/* * Copyright 2019 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "amdgpu_ras_eeprom.h" #include "amdgpu.h" #include "amdgpu_ras.h" #include #include "atom.h" #include "amdgpu_eeprom.h" #define EEPROM_I2C_MADDR_VEGA20 0x0 #define EEPROM_I2C_MADDR_ARCTURUS 0x40000 #define EEPROM_I2C_MADDR_ARCTURUS_D342 0x0 #define EEPROM_I2C_MADDR_SIENNA_CICHLID 0x0 #define EEPROM_I2C_MADDR_ALDEBARAN 0x0 /* * The 2 macros bellow represent the actual size in bytes that * those entities occupy in the EEPROM memory. * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which * uses uint64 to store 6b fields such as retired_page. */ #define RAS_TABLE_HEADER_SIZE 20 #define RAS_TABLE_RECORD_SIZE 24 /* Table hdr is 'AMDR' */ #define RAS_TABLE_HDR_VAL 0x414d4452 #define RAS_TABLE_VER 0x00010000 /* Bad GPU tag ‘BADG’ */ #define RAS_TABLE_HDR_BAD 0x42414447 /* Assume 2-Mbit size EEPROM and take up the whole space. */ #define RAS_TBL_SIZE_BYTES (256 * 1024) #define RAS_HDR_START 0 #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE) #define RAS_MAX_RECORD_NUM ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \ / RAS_TABLE_RECORD_SIZE) #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev static bool __is_ras_eeprom_supported(struct amdgpu_device *adev) { if ((adev->asic_type == CHIP_VEGA20) || (adev->asic_type == CHIP_ARCTURUS) || (adev->asic_type == CHIP_SIENNA_CICHLID) || (adev->asic_type == CHIP_ALDEBARAN)) return true; return false; } static bool __get_eeprom_i2c_addr_arct(struct amdgpu_device *adev, struct amdgpu_ras_eeprom_control *control) { struct atom_context *atom_ctx = adev->mode_info.atom_context; if (!control || !atom_ctx) return false; if (strnstr(atom_ctx->vbios_version, "D342", sizeof(atom_ctx->vbios_version))) control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS_D342; else control->i2c_address = EEPROM_I2C_MADDR_ARCTURUS; return true; } static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev, struct amdgpu_ras_eeprom_control *control) { if (!control) return false; switch (adev->asic_type) { case CHIP_VEGA20: control->i2c_address = EEPROM_I2C_MADDR_VEGA20; break; case CHIP_ARCTURUS: return __get_eeprom_i2c_addr_arct(adev, control); case CHIP_SIENNA_CICHLID: control->i2c_address = EEPROM_I2C_MADDR_SIENNA_CICHLID; break; case CHIP_ALDEBARAN: control->i2c_address = EEPROM_I2C_MADDR_ALDEBARAN; break; default: return false; } return true; } static void __encode_table_header_to_buff(struct amdgpu_ras_eeprom_table_header *hdr, unsigned char *buff) { uint32_t *pp = (uint32_t *) buff; pp[0] = cpu_to_le32(hdr->header); pp[1] = cpu_to_le32(hdr->version); pp[2] = cpu_to_le32(hdr->first_rec_offset); pp[3] = cpu_to_le32(hdr->tbl_size); pp[4] = cpu_to_le32(hdr->checksum); } static void __decode_table_header_from_buff(struct amdgpu_ras_eeprom_table_header *hdr, unsigned char *buff) { uint32_t *pp = (uint32_t *)buff; hdr->header = le32_to_cpu(pp[0]); hdr->version = le32_to_cpu(pp[1]); hdr->first_rec_offset = le32_to_cpu(pp[2]); hdr->tbl_size = le32_to_cpu(pp[3]); hdr->checksum = le32_to_cpu(pp[4]); } static int __update_table_header(struct amdgpu_ras_eeprom_control *control, unsigned char *buff) { int ret = 0; struct amdgpu_device *adev = to_amdgpu_device(control); __encode_table_header_to_buff(&control->tbl_hdr, buff); /* i2c may be unstable in gpu reset */ down_read(&adev->reset_sem); ret = amdgpu_eeprom_xfer(&adev->pm.smu_i2c, control->i2c_address + RAS_HDR_START, buff, RAS_TABLE_HEADER_SIZE, false); up_read(&adev->reset_sem); if (ret < 1) DRM_ERROR("Failed to write EEPROM table header, ret:%d", ret); return ret; } static uint32_t __calc_hdr_byte_sum(struct amdgpu_ras_eeprom_control *control) { int i; uint32_t tbl_sum = 0; /* Header checksum, skip checksum field in the calculation */ for (i = 0; i < sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum); i++) tbl_sum += *(((unsigned char *)&control->tbl_hdr) + i); return tbl_sum; } static uint32_t __calc_recs_byte_sum(struct eeprom_table_record *records, int num) { int i, j; uint32_t tbl_sum = 0; /* Records checksum */ for (i = 0; i < num; i++) { struct eeprom_table_record *record = &records[i]; for (j = 0; j < sizeof(*record); j++) { tbl_sum += *(((unsigned char *)record) + j); } } return tbl_sum; } static inline uint32_t __calc_tbl_byte_sum(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, int num) { return __calc_hdr_byte_sum(control) + __calc_recs_byte_sum(records, num); } /* Checksum = 256 -((sum of all table entries) mod 256) */ static void __update_tbl_checksum(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, int num, uint32_t old_hdr_byte_sum) { /* * This will update the table sum with new records. * * TODO: What happens when the EEPROM table is to be wrapped around * and old records from start will get overridden. */ /* need to recalculate updated header byte sum */ control->tbl_byte_sum -= old_hdr_byte_sum; control->tbl_byte_sum += __calc_tbl_byte_sum(control, records, num); control->tbl_hdr.checksum = 256 - (control->tbl_byte_sum % 256); } /* table sum mod 256 + checksum must equals 256 */ static bool __validate_tbl_checksum(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, int num) { control->tbl_byte_sum = __calc_tbl_byte_sum(control, records, num); if (control->tbl_hdr.checksum + (control->tbl_byte_sum % 256) != 256) { DRM_WARN("Checksum mismatch, checksum: %u ", control->tbl_hdr.checksum); return false; } return true; } static int amdgpu_ras_eeprom_correct_header_tag( struct amdgpu_ras_eeprom_control *control, uint32_t header) { unsigned char buff[RAS_TABLE_HEADER_SIZE]; struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; int ret = 0; memset(buff, 0, RAS_TABLE_HEADER_SIZE); mutex_lock(&control->tbl_mutex); hdr->header = header; ret = __update_table_header(control, buff); mutex_unlock(&control->tbl_mutex); return ret; } int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control) { unsigned char buff[RAS_TABLE_HEADER_SIZE] = { 0 }; struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; int ret = 0; mutex_lock(&control->tbl_mutex); hdr->header = RAS_TABLE_HDR_VAL; hdr->version = RAS_TABLE_VER; hdr->first_rec_offset = RAS_RECORD_START; hdr->tbl_size = RAS_TABLE_HEADER_SIZE; control->tbl_byte_sum = 0; __update_tbl_checksum(control, NULL, 0, 0); control->next_addr = RAS_RECORD_START; ret = __update_table_header(control, buff); mutex_unlock(&control->tbl_mutex); return ret; } int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control, bool *exceed_err_limit) { int ret = 0; struct amdgpu_device *adev = to_amdgpu_device(control); unsigned char buff[RAS_TABLE_HEADER_SIZE] = { 0 }; struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr; struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); *exceed_err_limit = false; if (!__is_ras_eeprom_supported(adev)) return 0; /* Verify i2c adapter is initialized */ if (!adev->pm.smu_i2c.algo) return -ENOENT; if (!__get_eeprom_i2c_addr(adev, control)) return -EINVAL; mutex_init(&control->tbl_mutex); /* Read/Create table header from EEPROM address 0 */ ret = amdgpu_eeprom_xfer(&adev->pm.smu_i2c, control->i2c_address + RAS_HDR_START, buff, RAS_TABLE_HEADER_SIZE, true); if (ret < 1) { DRM_ERROR("Failed to read EEPROM table header, ret:%d", ret); return ret; } __decode_table_header_from_buff(hdr, &buff[2]); if (hdr->header == RAS_TABLE_HDR_VAL) { control->num_recs = (hdr->tbl_size - RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE; control->tbl_byte_sum = __calc_hdr_byte_sum(control); control->next_addr = RAS_RECORD_START; DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records", control->num_recs); } else if ((hdr->header == RAS_TABLE_HDR_BAD) && (amdgpu_bad_page_threshold != 0)) { if (ras->bad_page_cnt_threshold > control->num_recs) { dev_info(adev->dev, "Using one valid bigger bad page " "threshold and correcting eeprom header tag.\n"); ret = amdgpu_ras_eeprom_correct_header_tag(control, RAS_TABLE_HDR_VAL); } else { *exceed_err_limit = true; dev_err(adev->dev, "Exceeding the bad_page_threshold parameter, " "disabling the GPU.\n"); } } else { DRM_INFO("Creating new EEPROM table"); ret = amdgpu_ras_eeprom_reset_table(control); } return ret == 1 ? 0 : -EIO; } static void __encode_table_record_to_buff(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, unsigned char *buff) { __le64 tmp = 0; int i = 0; /* Next are all record fields according to EEPROM page spec in LE foramt */ buff[i++] = record->err_type; buff[i++] = record->bank; tmp = cpu_to_le64(record->ts); memcpy(buff + i, &tmp, 8); i += 8; tmp = cpu_to_le64((record->offset & 0xffffffffffff)); memcpy(buff + i, &tmp, 6); i += 6; buff[i++] = record->mem_channel; buff[i++] = record->mcumc_id; tmp = cpu_to_le64((record->retired_page & 0xffffffffffff)); memcpy(buff + i, &tmp, 6); } static void __decode_table_record_from_buff(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *record, unsigned char *buff) { __le64 tmp = 0; int i = 0; /* Next are all record fields according to EEPROM page spec in LE foramt */ record->err_type = buff[i++]; record->bank = buff[i++]; memcpy(&tmp, buff + i, 8); record->ts = le64_to_cpu(tmp); i += 8; memcpy(&tmp, buff + i, 6); record->offset = (le64_to_cpu(tmp) & 0xffffffffffff); i += 6; record->mem_channel = buff[i++]; record->mcumc_id = buff[i++]; memcpy(&tmp, buff + i, 6); record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff); } /* * When reaching end of EEPROM memory jump back to 0 record address */ static uint32_t __correct_eeprom_dest_address(uint32_t curr_address) { u32 next_address = curr_address + RAS_TABLE_RECORD_SIZE; /* When all EEPROM memory used jump back to 0 address */ if (next_address >= RAS_TBL_SIZE_BYTES) { DRM_INFO("Reached end of EEPROM memory, wrap around to 0."); return RAS_RECORD_START; } return curr_address; } bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev) { struct amdgpu_ras *con = amdgpu_ras_get_context(adev); if (!__is_ras_eeprom_supported(adev)) return false; /* skip check eeprom table for VEGA20 Gaming */ if (!con) return false; else if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC))) return false; if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) { dev_warn(adev->dev, "This GPU is in BAD status."); dev_warn(adev->dev, "Please retire it or setting one bigger " "threshold value when reloading driver.\n"); return true; } return false; } static int amdgpu_ras_eeprom_xfer(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, const u32 num, bool write) { int i, ret = 0; unsigned char *buffs, *buff; struct eeprom_table_record *record; struct amdgpu_device *adev = to_amdgpu_device(control); struct amdgpu_ras *ras = amdgpu_ras_get_context(adev); if (!__is_ras_eeprom_supported(adev)) return 0; buffs = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL); if (!buffs) return -ENOMEM; mutex_lock(&control->tbl_mutex); /* * If saved bad pages number exceeds the bad page threshold for * the whole VRAM, update table header to mark the BAD GPU tag * and schedule one ras recovery after eeprom write is done, * this can avoid the missing for latest records. * * This new header will be picked up and checked in the bootup * by ras recovery, which may break bootup process to notify * user this GPU is in bad state and to retire such GPU for * further check. */ if (write && (amdgpu_bad_page_threshold != 0) && ((control->num_recs + num) >= ras->bad_page_cnt_threshold)) { dev_warn(adev->dev, "Saved bad pages(%d) reaches threshold value(%d).\n", control->num_recs + num, ras->bad_page_cnt_threshold); control->tbl_hdr.header = RAS_TABLE_HDR_BAD; } /* In case of overflow just start from beginning to not lose newest records */ if (write && (control->next_addr + RAS_TABLE_RECORD_SIZE * num >= RAS_TBL_SIZE_BYTES)) control->next_addr = RAS_RECORD_START; /* * TODO Currently makes EEPROM writes for each record, this creates * internal fragmentation. Optimized the code to do full page write of * 256b */ for (i = 0; i < num; i++) { buff = &buffs[i * RAS_TABLE_RECORD_SIZE]; record = &records[i]; control->next_addr = __correct_eeprom_dest_address(control->next_addr); /* EEPROM table content is stored in LE format */ if (write) __encode_table_record_to_buff(control, record, buff); /* i2c may be unstable in gpu reset */ down_read(&adev->reset_sem); ret = amdgpu_eeprom_xfer(&adev->pm.smu_i2c, control->i2c_address + control->next_addr, buff, RAS_TABLE_RECORD_SIZE, !write); up_read(&adev->reset_sem); if (ret < 1) { DRM_ERROR("Failed to process EEPROM table records, ret:%d", ret); /* TODO Restore prev next EEPROM address ? */ goto free_buff; } /* * The destination EEPROM address might need to be corrected to account * for page or entire memory wrapping */ control->next_addr += RAS_TABLE_RECORD_SIZE; } if (!write) { for (i = 0; i < num; i++) { buff = &buffs[i * RAS_TABLE_RECORD_SIZE]; record = &records[i]; __decode_table_record_from_buff(control, record, buff); } } if (write) { uint32_t old_hdr_byte_sum = __calc_hdr_byte_sum(control); /* * Update table header with size and CRC and account for table * wrap around where the assumption is that we treat it as empty * table * * TODO - Check the assumption is correct */ control->num_recs += num; control->num_recs %= RAS_MAX_RECORD_NUM; control->tbl_hdr.tbl_size += RAS_TABLE_RECORD_SIZE * num; if (control->tbl_hdr.tbl_size > RAS_TBL_SIZE_BYTES) control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE + control->num_recs * RAS_TABLE_RECORD_SIZE; __update_tbl_checksum(control, records, num, old_hdr_byte_sum); __update_table_header(control, buffs); } else if (!__validate_tbl_checksum(control, records, num)) { DRM_WARN("EEPROM Table checksum mismatch!"); /* TODO Uncomment when EEPROM read/write is relliable */ /* ret = -EIO; */ } free_buff: kfree(buffs); mutex_unlock(&control->tbl_mutex); return ret == num ? 0 : -EIO; } int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, const u32 num) { return amdgpu_ras_eeprom_xfer(control, records, num, false); } int amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control, struct eeprom_table_record *records, const u32 num) { return amdgpu_ras_eeprom_xfer(control, records, num, true); } inline uint32_t amdgpu_ras_eeprom_get_record_max_length(void) { return RAS_MAX_RECORD_NUM; } /* Used for testing if bugs encountered */ #if 0 void amdgpu_ras_eeprom_test(struct amdgpu_ras_eeprom_control *control) { int i; struct eeprom_table_record *recs = kcalloc(1, sizeof(*recs), GFP_KERNEL); if (!recs) return; for (i = 0; i < 1 ; i++) { recs[i].address = 0xdeadbeef; recs[i].retired_page = i; } if (!amdgpu_ras_eeprom_write(control, recs, 1)) { memset(recs, 0, sizeof(*recs) * 1); control->next_addr = RAS_RECORD_START; if (!amdgpu_ras_eeprom_read(control, recs)) { for (i = 0; i < 1; i++) DRM_INFO("rec.address :0x%llx, rec.retired_page :%llu", recs[i].address, recs[i].retired_page); } else DRM_ERROR("Failed in reading from table"); } else DRM_ERROR("Failed in writing to table"); } #endif