chan *chan); int fsl_edma_resume(struct dma_chan *chan); int fsl_edma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg); enum dma_status fsl_edma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate); struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags); struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context); struct dma_async_tx_descriptor *fsl_edma_prep_memcpy( struct dma_chan *chan, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len, unsigned long flags); void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan); void fsl_edma_issue_pending(struct dma_chan *chan); int fsl_edma_alloc_chan_resources(struct dma_chan *chan); void fsl_edma_free_chan_resources(struct dma_chan *chan); void fsl_edma_cleanup_vchan(struct dma_device *dmadev); void fsl_edma_setup_regs(struct fsl_edma_engine *edma); #endif /* _FSL_EDMA_COMMON_H_ */