/* * Copyright 2018 Advanced Micro Devices, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * */ #include #ifdef CONFIG_X86 #include #endif #include "amdgpu.h" #include "amdgpu_gmc.h" #include "amdgpu_ras.h" #include "amdgpu_reset.h" #include "amdgpu_xgmi.h" #include #include /** * amdgpu_gmc_pdb0_alloc - allocate vram for pdb0 * * @adev: amdgpu_device pointer * * Allocate video memory for pdb0 and map it for CPU access * Returns 0 for success, error for failure. */ int amdgpu_gmc_pdb0_alloc(struct amdgpu_device *adev) { int r; struct amdgpu_bo_param bp; u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; uint32_t pde0_page_shift = adev->gmc.vmid0_page_table_block_size + 21; uint32_t npdes = (vram_size + (1ULL << pde0_page_shift) -1) >> pde0_page_shift; memset(&bp, 0, sizeof(bp)); bp.size = PAGE_ALIGN((npdes + 1) * 8); bp.byte_align = PAGE_SIZE; bp.domain = AMDGPU_GEM_DOMAIN_VRAM; bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED | AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS; bp.type = ttm_bo_type_kernel; bp.resv = NULL; bp.bo_ptr_size = sizeof(struct amdgpu_bo); r = amdgpu_bo_create(adev, &bp, &adev->gmc.pdb0_bo); if (r) return r; r = amdgpu_bo_reserve(adev->gmc.pdb0_bo, false); if (unlikely(r != 0)) goto bo_reserve_failure; r = amdgpu_bo_pin(adev->gmc.pdb0_bo, AMDGPU_GEM_DOMAIN_VRAM); if (r) goto bo_pin_failure; r = amdgpu_bo_kmap(adev->gmc.pdb0_bo, &adev->gmc.ptr_pdb0); if (r) goto bo_kmap_failure; amdgpu_bo_unreserve(adev->gmc.pdb0_bo); return 0; bo_kmap_failure: amdgpu_bo_unpin(adev->gmc.pdb0_bo); bo_pin_failure: amdgpu_bo_unreserve(adev->gmc.pdb0_bo); bo_reserve_failure: amdgpu_bo_unref(&adev->gmc.pdb0_bo); return r; } /** * amdgpu_gmc_get_pde_for_bo - get the PDE for a BO * * @bo: the BO to get the PDE for * @level: the level in the PD hirarchy * @addr: resulting addr * @flags: resulting flags * * Get the address and flags to be used for a PDE (Page Directory Entry). */ void amdgpu_gmc_get_pde_for_bo(struct amdgpu_bo *bo, int level, uint64_t *addr, uint64_t *flags) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); switch (bo->tbo.resource->mem_type) { case TTM_PL_TT: *addr = bo->tbo.ttm->dma_address[0]; break; case TTM_PL_VRAM: *addr = amdgpu_bo_gpu_offset(bo); break; default: *addr = 0; break; } *flags = amdgpu_ttm_tt_pde_flags(bo->tbo.ttm, bo->tbo.resource); amdgpu_gmc_get_vm_pde(adev, level, addr, flags); } /* * amdgpu_gmc_pd_addr - return the address of the root directory */ uint64_t amdgpu_gmc_pd_addr(struct amdgpu_bo *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev); uint64_t pd_addr; /* TODO: move that into ASIC specific code */ if (adev->asic_type >= CHIP_VEGA10) { uint64_t flags = AMDGPU_PTE_VALID; amdgpu_gmc_get_pde_for_bo(bo, -1, &pd_addr, &flags); pd_addr |= flags; } else { pd_addr = amdgpu_bo_gpu_offset(bo); } return pd_addr; } /** * amdgpu_gmc_set_pte_pde - update the page tables using CPU * * @adev: amdgpu_device pointer * @cpu_pt_addr: cpu address of the page table * @gpu_page_idx: entry in the page table to update * @addr: dst addr to write into pte/pde * @flags: access flags * * Update the page tables using CPU. */ int amdgpu_gmc_set_pte_pde(struct amdgpu_device *adev, void *cpu_pt_addr, uint32_t gpu_page_idx, uint64_t addr, uint64_t flags) { void __iomem *ptr = (void *)cpu_pt_addr; uint64_t value; /* * The following is for PTE only. GART does not have PDEs. */ value = addr & 0x0000FFFFFFFFF000ULL; value |= flags; writeq(value, ptr + (gpu_page_idx * 8)); return 0; } /** * amdgpu_gmc_agp_addr - return the address in the AGP address space * * @bo: TTM BO which needs the address, must be in GTT domain * * Tries to figure out how to access the BO through the AGP aperture. Returns * AMDGPU_BO_INVALID_OFFSET if that is not possible. */ uint64_t amdgpu_gmc_agp_addr(struct ttm_buffer_object *bo) { struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev); if (!bo->ttm) return AMDGPU_BO_INVALID_OFFSET; if (bo->ttm->num_pages != 1 || bo->ttm->caching == ttm_cached) return AMDGPU_BO_INVALID_OFFSET; if (bo->ttm->dma_address[0] + PAGE_SIZE >= adev->gmc.agp_size) return AMDGPU_BO_INVALID_OFFSET; return adev->gmc.agp_start + bo->ttm->dma_address[0]; } /** * amdgpu_gmc_vram_location - try to find VRAM location * * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * @base: base address at which to put VRAM * * Function will try to place VRAM at base address provided * as parameter. */ void amdgpu_gmc_vram_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, u64 base) { uint64_t vis_limit = (uint64_t)amdgpu_vis_vram_limit << 20; uint64_t limit = (uint64_t)amdgpu_vram_limit << 20; mc->vram_start = base; mc->vram_end = mc->vram_start + mc->mc_vram_size - 1; if (limit < mc->real_vram_size) mc->real_vram_size = limit; if (vis_limit && vis_limit < mc->visible_vram_size) mc->visible_vram_size = vis_limit; if (mc->real_vram_size < mc->visible_vram_size) mc->visible_vram_size = mc->real_vram_size; if (mc->xgmi.num_physical_nodes == 0) { mc->fb_start = mc->vram_start; mc->fb_end = mc->vram_end; } dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); } /** amdgpu_gmc_sysvm_location - place vram and gart in sysvm aperture * * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * * This function is only used if use GART for FB translation. In such * case, we use sysvm aperture (vmid0 page tables) for both vram * and gart (aka system memory) access. * * GPUVM (and our organization of vmid0 page tables) require sysvm * aperture to be placed at a location aligned with 8 times of native * page size. For example, if vm_context0_cntl.page_table_block_size * is 12, then native page size is 8G (2M*2^12), sysvm should start * with a 64G aligned address. For simplicity, we just put sysvm at * address 0. So vram start at address 0 and gart is right after vram. */ void amdgpu_gmc_sysvm_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { u64 hive_vram_start = 0; u64 hive_vram_end = mc->xgmi.node_segment_size * mc->xgmi.num_physical_nodes - 1; mc->vram_start = mc->xgmi.node_segment_size * mc->xgmi.physical_node_id; mc->vram_end = mc->vram_start + mc->xgmi.node_segment_size - 1; mc->gart_start = hive_vram_end + 1; mc->gart_end = mc->gart_start + mc->gart_size - 1; mc->fb_start = hive_vram_start; mc->fb_end = hive_vram_end; dev_info(adev->dev, "VRAM: %lluM 0x%016llX - 0x%016llX (%lluM used)\n", mc->mc_vram_size >> 20, mc->vram_start, mc->vram_end, mc->real_vram_size >> 20); dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", mc->gart_size >> 20, mc->gart_start, mc->gart_end); } /** * amdgpu_gmc_gart_location - try to find GART location * * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * @gart_placement: GART placement policy with respect to VRAM * * Function will place try to place GART before or after VRAM. * If GART size is bigger than space left then we ajust GART size. * Thus function will never fails. */ void amdgpu_gmc_gart_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc, enum amdgpu_gart_placement gart_placement) { const uint64_t four_gb = 0x100000000ULL; u64 size_af, size_bf; /*To avoid the hole, limit the max mc address to AMDGPU_GMC_HOLE_START*/ u64 max_mc_address = min(adev->gmc.mc_mask, AMDGPU_GMC_HOLE_START - 1); /* VCE doesn't like it when BOs cross a 4GB segment, so align * the GART base on a 4GB boundary as well. */ size_bf = mc->fb_start; size_af = max_mc_address + 1 - ALIGN(mc->fb_end + 1, four_gb); if (mc->gart_size > max(size_bf, size_af)) { dev_warn(adev->dev, "limiting GART\n"); mc->gart_size = max(size_bf, size_af); } switch (gart_placement) { case AMDGPU_GART_PLACEMENT_HIGH: mc->gart_start = max_mc_address - mc->gart_size + 1; break; case AMDGPU_GART_PLACEMENT_LOW: mc->gart_start = 0; break; case AMDGPU_GART_PLACEMENT_BEST_FIT: default: if ((size_bf >= mc->gart_size && size_bf < size_af) || (size_af < mc->gart_size)) mc->gart_start = 0; else mc->gart_start = max_mc_address - mc->gart_size + 1; break; } mc->gart_start &= ~(four_gb - 1); mc->gart_end = mc->gart_start + mc->gart_size - 1; dev_info(adev->dev, "GART: %lluM 0x%016llX - 0x%016llX\n", mc->gart_size >> 20, mc->gart_start, mc->gart_end); } /** * amdgpu_gmc_agp_location - try to find AGP location * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * * Function will place try to find a place for the AGP BAR in the MC address * space. * * AGP BAR will be assigned the largest available hole in the address space. * Should be called after VRAM and GART locations are setup. */ void amdgpu_gmc_agp_location(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { const uint64_t sixteen_gb = 1ULL << 34; const uint64_t sixteen_gb_mask = ~(sixteen_gb - 1); u64 size_af, size_bf; if (mc->fb_start > mc->gart_start) { size_bf = (mc->fb_start & sixteen_gb_mask) - ALIGN(mc->gart_end + 1, sixteen_gb); size_af = mc->mc_mask + 1 - ALIGN(mc->fb_end + 1, sixteen_gb); } else { size_bf = mc->fb_start & sixteen_gb_mask; size_af = (mc->gart_start & sixteen_gb_mask) - ALIGN(mc->fb_end + 1, sixteen_gb); } if (size_bf > size_af) { mc->agp_start = (mc->fb_start - size_bf) & sixteen_gb_mask; mc->agp_size = size_bf; } else { mc->agp_start = ALIGN(mc->fb_end + 1, sixteen_gb); mc->agp_size = size_af; } mc->agp_end = mc->agp_start + mc->agp_size - 1; dev_info(adev->dev, "AGP: %lluM 0x%016llX - 0x%016llX\n", mc->agp_size >> 20, mc->agp_start, mc->agp_end); } /** * amdgpu_gmc_set_agp_default - Set the default AGP aperture value. * @adev: amdgpu device structure holding all necessary information * @mc: memory controller structure holding memory information * * To disable the AGP aperture, you need to set the start to a larger * value than the end. This function sets the default value which * can then be overridden using amdgpu_gmc_agp_location() if you want * to enable the AGP aperture on a specific chip. * */ void amdgpu_gmc_set_agp_default(struct amdgpu_device *adev, struct amdgpu_gmc *mc) { mc->agp_start = 0xffffffffffff; mc->agp_end = 0; mc->agp_size = 0; } /** * amdgpu_gmc_fault_key - get hask key from vm fault address and pasid * * @addr: 48 bit physical address, page aligned (36 significant bits) * @pasid: 16 bit process address space identifier */ static inline uint64_t amdgpu_gmc_fault_key(uint64_t addr, uint16_t pasid) { return addr << 4 | pasid; } /** * amdgpu_gmc_filter_faults - filter VM faults * * @adev: amdgpu device structure * @ih: interrupt ring that the fault received from * @addr: address of the VM fault * @pasid: PASID of the process causing the fault * @timestamp: timestamp of the fault * * Returns: * True if the fault was filtered and should not be processed further. * False if the fault is a new one and needs to be handled. */ bool amdgpu_gmc_filter_faults(struct amdgpu_device *adev, struct amdgpu_ih_ring *ih, uint64_t addr, uint16_t pasid, uint64_t timestamp) { struct amdgpu_gmc *gmc = &adev->gmc; uint64_t stamp, key = amdgpu_gmc_fault_key(addr, pasid); struct amdgpu_gmc_fault *fault; uint32_t hash; /* Stale retry fault if timestamp goes backward */ if (amdgpu_ih_ts_after(timestamp, ih->processed_timestamp)) return true; /* If we don't have space left in the ring buffer return immediately */ stamp = max(timestamp, AMDGPU_GMC_FAULT_TIMEOUT + 1) - AMDGPU_GMC_FAULT_TIMEOUT; if (gmc->fault_ring[gmc->last_fault].timestamp >= stamp) return true; /* Try to find the fault in the hash */ hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; while (fault->timestamp >= stamp) { uint64_t tmp; if (atomic64_read(&fault->key) == key) { /* * if we get a fault which is already present in * the fault_ring and the timestamp of * the fault is after the expired timestamp, * then this is a new fault that needs to be added * into the fault ring. */ if (fault->timestamp_expiry != 0 && amdgpu_ih_ts_after(fault->timestamp_expiry, timestamp)) break; else return true; } tmp = fault->timestamp; fault = &gmc->fault_ring[fault->next]; /* Check if the entry was reused */ if (fault->timestamp >= tmp) break; } /* Add the fault to the ring */ fault = &gmc->fault_ring[gmc->last_fault]; atomic64_set(&fault->key, key); fault->timestamp = timestamp; /* And update the hash */ fault->next = gmc->fault_hash[hash].idx; gmc->fault_hash[hash].idx = gmc->last_fault++; return false; } /** * amdgpu_gmc_filter_faults_remove - remove address from VM faults filter * * @adev: amdgpu device structure * @addr: address of the VM fault * @pasid: PASID of the process causing the fault * * Remove the address from fault filter, then future vm fault on this address * will pass to retry fault handler to recover. */ void amdgpu_gmc_filter_faults_remove(struct amdgpu_device *adev, uint64_t addr, uint16_t pasid) { struct amdgpu_gmc *gmc = &adev->gmc; uint64_t key = amdgpu_gmc_fault_key(addr, pasid); struct amdgpu_ih_ring *ih; struct amdgpu_gmc_fault *fault; uint32_t last_wptr; uint64_t last_ts; uint32_t hash; uint64_t tmp; if (adev->irq.retry_cam_enabled) return; ih = &adev->irq.ih1; /* Get the WPTR of the last entry in IH ring */ last_wptr = amdgpu_ih_get_wptr(adev, ih); /* Order wptr with ring data. */ rmb(); /* Get the timetamp of the last entry in IH ring */ last_ts = amdgpu_ih_decode_iv_ts(adev, ih, last_wptr, -1); hash = hash_64(key, AMDGPU_GMC_FAULT_HASH_ORDER); fault = &gmc->fault_ring[gmc->fault_hash[hash].idx]; do { if (atomic64_read(&fault->key) == key) { /* * Update the timestamp when this fault * expired. */ fault->timestamp_expiry = last_ts; break; } tmp = fault->timestamp; fault = &gmc->fault_ring[fault->next]; } while (fault->timestamp < tmp); } int amdgpu_gmc_ras_sw_init(struct amdgpu_device *adev) { int r; /* umc ras block */ r = amdgpu_umc_ras_sw_init(adev); if (r) return r; /* mmhub ras block */ r = amdgpu_mmhub_ras_sw_init(adev); if (r) return r; /* hdp ras block */ r = amdgpu_hdp_ras_sw_init(adev); if (r) return r; /* mca.x ras block */ r = amdgpu_mca_mp0_ras_sw_init(adev); if (r) return r; r = amdgpu_mca_mp1_ras_sw_init(adev); if (r) return r; r = amdgpu_mca_mpio_ras_sw_init(adev); if (r) return r; /* xgmi ras block */ r = amdgpu_xgmi_ras_sw_init(adev); if (r) return r; return 0; } int amdgpu_gmc_ras_late_init(struct amdgpu_device *adev) { return 0; } void amdgpu_gmc_ras_fini(struct amdgpu_device *adev) { } /* * The latest engine allocation on gfx9/10 is: * Engine 2, 3: firmware * Engine 0, 1, 4~16: amdgpu ring, * subject to change when ring number changes * Engine 17: Gart flushes */ #define AMDGPU_VMHUB_INV_ENG_BITMAP 0x1FFF3 int amdgpu_gmc_allocate_vm_inv_eng(struct amdgpu_device *adev) { struct amdgpu_ring *ring; unsigned vm_inv_engs[AMDGPU_MAX_VMHUBS] = {0}; unsigned i; unsigned vmhub, inv_eng; /* init the vm inv eng for all vmhubs */ for_each_set_bit(i, adev->vmhubs_mask, AMDGPU_MAX_VMHUBS) { vm_inv_engs[i] = AMDGPU_VMHUB_INV_ENG_BITMAP; /* reserve engine 5 for firmware */ if (adev->enable_mes) vm_inv_engs[i] &= ~(1 << 5); /* reserve mmhub engine 3 for firmware */ if (adev->enable_umsch_mm) vm_inv_engs[i] &= ~(1 << 3); } for (i = 0; i < adev->num_rings; ++i) { ring = adev->rings[i]; vmhub = ring->vm_hub; if (ring == &adev->mes.ring || ring == &adev->umsch_mm.ring) continue; inv_eng = ffs(vm_inv_engs[vmhub]); if (!inv_eng) { dev_err(adev->dev, "no VM inv eng for ring %s\n", ring->name); return -EINVAL; } ring->vm_inv_eng = inv_eng - 1; vm_inv_engs[vmhub] &= ~(1 << ring->vm_inv_eng); dev_info(adev->dev, "ring %s uses VM inv eng %u on hub %u\n", ring->name, ring->vm_inv_eng, ring->vm_hub); } return 0; } void amdgpu_gmc_flush_gpu_tlb(struct amdgpu_device *adev, uint32_t vmid, uint32_t vmhub, uint32_t flush_type) { struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; struct amdgpu_vmhub *hub = &adev->vmhub[vmhub]; struct dma_fence *fence; struct amdgpu_job *job; int r; if (!hub->sdma_invalidation_workaround || vmid || !adev->mman.buffer_funcs_enabled || !adev->ib_pool_ready || amdgpu_in_reset(adev) || !ring->sched.ready) { /* * A GPU reset should flush all TLBs anyway, so no need to do * this while one is ongoing. */ if (!down_read_trylock(&adev->reset_domain->sem)) return; if (adev->gmc.flush_tlb_needs_extra_type_2) adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, 2); if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, 0); adev->gmc.gmc_funcs->flush_gpu_tlb(adev, vmid, vmhub, flush_type); up_read(&adev->reset_domain->sem); return; } /* The SDMA on Navi 1x has a bug which can theoretically result in memory * corruption if an invalidation happens at the same time as an VA * translation. Avoid this by doing the invalidation from the SDMA * itself at least for GART. */ mutex_lock(&adev->mman.gtt_window_lock); r = amdgpu_job_alloc_with_ib(ring->adev, &adev->mman.high_pr, AMDGPU_FENCE_OWNER_UNDEFINED, 16 * 4, AMDGPU_IB_POOL_IMMEDIATE, &job); if (r) goto error_alloc; job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo); job->vm_needs_flush = true; job->ibs->ptr[job->ibs->length_dw++] = ring->funcs->nop; amdgpu_ring_pad_ib(ring, &job->ibs[0]); fence = amdgpu_job_submit(job); mutex_unlock(&adev->mman.gtt_window_lock); dma_fence_wait(fence, false); dma_fence_put(fence); return; error_alloc: mutex_unlock(&adev->mman.gtt_window_lock); dev_err(adev->dev, "Error flushing GPU TLB using the SDMA (%d)!\n", r); } int amdgpu_gmc_flush_gpu_tlb_pasid(struct amdgpu_device *adev, uint16_t pasid, uint32_t flush_type, bool all_hub, uint32_t inst) { u32 usec_timeout = amdgpu_sriov_vf(adev) ? SRIOV_USEC_TIMEOUT : adev->usec_timeout; struct amdgpu_ring *ring = &adev->gfx.kiq[inst].ring; struct amdgpu_kiq *kiq = &adev->gfx.kiq[inst]; unsigned int ndw; signed long r; uint32_t seq; if (!adev->gmc.flush_pasid_uses_kiq || !ring->sched.ready || !down_read_trylock(&adev->reset_domain->sem)) { if (adev->gmc.flush_tlb_needs_extra_type_2) adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 2, all_hub, inst); if (adev->gmc.flush_tlb_needs_extra_type_0 && flush_type == 2) adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, 0, all_hub, inst); adev->gmc.gmc_funcs->flush_gpu_tlb_pasid(adev, pasid, flush_type, all_hub, inst); return 0; } /* 2 dwords flush + 8 dwords fence */ ndw = kiq->pmf->invalidate_tlbs_size + 8; if (adev->gmc.flush_tlb_needs_extra_type_2) ndw += kiq->pmf->invalidate_tlbs_size; if (adev->gmc.flush_tlb_needs_extra_type_0) ndw += kiq->pmf->invalidate_tlbs_size; spin_lock(&adev->gfx.kiq[inst].ring_lock); amdgpu_ring_alloc(ring, ndw); if (adev->gmc.flush_tlb_needs_extra_type_2) kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 2, all_hub); if (flush_type == 2 && adev->gmc.flush_tlb_needs_extra_type_0) kiq->pmf->kiq_invalidate_tlbs(ring, pasid, 0, all_hub); kiq->pmf->kiq_invalidate_tlbs(ring, pasid, flush_type, all_hub); r = amdgpu_fence_emit_polling(ring, &seq, MAX_KIQ_REG_WAIT); if (r) { amdgpu_ring_undo(ring); spin_unlock(&adev->gfx.kiq[inst].ring_lock); goto error_unlock_reset; } amdgpu_ring_commit(ring); spin_unlock(&adev->gfx.kiq[inst].ring_lock); r = amdgpu_fence_wait_polling(ring, seq, usec_timeout); if (r < 1) { dev_err(adev->dev, "wait for kiq fence error: %ld.\n", r); r = -ETIME; goto error_unlock_reset; } r = 0; error_unlock_reset: up_read(&adev->reset_domain->sem); return r; } /** * amdgpu_gmc_tmz_set -- check and set if a device supports TMZ * @adev: amdgpu_device pointer * * Check and set if an the device @adev supports Trusted Memory * Zones (TMZ). */ void amdgpu_gmc_tmz_set(struct amdgpu_device *adev) { switch (amdgpu_ip_version(adev, GC_HWIP, 0)) { /* RAVEN */ case IP_VERSION(9, 2, 2): case IP_VERSION(9, 1, 0): /* RENOIR looks like RAVEN */ case IP_VERSION(9, 3, 0): /* GC 10.3.7 */ case IP_VERSION(10, 3, 7): /* GC 11.0.1 */ case IP_VERSION(11, 0, 1): if (amdgpu_tmz == 0) { adev->gmc.tmz_enabled = false; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature disabled (cmd line)\n"); } else { adev->gmc.tmz_enabled = true; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature enabled\n"); } break; case IP_VERSION(10, 1, 10): case IP_VERSION(10, 1, 1): case IP_VERSION(10, 1, 2): case IP_VERSION(10, 1, 3): case IP_VERSION(10, 3, 0): case IP_VERSION(10, 3, 2): case IP_VERSION(10, 3, 4): case IP_VERSION(10, 3, 5): case IP_VERSION(10, 3, 6): /* VANGOGH */ case IP_VERSION(10, 3, 1): /* YELLOW_CARP*/ case IP_VERSION(10, 3, 3): case IP_VERSION(11, 0, 4): case IP_VERSION(11, 5, 0): /* Don't enable it by default yet. */ if (amdgpu_tmz < 1) { adev->gmc.tmz_enabled = false; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature disabled as experimental (default)\n"); } else { adev->gmc.tmz_enabled = true; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature enabled as experimental (cmd line)\n"); } break; default: adev->gmc.tmz_enabled = false; dev_info(adev->dev, "Trusted Memory Zone (TMZ) feature not supported\n"); break; } } /** * amdgpu_gmc_noretry_set -- set per asic noretry defaults * @adev: amdgpu_device pointer * * Set a per asic default for the no-retry parameter. * */ void amdgpu_gmc_noretry_set(struct amdgpu_device *adev) { struct amdgpu_gmc *gmc = &adev->gmc; uint32_t gc_ver = amdgpu_ip_version(adev, GC_HWIP, 0); bool noretry_default = (gc_ver == IP_VERSION(9, 0, 1) || gc_ver == IP_VERSION(9, 3, 0) || gc_ver == IP_VERSION(9, 4, 0) || gc_ver == IP_VERSION(9, 4, 1) || gc_ver == IP_VERSION(9, 4, 2) || gc_ver == IP_VERSION(9, 4, 3) || gc_ver >= IP_VERSION(10, 3, 0)); if (!amdgpu_sriov_xnack_support(adev)) gmc->noretry = 1; else gmc->noretry = (amdgpu_noretry == -1) ? noretry_default : amdgpu_noretry; } void amdgpu_gmc_set_vm_fault_masks(struct amdgpu_device *adev, int hub_type, bool enable) { struct amdgpu_vmhub *hub; u32 tmp, reg, i; hub = &adev->vmhub[hub_type]; for (i = 0; i < 16; i++) { reg = hub->vm_context0_cntl + hub->ctx_distance * i; tmp = (hub_type == AMDGPU_GFXHUB(0)) ? RREG32_SOC15_IP(GC, reg) : RREG32_SOC15_IP(MMHUB, reg); if (enable) tmp |= hub->vm_cntx_cntl_vm_fault; else tmp &= ~hub->vm_cntx_cntl_vm_fault; (hub_type == AMDGPU_GFXHUB(0)) ? WREG32_SOC15_IP(GC, reg, tmp) : WREG32_SOC15_IP(MMHUB, reg, tmp); } } void amdgpu_gmc_get_vbios_allocations(struct amdgpu_device *adev) { unsigned size; /* * Some ASICs need to reserve a region of video memory to avoid access * from driver */ adev->mman.stolen_reserved_offset = 0; adev->mman.stolen_reserved_size = 0; /* * TODO: * Currently there is a bug where some memory client outside * of the driver writes to first 8M of VRAM on S3 resume, * this overrides GART which by default gets placed in first 8M and * causes VM_FAULTS once GTT is accessed. * Keep the stolen memory reservation until the while this is not solved. */ switch (adev->asic_type) { case CHIP_VEGA10: adev->mman.keep_stolen_vga_memory = true; /* * VEGA10 SRIOV VF with MS_HYPERV host needs some firmware reserved area. */ #ifdef CONFIG_X86 if (amdgpu_sriov_vf(adev) && hypervisor_is_type(X86_HYPER_MS_HYPERV)) { adev->mman.stolen_reserved_offset = 0x500000; adev->mman.stolen_reserved_size = 0x200000; } #endif break; case CHIP_RAVEN: case CHIP_RENOIR: adev->mman.keep_stolen_vga_memory = true; break; default: adev->mman.keep_stolen_vga_memory = false; break; } if (amdgpu_sriov_vf(adev) || !amdgpu_device_has_display_hardware(adev)) { size = 0; } else { size = amdgpu_gmc_get_vbios_fb_size(adev); if (adev->mman.keep_stolen_vga_memory) size = max(size, (unsigned)AMDGPU_VBIOS_VGA_ALLOCATION); } /* set to 0 if the pre-OS buffer uses up most of vram */ if ((adev->gmc.real_vram_size - size) < (8 * 1024 * 1024)) size = 0; if (size > AMDGPU_VBIOS_VGA_ALLOCATION) { adev->mman.stolen_vga_size = AMDGPU_VBIOS_VGA_ALLOCATION; adev->mman.stolen_extended_size = size - adev->mman.stolen_vga_size; } else { adev->mman.stolen_vga_size = size; adev->mman.stolen_extended_size = 0; } } /** * amdgpu_gmc_init_pdb0 - initialize PDB0 * * @adev: amdgpu_device pointer * * This function is only used when GART page table is used * for FB address translatioin. In such a case, we construct * a 2-level system VM page table: PDB0->PTB, to cover both * VRAM of the hive and system memory. * * PDB0 is static, initialized once on driver initialization. * The first n entries of PDB0 are used as PTE by setting * P bit to 1, pointing to VRAM. The n+1'th entry points * to a big PTB covering system memory. * */ void amdgpu_gmc_init_pdb0(struct amdgpu_device *adev) { int i; uint64_t flags = adev->gart.gart_pte_flags; //TODO it is UC. explore NC/RW? /* Each PDE0 (used as PTE) covers (2^vmid0_page_table_block_size)*2M */ u64 vram_size = adev->gmc.xgmi.node_segment_size * adev->gmc.xgmi.num_physical_nodes; u64 pde0_page_size = (1ULL<gmc.vmid0_page_table_block_size)<<21; u64 vram_addr = adev->vm_manager.vram_base_offset - adev->gmc.xgmi.physical_node_id * adev->gmc.xgmi.node_segment_size; u64 vram_end = vram_addr + vram_size; u64 gart_ptb_gpu_pa = amdgpu_gmc_vram_pa(adev, adev->gart.bo); int idx; if (!drm_dev_enter(adev_to_drm(adev), &idx)) return; flags |= AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; flags |= AMDGPU_PTE_WRITEABLE; flags |= AMDGPU_PTE_SNOOPED; flags |= AMDGPU_PTE_FRAG((adev->gmc.vmid0_page_table_block_size + 9*1)); flags |= AMDGPU_PDE_PTE; /* The first n PDE0 entries are used as PTE, * pointing to vram */ for (i = 0; vram_addr < vram_end; i++, vram_addr += pde0_page_size) amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, vram_addr, flags); /* The n+1'th PDE0 entry points to a huge * PTB who has more than 512 entries each * pointing to a 4K system page */ flags = AMDGPU_PTE_VALID; flags |= AMDGPU_PDE_BFS(0) | AMDGPU_PTE_SNOOPED; /* Requires gart_ptb_gpu_pa to be 4K aligned */ amdgpu_gmc_set_pte_pde(adev, adev->gmc.ptr_pdb0, i, gart_ptb_gpu_pa, flags); drm_dev_exit(idx); } /** * amdgpu_gmc_vram_mc2pa - calculate vram buffer's physical address from MC * address * * @adev: amdgpu_device pointer * @mc_addr: MC address of buffer */ uint64_t amdgpu_gmc_vram_mc2pa(struct amdgpu_device *adev, uint64_t mc_addr) { return mc_addr - adev->gmc.vram_start + adev->vm_manager.vram_base_offset; } /** * amdgpu_gmc_vram_pa - calculate vram buffer object's physical address from * GPU's view * * @adev: amdgpu_device pointer * @bo: amdgpu buffer object */ uint64_t amdgpu_gmc_vram_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) { return amdgpu_gmc_vram_mc2pa(adev, amdgpu_bo_gpu_offset(bo)); } /** * amdgpu_gmc_vram_cpu_pa - calculate vram buffer object's physical address * from CPU's view * * @adev: amdgpu_device pointer * @bo: amdgpu buffer object */ uint64_t amdgpu_gmc_vram_cpu_pa(struct amdgpu_device *adev, struct amdgpu_bo *bo) { return amdgpu_bo_gpu_offset(bo) - adev->gmc.vram_start + adev->gmc.aper_base; } int amdgpu_gmc_vram_checking(struct amdgpu_device *adev) { struct amdgpu_bo *vram_bo = NULL; uint64_t vram_gpu = 0; void *vram_ptr = NULL; int ret, size = 0x100000; uint8_t cptr[10]; ret = amdgpu_bo_create_kernel(adev, size, PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM, &vram_bo, &vram_gpu, &vram_ptr); if (ret) return ret; memset(vram_ptr, 0x86, size); memset(cptr, 0x86, 10); /** * Check the start, the mid, and the end of the memory if the content of * each byte is the pattern "0x86". If yes, we suppose the vram bo is * workable. * * Note: If check the each byte of whole 1M bo, it will cost too many * seconds, so here, we just pick up three parts for emulation. */ ret = memcmp(vram_ptr, cptr, 10); if (ret) return ret; ret = memcmp(vram_ptr + (size / 2), cptr, 10); if (ret) return ret; ret = memcmp(vram_ptr + size - 10, cptr, 10); if (ret) return ret; amdgpu_bo_free_kernel(&vram_bo, &vram_gpu, &vram_ptr); return 0; } static ssize_t current_memory_partition_show( struct device *dev, struct device_attribute *addr, char *buf) { struct drm_device *ddev = dev_get_drvdata(dev); struct amdgpu_device *adev = drm_to_adev(ddev); enum amdgpu_memory_partition mode; mode = adev->gmc.gmc_funcs->query_mem_partition_mode(adev); switch (mode) { case AMDGPU_NPS1_PARTITION_MODE: return sysfs_emit(buf, "NPS1\n"); case AMDGPU_NPS2_PARTITION_MODE: return sysfs_emit(buf, "NPS2\n"); case AMDGPU_NPS3_PARTITION_MODE: return sysfs_emit(buf, "NPS3\n"); case AMDGPU_NPS4_PARTITION_MODE: return sysfs_emit(buf, "NPS4\n"); case AMDGPU_NPS6_PARTITION_MODE: return sysfs_emit(buf, "NPS6\n"); case AMDGPU_NPS8_PARTITION_MODE: return sysfs_emit(buf, "NPS8\n"); default: return sysfs_emit(buf, "UNKNOWN\n"); } return sysfs_emit(buf, "UNKNOWN\n"); } static DEVICE_ATTR_RO(current_memory_partition); int amdgpu_gmc_sysfs_init(struct amdgpu_device *adev) { if (!adev->gmc.gmc_funcs->query_mem_partition_mode) return 0; return device_create_file(adev->dev, &dev_attr_current_memory_partition); } void amdgpu_gmc_sysfs_fini(struct amdgpu_device *adev) { device_remove_file(adev->dev, &dev_attr_current_memory_partition); }