// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2020-2021 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include "amdgpu_sync.h" #include "amdgpu_object.h" #include "amdgpu_vm.h" #include "amdgpu_hmm.h" #include "amdgpu.h" #include "amdgpu_xgmi.h" #include "kfd_priv.h" #include "kfd_svm.h" #include "kfd_migrate.h" #include "kfd_smi_events.h" #ifdef dev_fmt #undef dev_fmt #endif #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__ #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1 /* Long enough to ensure no retry fault comes after svm range is restored and * page table is updated. */ #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC) #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) #define dynamic_svm_range_dump(svms) \ _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms) #else #define dynamic_svm_range_dump(svms) \ do { if (0) svm_range_debug_dump(svms); } while (0) #endif /* Giant svm range split into smaller ranges based on this, it is decided using * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to * power of 2MB. */ static uint64_t max_svm_range_pages; struct criu_svm_metadata { struct list_head list; struct kfd_criu_svm_range_priv_data data; }; static void svm_range_evict_svm_bo_worker(struct work_struct *work); static bool svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq); static int svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, uint64_t *bo_s, uint64_t *bo_l); static const struct mmu_interval_notifier_ops svm_range_mn_ops = { .invalidate = svm_range_cpu_invalidate_pagetables, }; /** * svm_range_unlink - unlink svm_range from lists and interval tree * @prange: svm range structure to be removed * * Remove the svm_range from the svms and svm_bo lists and the svms * interval tree. * * Context: The caller must hold svms->lock */ static void svm_range_unlink(struct svm_range *prange) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); if (prange->svm_bo) { spin_lock(&prange->svm_bo->list_lock); list_del(&prange->svm_bo_list); spin_unlock(&prange->svm_bo->list_lock); } list_del(&prange->list); if (prange->it_node.start != 0 && prange->it_node.last != 0) interval_tree_remove(&prange->it_node, &prange->svms->objects); } static void svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); mmu_interval_notifier_insert_locked(&prange->notifier, mm, prange->start << PAGE_SHIFT, prange->npages << PAGE_SHIFT, &svm_range_mn_ops); } /** * svm_range_add_to_svms - add svm range to svms * @prange: svm range structure to be added * * Add the svm range to svms interval tree and link list * * Context: The caller must hold svms->lock */ static void svm_range_add_to_svms(struct svm_range *prange) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); list_move_tail(&prange->list, &prange->svms->list); prange->it_node.start = prange->start; prange->it_node.last = prange->last; interval_tree_insert(&prange->it_node, &prange->svms->objects); } static void svm_range_remove_notifier(struct svm_range *prange) { pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->notifier.interval_tree.start >> PAGE_SHIFT, prange->notifier.interval_tree.last >> PAGE_SHIFT); if (prange->notifier.interval_tree.start != 0 && prange->notifier.interval_tree.last != 0) mmu_interval_notifier_remove(&prange->notifier); } static bool svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr) { return dma_addr && !dma_mapping_error(dev, dma_addr) && !(dma_addr & SVM_RANGE_VRAM_DOMAIN); } static int svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange, unsigned long offset, unsigned long npages, unsigned long *hmm_pfns, uint32_t gpuidx, uint64_t *vram_pages) { enum dma_data_direction dir = DMA_BIDIRECTIONAL; dma_addr_t *addr = prange->dma_addr[gpuidx]; struct device *dev = adev->dev; struct page *page; uint64_t vram_pages_dev; int i, r; if (!addr) { addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL); if (!addr) return -ENOMEM; prange->dma_addr[gpuidx] = addr; } vram_pages_dev = 0; addr += offset; for (i = 0; i < npages; i++) { if (svm_is_valid_dma_mapping_addr(dev, addr[i])) dma_unmap_page(dev, addr[i], PAGE_SIZE, dir); page = hmm_pfn_to_page(hmm_pfns[i]); if (is_zone_device_page(page)) { struct amdgpu_device *bo_adev = prange->svm_bo->node->adev; vram_pages_dev++; addr[i] = (hmm_pfns[i] << PAGE_SHIFT) + bo_adev->vm_manager.vram_base_offset - bo_adev->kfd.pgmap.range.start; addr[i] |= SVM_RANGE_VRAM_DOMAIN; pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]); continue; } addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir); r = dma_mapping_error(dev, addr[i]); if (r) { dev_err(dev, "failed %d dma_map_page\n", r); return r; } pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n", addr[i] >> PAGE_SHIFT, page_to_pfn(page)); } *vram_pages = vram_pages_dev; return 0; } static int svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap, unsigned long offset, unsigned long npages, unsigned long *hmm_pfns, uint64_t *vram_pages) { struct kfd_process *p; uint32_t gpuidx; int r; p = container_of(prange->svms, struct kfd_process, svms); for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { struct kfd_process_device *pdd; pr_debug("mapping to gpu idx 0x%x\n", gpuidx); pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); return -EINVAL; } r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages, hmm_pfns, gpuidx, vram_pages); if (r) break; } return r; } void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr, unsigned long offset, unsigned long npages) { enum dma_data_direction dir = DMA_BIDIRECTIONAL; int i; if (!dma_addr) return; for (i = offset; i < offset + npages; i++) { if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i])) continue; pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT); dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir); dma_addr[i] = 0; } } void svm_range_dma_unmap(struct svm_range *prange) { struct kfd_process_device *pdd; dma_addr_t *dma_addr; struct device *dev; struct kfd_process *p; uint32_t gpuidx; p = container_of(prange->svms, struct kfd_process, svms); for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { dma_addr = prange->dma_addr[gpuidx]; if (!dma_addr) continue; pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); continue; } dev = &pdd->dev->adev->pdev->dev; svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages); } } static void svm_range_free(struct svm_range *prange, bool do_unmap) { uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT; struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); uint32_t gpuidx; pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); svm_range_vram_node_free(prange); if (do_unmap) svm_range_dma_unmap(prange); if (do_unmap && !p->xnack_enabled) { pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size); amdgpu_amdkfd_unreserve_mem_limit(NULL, size, KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); } /* free dma_addr array for each gpu */ for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) { if (prange->dma_addr[gpuidx]) { kvfree(prange->dma_addr[gpuidx]); prange->dma_addr[gpuidx] = NULL; } } mutex_destroy(&prange->lock); mutex_destroy(&prange->migrate_mutex); kfree(prange); } static void svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc, uint8_t *granularity, uint32_t *flags) { *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; *granularity = 9; *flags = KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT; } static struct svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start, uint64_t last, bool update_mem_usage) { uint64_t size = last - start + 1; struct svm_range *prange; struct kfd_process *p; prange = kzalloc(sizeof(*prange), GFP_KERNEL); if (!prange) return NULL; p = container_of(svms, struct kfd_process, svms); if (!p->xnack_enabled && update_mem_usage && amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT, KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) { pr_info("SVM mapping failed, exceeds resident system memory limit\n"); kfree(prange); return NULL; } prange->npages = size; prange->svms = svms; prange->start = start; prange->last = last; INIT_LIST_HEAD(&prange->list); INIT_LIST_HEAD(&prange->update_list); INIT_LIST_HEAD(&prange->svm_bo_list); INIT_LIST_HEAD(&prange->deferred_list); INIT_LIST_HEAD(&prange->child_list); atomic_set(&prange->invalid, 0); prange->validate_timestamp = 0; prange->vram_pages = 0; mutex_init(&prange->migrate_mutex); mutex_init(&prange->lock); if (p->xnack_enabled) bitmap_copy(prange->bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); svm_range_set_default_attributes(&prange->preferred_loc, &prange->prefetch_loc, &prange->granularity, &prange->flags); pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last); return prange; } static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo) { if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref)) return false; return true; } static void svm_range_bo_release(struct kref *kref) { struct svm_range_bo *svm_bo; svm_bo = container_of(kref, struct svm_range_bo, kref); pr_debug("svm_bo 0x%p\n", svm_bo); spin_lock(&svm_bo->list_lock); while (!list_empty(&svm_bo->range_list)) { struct svm_range *prange = list_first_entry(&svm_bo->range_list, struct svm_range, svm_bo_list); /* list_del_init tells a concurrent svm_range_vram_node_new when * it's safe to reuse the svm_bo pointer and svm_bo_list head. */ list_del_init(&prange->svm_bo_list); spin_unlock(&svm_bo->list_lock); pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); mutex_lock(&prange->lock); prange->svm_bo = NULL; /* prange should not hold vram page now */ WARN_ON(prange->actual_loc); mutex_unlock(&prange->lock); spin_lock(&svm_bo->list_lock); } spin_unlock(&svm_bo->list_lock); if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) { /* We're not in the eviction worker. * Signal the fence and synchronize with any * pending eviction work. */ dma_fence_signal(&svm_bo->eviction_fence->base); cancel_work_sync(&svm_bo->eviction_work); } dma_fence_put(&svm_bo->eviction_fence->base); amdgpu_bo_unref(&svm_bo->bo); kfree(svm_bo); } static void svm_range_bo_wq_release(struct work_struct *work) { struct svm_range_bo *svm_bo; svm_bo = container_of(work, struct svm_range_bo, release_work); svm_range_bo_release(&svm_bo->kref); } static void svm_range_bo_release_async(struct kref *kref) { struct svm_range_bo *svm_bo; svm_bo = container_of(kref, struct svm_range_bo, kref); pr_debug("svm_bo 0x%p\n", svm_bo); INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release); schedule_work(&svm_bo->release_work); } void svm_range_bo_unref_async(struct svm_range_bo *svm_bo) { kref_put(&svm_bo->kref, svm_range_bo_release_async); } static void svm_range_bo_unref(struct svm_range_bo *svm_bo) { if (svm_bo) kref_put(&svm_bo->kref, svm_range_bo_release); } static bool svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange) { mutex_lock(&prange->lock); if (!prange->svm_bo) { mutex_unlock(&prange->lock); return false; } if (prange->ttm_res) { /* We still have a reference, all is well */ mutex_unlock(&prange->lock); return true; } if (svm_bo_ref_unless_zero(prange->svm_bo)) { /* * Migrate from GPU to GPU, remove range from source svm_bo->node * range list, and return false to allocate svm_bo from destination * node. */ if (prange->svm_bo->node != node) { mutex_unlock(&prange->lock); spin_lock(&prange->svm_bo->list_lock); list_del_init(&prange->svm_bo_list); spin_unlock(&prange->svm_bo->list_lock); svm_range_bo_unref(prange->svm_bo); return false; } if (READ_ONCE(prange->svm_bo->evicting)) { struct dma_fence *f; struct svm_range_bo *svm_bo; /* The BO is getting evicted, * we need to get a new one */ mutex_unlock(&prange->lock); svm_bo = prange->svm_bo; f = dma_fence_get(&svm_bo->eviction_fence->base); svm_range_bo_unref(prange->svm_bo); /* wait for the fence to avoid long spin-loop * at list_empty_careful */ dma_fence_wait(f, false); dma_fence_put(f); } else { /* The BO was still around and we got * a new reference to it */ mutex_unlock(&prange->lock); pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); prange->ttm_res = prange->svm_bo->bo->tbo.resource; return true; } } else { mutex_unlock(&prange->lock); } /* We need a new svm_bo. Spin-loop to wait for concurrent * svm_range_bo_release to finish removing this range from * its range list and set prange->svm_bo to null. After this, * it is safe to reuse the svm_bo pointer and svm_bo_list head. */ while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo) cond_resched(); return false; } static struct svm_range_bo *svm_range_bo_new(void) { struct svm_range_bo *svm_bo; svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL); if (!svm_bo) return NULL; kref_init(&svm_bo->kref); INIT_LIST_HEAD(&svm_bo->range_list); spin_lock_init(&svm_bo->list_lock); return svm_bo; } int svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange, bool clear) { struct amdgpu_bo_param bp; struct svm_range_bo *svm_bo; struct amdgpu_bo_user *ubo; struct amdgpu_bo *bo; struct kfd_process *p; struct mm_struct *mm; int r; p = container_of(prange->svms, struct kfd_process, svms); pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms, prange->start, prange->last); if (svm_range_validate_svm_bo(node, prange)) return 0; svm_bo = svm_range_bo_new(); if (!svm_bo) { pr_debug("failed to alloc svm bo\n"); return -ENOMEM; } mm = get_task_mm(p->lead_thread); if (!mm) { pr_debug("failed to get mm\n"); kfree(svm_bo); return -ESRCH; } svm_bo->node = node; svm_bo->eviction_fence = amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1), mm, svm_bo); mmput(mm); INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker); svm_bo->evicting = 0; memset(&bp, 0, sizeof(bp)); bp.size = prange->npages * PAGE_SIZE; bp.byte_align = PAGE_SIZE; bp.domain = AMDGPU_GEM_DOMAIN_VRAM; bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS; bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0; bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE; bp.type = ttm_bo_type_device; bp.resv = NULL; if (node->xcp) bp.xcp_id_plus1 = node->xcp->id + 1; r = amdgpu_bo_create_user(node->adev, &bp, &ubo); if (r) { pr_debug("failed %d to create bo\n", r); goto create_bo_failed; } bo = &ubo->bo; pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n", bo->tbo.resource->start << PAGE_SHIFT, bp.size, bp.xcp_id_plus1 - 1); r = amdgpu_bo_reserve(bo, true); if (r) { pr_debug("failed %d to reserve bo\n", r); goto reserve_bo_failed; } if (clear) { r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false); if (r) { pr_debug("failed %d to sync bo\n", r); amdgpu_bo_unreserve(bo); goto reserve_bo_failed; } } r = dma_resv_reserve_fences(bo->tbo.base.resv, 1); if (r) { pr_debug("failed %d to reserve bo\n", r); amdgpu_bo_unreserve(bo); goto reserve_bo_failed; } amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true); amdgpu_bo_unreserve(bo); svm_bo->bo = bo; prange->svm_bo = svm_bo; prange->ttm_res = bo->tbo.resource; prange->offset = 0; spin_lock(&svm_bo->list_lock); list_add(&prange->svm_bo_list, &svm_bo->range_list); spin_unlock(&svm_bo->list_lock); return 0; reserve_bo_failed: amdgpu_bo_unref(&bo); create_bo_failed: dma_fence_put(&svm_bo->eviction_fence->base); kfree(svm_bo); prange->ttm_res = NULL; return r; } void svm_range_vram_node_free(struct svm_range *prange) { /* serialize prange->svm_bo unref */ mutex_lock(&prange->lock); /* prange->svm_bo has not been unref */ if (prange->ttm_res) { prange->ttm_res = NULL; mutex_unlock(&prange->lock); svm_range_bo_unref(prange->svm_bo); } else mutex_unlock(&prange->lock); } struct kfd_node * svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id) { struct kfd_process *p; struct kfd_process_device *pdd; p = container_of(prange->svms, struct kfd_process, svms); pdd = kfd_process_device_data_by_id(p, gpu_id); if (!pdd) { pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id); return NULL; } return pdd->dev; } struct kfd_process_device * svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node) { struct kfd_process *p; p = container_of(prange->svms, struct kfd_process, svms); return kfd_get_process_device_data(node, p); } static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo) { struct ttm_operation_ctx ctx = { false, false }; amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM); return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx); } static int svm_range_check_attr(struct kfd_process *p, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) { uint32_t i; for (i = 0; i < nattr; i++) { uint32_t val = attrs[i].value; int gpuidx = MAX_GPU_INSTANCE; switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM && val != KFD_IOCTL_SVM_LOCATION_UNDEFINED) gpuidx = kfd_process_gpuidx_from_gpuid(p, val); break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM) gpuidx = kfd_process_gpuidx_from_gpuid(p, val); break; case KFD_IOCTL_SVM_ATTR_ACCESS: case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: case KFD_IOCTL_SVM_ATTR_NO_ACCESS: gpuidx = kfd_process_gpuidx_from_gpuid(p, val); break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: break; case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: break; default: pr_debug("unknown attr type 0x%x\n", attrs[i].type); return -EINVAL; } if (gpuidx < 0) { pr_debug("no GPU 0x%x found\n", val); return -EINVAL; } else if (gpuidx < MAX_GPU_INSTANCE && !test_bit(gpuidx, p->svms.bitmap_supported)) { pr_debug("GPU 0x%x not supported\n", val); return -EINVAL; } } return 0; } static void svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, bool *update_mapping) { uint32_t i; int gpuidx; for (i = 0; i < nattr; i++) { switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: prange->preferred_loc = attrs[i].value; break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: prange->prefetch_loc = attrs[i].value; break; case KFD_IOCTL_SVM_ATTR_ACCESS: case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: case KFD_IOCTL_SVM_ATTR_NO_ACCESS: if (!p->xnack_enabled) *update_mapping = true; gpuidx = kfd_process_gpuidx_from_gpuid(p, attrs[i].value); if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { bitmap_clear(prange->bitmap_access, gpuidx, 1); bitmap_clear(prange->bitmap_aip, gpuidx, 1); } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { bitmap_set(prange->bitmap_access, gpuidx, 1); bitmap_clear(prange->bitmap_aip, gpuidx, 1); } else { bitmap_clear(prange->bitmap_access, gpuidx, 1); bitmap_set(prange->bitmap_aip, gpuidx, 1); } break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: *update_mapping = true; prange->flags |= attrs[i].value; break; case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: *update_mapping = true; prange->flags &= ~attrs[i].value; break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: prange->granularity = attrs[i].value; break; default: WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); } } } static bool svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) { uint32_t i; int gpuidx; for (i = 0; i < nattr; i++) { switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: if (prange->preferred_loc != attrs[i].value) return false; break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: /* Prefetch should always trigger a migration even * if the value of the attribute didn't change. */ return false; case KFD_IOCTL_SVM_ATTR_ACCESS: case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: case KFD_IOCTL_SVM_ATTR_NO_ACCESS: gpuidx = kfd_process_gpuidx_from_gpuid(p, attrs[i].value); if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) { if (test_bit(gpuidx, prange->bitmap_access) || test_bit(gpuidx, prange->bitmap_aip)) return false; } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) { if (!test_bit(gpuidx, prange->bitmap_access)) return false; } else { if (!test_bit(gpuidx, prange->bitmap_aip)) return false; } break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: if ((prange->flags & attrs[i].value) != attrs[i].value) return false; break; case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: if ((prange->flags & attrs[i].value) != 0) return false; break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: if (prange->granularity != attrs[i].value) return false; break; default: WARN_ONCE(1, "svm_range_check_attrs wasn't called?"); } } return true; } /** * svm_range_debug_dump - print all range information from svms * @svms: svm range list header * * debug output svm range start, end, prefetch location from svms * interval tree and link list * * Context: The caller must hold svms->lock */ static void svm_range_debug_dump(struct svm_range_list *svms) { struct interval_tree_node *node; struct svm_range *prange; pr_debug("dump svms 0x%p list\n", svms); pr_debug("range\tstart\tpage\tend\t\tlocation\n"); list_for_each_entry(prange, &svms->list, list) { pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", prange, prange->start, prange->npages, prange->start + prange->npages - 1, prange->actual_loc); } pr_debug("dump svms 0x%p interval tree\n", svms); pr_debug("range\tstart\tpage\tend\t\tlocation\n"); node = interval_tree_iter_first(&svms->objects, 0, ~0ULL); while (node) { prange = container_of(node, struct svm_range, it_node); pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n", prange, prange->start, prange->npages, prange->start + prange->npages - 1, prange->actual_loc); node = interval_tree_iter_next(node, 0, ~0ULL); } } static void * svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements, uint64_t offset) { unsigned char *dst; dst = kvmalloc_array(num_elements, size, GFP_KERNEL); if (!dst) return NULL; memcpy(dst, (unsigned char *)psrc + offset, num_elements * size); return (void *)dst; } static int svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src) { int i; for (i = 0; i < MAX_GPU_INSTANCE; i++) { if (!src->dma_addr[i]) continue; dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i], sizeof(*src->dma_addr[i]), src->npages, 0); if (!dst->dma_addr[i]) return -ENOMEM; } return 0; } static int svm_range_split_array(void *ppnew, void *ppold, size_t size, uint64_t old_start, uint64_t old_n, uint64_t new_start, uint64_t new_n) { unsigned char *new, *old, *pold; uint64_t d; if (!ppold) return 0; pold = *(unsigned char **)ppold; if (!pold) return 0; d = (new_start - old_start) * size; new = svm_range_copy_array(pold, size, new_n, d); if (!new) return -ENOMEM; d = (new_start == old_start) ? new_n * size : 0; old = svm_range_copy_array(pold, size, old_n, d); if (!old) { kvfree(new); return -ENOMEM; } kvfree(pold); *(void **)ppold = old; *(void **)ppnew = new; return 0; } static int svm_range_split_pages(struct svm_range *new, struct svm_range *old, uint64_t start, uint64_t last) { uint64_t npages = last - start + 1; int i, r; for (i = 0; i < MAX_GPU_INSTANCE; i++) { r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i], sizeof(*old->dma_addr[i]), old->start, npages, new->start, new->npages); if (r) return r; } return 0; } static int svm_range_split_nodes(struct svm_range *new, struct svm_range *old, uint64_t start, uint64_t last) { uint64_t npages = last - start + 1; pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n", new->svms, new, new->start, start, last); if (new->start == old->start) { new->offset = old->offset; old->offset += new->npages; } else { new->offset = old->offset + npages; } new->svm_bo = svm_range_bo_ref(old->svm_bo); new->ttm_res = old->ttm_res; /* set new's vram_pages as old range's now, the acurate vram_pages * will be updated during mapping */ new->vram_pages = min(old->vram_pages, new->npages); spin_lock(&new->svm_bo->list_lock); list_add(&new->svm_bo_list, &new->svm_bo->range_list); spin_unlock(&new->svm_bo->list_lock); return 0; } /** * svm_range_split_adjust - split range and adjust * * @new: new range * @old: the old range * @start: the old range adjust to start address in pages * @last: the old range adjust to last address in pages * * Copy system memory dma_addr or vram ttm_res in old range to new * range from new_start up to size new->npages, the remaining old range is from * start to last * * Return: * 0 - OK, -ENOMEM - out of memory */ static int svm_range_split_adjust(struct svm_range *new, struct svm_range *old, uint64_t start, uint64_t last) { int r; pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n", new->svms, new->start, old->start, old->last, start, last); if (new->start < old->start || new->last > old->last) { WARN_ONCE(1, "invalid new range start or last\n"); return -EINVAL; } r = svm_range_split_pages(new, old, start, last); if (r) return r; if (old->actual_loc && old->ttm_res) { r = svm_range_split_nodes(new, old, start, last); if (r) return r; } old->npages = last - start + 1; old->start = start; old->last = last; new->flags = old->flags; new->preferred_loc = old->preferred_loc; new->prefetch_loc = old->prefetch_loc; new->actual_loc = old->actual_loc; new->granularity = old->granularity; new->mapped_to_gpu = old->mapped_to_gpu; bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); return 0; } /** * svm_range_split - split a range in 2 ranges * * @prange: the svm range to split * @start: the remaining range start address in pages * @last: the remaining range last address in pages * @new: the result new range generated * * Two cases only: * case 1: if start == prange->start * prange ==> prange[start, last] * new range [last + 1, prange->last] * * case 2: if last == prange->last * prange ==> prange[start, last] * new range [prange->start, start - 1] * * Return: * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last */ static int svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last, struct svm_range **new) { uint64_t old_start = prange->start; uint64_t old_last = prange->last; struct svm_range_list *svms; int r = 0; pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms, old_start, old_last, start, last); if (old_start != start && old_last != last) return -EINVAL; if (start < old_start || last > old_last) return -EINVAL; svms = prange->svms; if (old_start == start) *new = svm_range_new(svms, last + 1, old_last, false); else *new = svm_range_new(svms, old_start, start - 1, false); if (!*new) return -ENOMEM; r = svm_range_split_adjust(*new, prange, start, last); if (r) { pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", r, old_start, old_last, start, last); svm_range_free(*new, false); *new = NULL; } return r; } static int svm_range_split_tail(struct svm_range *prange, uint64_t new_last, struct list_head *insert_list) { struct svm_range *tail; int r = svm_range_split(prange, prange->start, new_last, &tail); if (!r) list_add(&tail->list, insert_list); return r; } static int svm_range_split_head(struct svm_range *prange, uint64_t new_start, struct list_head *insert_list) { struct svm_range *head; int r = svm_range_split(prange, new_start, prange->last, &head); if (!r) list_add(&head->list, insert_list); return r; } static void svm_range_add_child(struct svm_range *prange, struct mm_struct *mm, struct svm_range *pchild, enum svm_work_list_ops op) { pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n", pchild, pchild->start, pchild->last, prange, op); pchild->work_item.mm = mm; pchild->work_item.op = op; list_add_tail(&pchild->child_list, &prange->child_list); } /** * svm_range_split_by_granularity - collect ranges within granularity boundary * * @p: the process with svms list * @mm: mm structure * @addr: the vm fault address in pages, to split the prange * @parent: parent range if prange is from child list * @prange: prange to split * * Trims @prange to be a single aligned block of prange->granularity if * possible. The head and tail are added to the child_list in @parent. * * Context: caller must hold mmap_read_lock and prange->lock * * Return: * 0 - OK, otherwise error code */ int svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm, unsigned long addr, struct svm_range *parent, struct svm_range *prange) { struct svm_range *head, *tail; unsigned long start, last, size; int r; /* Align splited range start and size to granularity size, then a single * PTE will be used for whole range, this reduces the number of PTE * updated and the L1 TLB space used for translation. */ size = 1UL << prange->granularity; start = ALIGN_DOWN(addr, size); last = ALIGN(addr + 1, size) - 1; pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n", prange->svms, prange->start, prange->last, start, last, size); if (start > prange->start) { r = svm_range_split(prange, start, prange->last, &head); if (r) return r; svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE); } if (last < prange->last) { r = svm_range_split(prange, prange->start, last, &tail); if (r) return r; svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); } /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) { prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP; pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n", prange, prange->start, prange->last, SVM_OP_ADD_RANGE_AND_MAP); } return 0; } static bool svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b) { return (node_a->adev == node_b->adev || amdgpu_xgmi_same_hive(node_a->adev, node_b->adev)); } static uint64_t svm_range_get_pte_flags(struct kfd_node *node, struct svm_range *prange, int domain) { struct kfd_node *bo_node; uint32_t flags = prange->flags; uint32_t mapping_flags = 0; uint64_t pte_flags; bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN); bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT); bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT; bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/ unsigned int mtype_local; if (domain == SVM_RANGE_VRAM_DOMAIN) bo_node = prange->svm_bo->node; switch (amdgpu_ip_version(node->adev, GC_HWIP, 0)) { case IP_VERSION(9, 4, 1): if (domain == SVM_RANGE_VRAM_DOMAIN) { if (bo_node == node) { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; if (svm_nodes_in_same_hive(node, bo_node)) snoop = true; } } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; } break; case IP_VERSION(9, 4, 2): if (domain == SVM_RANGE_VRAM_DOMAIN) { if (bo_node == node) { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW; if (node->adev->gmc.xgmi.connected_to_cpu) snoop = true; } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; if (svm_nodes_in_same_hive(node, bo_node)) snoop = true; } } else { mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; } break; case IP_VERSION(9, 4, 3): mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC : (amdgpu_mtype_local == 2 || ext_coherent ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW); snoop = true; if (uncached) { mapping_flags |= AMDGPU_VM_MTYPE_UC; } else if (domain == SVM_RANGE_VRAM_DOMAIN) { /* local HBM region close to partition */ if (bo_node->adev == node->adev && (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id)) mapping_flags |= mtype_local; /* local HBM region far from partition or remote XGMI GPU * with regular system scope coherence */ else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent) mapping_flags |= AMDGPU_VM_MTYPE_NC; /* PCIe P2P or extended system scope coherence */ else mapping_flags |= AMDGPU_VM_MTYPE_UC; /* system memory accessed by the APU */ } else if (node->adev->flags & AMD_IS_APU) { /* On NUMA systems, locality is determined per-page * in amdgpu_gmc_override_vm_pte_flags */ if (num_possible_nodes() <= 1) mapping_flags |= mtype_local; else mapping_flags |= AMDGPU_VM_MTYPE_NC; /* system memory accessed by the dGPU */ } else { mapping_flags |= AMDGPU_VM_MTYPE_UC; } break; default: mapping_flags |= coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC; } mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE; if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO) mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE; if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC) mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE; pte_flags = AMDGPU_PTE_VALID; pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM; pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0; pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags); return pte_flags; } static int svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm, uint64_t start, uint64_t last, struct dma_fence **fence) { uint64_t init_pte_value = 0; pr_debug("[0x%llx 0x%llx]\n", start, last); return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start, last, init_pte_value, 0, 0, NULL, NULL, fence); } static int svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start, unsigned long last, uint32_t trigger) { DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); struct kfd_process_device *pdd; struct dma_fence *fence = NULL; struct kfd_process *p; uint32_t gpuidx; int r = 0; if (!prange->mapped_to_gpu) { pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n", prange, prange->start, prange->last); return 0; } if (prange->start == start && prange->last == last) { pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange); prange->mapped_to_gpu = false; } bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, MAX_GPU_INSTANCE); p = container_of(prange->svms, struct kfd_process, svms); for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { pr_debug("unmap from gpu idx 0x%x\n", gpuidx); pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); return -EINVAL; } kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid, start, last, trigger); r = svm_range_unmap_from_gpu(pdd->dev->adev, drm_priv_to_vm(pdd->drm_priv), start, last, &fence); if (r) break; if (fence) { r = dma_fence_wait(fence, false); dma_fence_put(fence); fence = NULL; if (r) break; } kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT); } return r; } static int svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange, unsigned long offset, unsigned long npages, bool readonly, dma_addr_t *dma_addr, struct amdgpu_device *bo_adev, struct dma_fence **fence, bool flush_tlb) { struct amdgpu_device *adev = pdd->dev->adev; struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv); uint64_t pte_flags; unsigned long last_start; int last_domain; int r = 0; int64_t i, j; last_start = prange->start + offset; pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms, last_start, last_start + npages - 1, readonly); for (i = offset; i < offset + npages; i++) { last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN; dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN; /* Collect all pages in the same address range and memory domain * that can be mapped with a single call to update mapping. */ if (i < offset + npages - 1 && last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN)) continue; pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n", last_start, prange->start + i, last_domain ? "GPU" : "CPU"); pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain); if (readonly) pte_flags &= ~AMDGPU_PTE_WRITEABLE; pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n", prange->svms, last_start, prange->start + i, (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0, pte_flags); /* For dGPU mode, we use same vm_manager to allocate VRAM for * different memory partition based on fpfn/lpfn, we should use * same vm_manager.vram_base_offset regardless memory partition. */ r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL, last_start, prange->start + i, pte_flags, (last_start - prange->start) << PAGE_SHIFT, bo_adev ? bo_adev->vm_manager.vram_base_offset : 0, NULL, dma_addr, &vm->last_update); for (j = last_start - prange->start; j <= i; j++) dma_addr[j] |= last_domain; if (r) { pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start); goto out; } last_start = prange->start + i + 1; } r = amdgpu_vm_update_pdes(adev, vm, false); if (r) { pr_debug("failed %d to update directories 0x%lx\n", r, prange->start); goto out; } if (fence) *fence = dma_fence_get(vm->last_update); out: return r; } static int svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset, unsigned long npages, bool readonly, unsigned long *bitmap, bool wait, bool flush_tlb) { struct kfd_process_device *pdd; struct amdgpu_device *bo_adev = NULL; struct kfd_process *p; struct dma_fence *fence = NULL; uint32_t gpuidx; int r = 0; if (prange->svm_bo && prange->ttm_res) bo_adev = prange->svm_bo->node->adev; p = container_of(prange->svms, struct kfd_process, svms); for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { pr_debug("mapping to gpu idx 0x%x\n", gpuidx); pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); return -EINVAL; } pdd = kfd_bind_process_to_device(pdd->dev, p); if (IS_ERR(pdd)) return -EINVAL; if (bo_adev && pdd->dev->adev != bo_adev && !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) { pr_debug("cannot map to device idx %d\n", gpuidx); continue; } r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly, prange->dma_addr[gpuidx], bo_adev, wait ? &fence : NULL, flush_tlb); if (r) break; if (fence) { r = dma_fence_wait(fence, false); dma_fence_put(fence); fence = NULL; if (r) { pr_debug("failed %d to dma fence wait\n", r); break; } } kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); } return r; } struct svm_validate_context { struct kfd_process *process; struct svm_range *prange; bool intr; DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); struct drm_exec exec; }; static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr) { struct kfd_process_device *pdd; struct amdgpu_vm *vm; uint32_t gpuidx; int r; drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0); drm_exec_until_all_locked(&ctx->exec) { for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); r = -EINVAL; goto unreserve_out; } vm = drm_priv_to_vm(pdd->drm_priv); r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2); drm_exec_retry_on_contention(&ctx->exec); if (unlikely(r)) { pr_debug("failed %d to reserve bo\n", r); goto unreserve_out; } } } for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) { pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx); if (!pdd) { pr_debug("failed to find device idx %d\n", gpuidx); r = -EINVAL; goto unreserve_out; } r = amdgpu_vm_validate_pt_bos(pdd->dev->adev, drm_priv_to_vm(pdd->drm_priv), svm_range_bo_validate, NULL); if (r) { pr_debug("failed %d validate pt bos\n", r); goto unreserve_out; } } return 0; unreserve_out: drm_exec_fini(&ctx->exec); return r; } static void svm_range_unreserve_bos(struct svm_validate_context *ctx) { drm_exec_fini(&ctx->exec); } static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx) { struct kfd_process_device *pdd; pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) return NULL; return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev); } /* * Validation+GPU mapping with concurrent invalidation (MMU notifiers) * * To prevent concurrent destruction or change of range attributes, the * svm_read_lock must be held. The caller must not hold the svm_write_lock * because that would block concurrent evictions and lead to deadlocks. To * serialize concurrent migrations or validations of the same range, the * prange->migrate_mutex must be held. * * For VRAM ranges, the SVM BO must be allocated and valid (protected by its * eviction fence. * * The following sequence ensures race-free validation and GPU mapping: * * 1. Reserve page table (and SVM BO if range is in VRAM) * 2. hmm_range_fault to get page addresses (if system memory) * 3. DMA-map pages (if system memory) * 4-a. Take notifier lock * 4-b. Check that pages still valid (mmu_interval_read_retry) * 4-c. Check that the range was not split or otherwise invalidated * 4-d. Update GPU page table * 4.e. Release notifier lock * 5. Release page table (and SVM BO) reservation */ static int svm_range_validate_and_map(struct mm_struct *mm, struct svm_range *prange, int32_t gpuidx, bool intr, bool wait, bool flush_tlb) { struct svm_validate_context *ctx; unsigned long start, end, addr; struct kfd_process *p; uint64_t vram_pages; void *owner; int32_t idx; int r = 0; ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->process = container_of(prange->svms, struct kfd_process, svms); ctx->prange = prange; ctx->intr = intr; if (gpuidx < MAX_GPU_INSTANCE) { bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE); bitmap_set(ctx->bitmap, gpuidx, 1); } else if (ctx->process->xnack_enabled) { bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); /* If prefetch range to GPU, or GPU retry fault migrate range to * GPU, which has ACCESS attribute to the range, create mapping * on that GPU. */ if (prange->actual_loc) { gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process, prange->actual_loc); if (gpuidx < 0) { WARN_ONCE(1, "failed get device by id 0x%x\n", prange->actual_loc); r = -EINVAL; goto free_ctx; } if (test_bit(gpuidx, prange->bitmap_access)) bitmap_set(ctx->bitmap, gpuidx, 1); } } else { bitmap_or(ctx->bitmap, prange->bitmap_access, prange->bitmap_aip, MAX_GPU_INSTANCE); } if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE); if (!prange->mapped_to_gpu || bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) { r = 0; goto free_ctx; } } if (prange->actual_loc && !prange->ttm_res) { /* This should never happen. actual_loc gets set by * svm_migrate_ram_to_vram after allocating a BO. */ WARN_ONCE(1, "VRAM BO missing during validation\n"); r = -EINVAL; goto free_ctx; } svm_range_reserve_bos(ctx, intr); p = container_of(prange->svms, struct kfd_process, svms); owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap, MAX_GPU_INSTANCE)); for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) { if (kfd_svm_page_owner(p, idx) != owner) { owner = NULL; break; } } vram_pages = 0; start = prange->start << PAGE_SHIFT; end = (prange->last + 1) << PAGE_SHIFT; for (addr = start; !r && addr < end; ) { struct hmm_range *hmm_range; struct vm_area_struct *vma; uint64_t vram_pages_vma; unsigned long next = 0; unsigned long offset; unsigned long npages; bool readonly; vma = vma_lookup(mm, addr); if (vma) { readonly = !(vma->vm_flags & VM_WRITE); next = min(vma->vm_end, end); npages = (next - addr) >> PAGE_SHIFT; WRITE_ONCE(p->svms.faulting_task, current); r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages, readonly, owner, NULL, &hmm_range); WRITE_ONCE(p->svms.faulting_task, NULL); if (r) { pr_debug("failed %d to get svm range pages\n", r); if (r == -EBUSY) r = -EAGAIN; } } else { r = -EFAULT; } if (!r) { offset = (addr - start) >> PAGE_SHIFT; r = svm_range_dma_map(prange, ctx->bitmap, offset, npages, hmm_range->hmm_pfns, &vram_pages_vma); if (r) pr_debug("failed %d to dma map range\n", r); else vram_pages += vram_pages_vma; } svm_range_lock(prange); if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) { pr_debug("hmm update the range, need validate again\n"); r = -EAGAIN; } if (!r && !list_empty(&prange->child_list)) { pr_debug("range split by unmap in parallel, validate again\n"); r = -EAGAIN; } if (!r) r = svm_range_map_to_gpus(prange, offset, npages, readonly, ctx->bitmap, wait, flush_tlb); if (!r && next == end) prange->mapped_to_gpu = true; svm_range_unlock(prange); addr = next; } if (addr == end) { prange->vram_pages = vram_pages; /* if prange does not include any vram page and it * has not released svm_bo drop its svm_bo reference * and set its actaul_loc to sys ram */ if (!vram_pages && prange->ttm_res) { prange->actual_loc = 0; svm_range_vram_node_free(prange); } } svm_range_unreserve_bos(ctx); if (!r) prange->validate_timestamp = ktime_get_boottime(); free_ctx: kfree(ctx); return r; } /** * svm_range_list_lock_and_flush_work - flush pending deferred work * * @svms: the svm range list * @mm: the mm structure * * Context: Returns with mmap write lock held, pending deferred work flushed * */ void svm_range_list_lock_and_flush_work(struct svm_range_list *svms, struct mm_struct *mm) { retry_flush_work: flush_work(&svms->deferred_list_work); mmap_write_lock(mm); if (list_empty(&svms->deferred_range_list)) return; mmap_write_unlock(mm); pr_debug("retry flush\n"); goto retry_flush_work; } static void svm_range_restore_work(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct amdkfd_process_info *process_info; struct svm_range_list *svms; struct svm_range *prange; struct kfd_process *p; struct mm_struct *mm; int evicted_ranges; int invalid; int r; svms = container_of(dwork, struct svm_range_list, restore_work); evicted_ranges = atomic_read(&svms->evicted_ranges); if (!evicted_ranges) return; pr_debug("restore svm ranges\n"); p = container_of(svms, struct kfd_process, svms); process_info = p->kgd_process_info; /* Keep mm reference when svm_range_validate_and_map ranges */ mm = get_task_mm(p->lead_thread); if (!mm) { pr_debug("svms 0x%p process mm gone\n", svms); return; } mutex_lock(&process_info->lock); svm_range_list_lock_and_flush_work(svms, mm); mutex_lock(&svms->lock); evicted_ranges = atomic_read(&svms->evicted_ranges); list_for_each_entry(prange, &svms->list, list) { invalid = atomic_read(&prange->invalid); if (!invalid) continue; pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n", prange->svms, prange, prange->start, prange->last, invalid); /* * If range is migrating, wait for migration is done. */ mutex_lock(&prange->migrate_mutex); r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, false, true, false); if (r) pr_debug("failed %d to map 0x%lx to gpus\n", r, prange->start); mutex_unlock(&prange->migrate_mutex); if (r) goto out_reschedule; if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid) goto out_reschedule; } if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) != evicted_ranges) goto out_reschedule; evicted_ranges = 0; r = kgd2kfd_resume_mm(mm); if (r) { /* No recovery from this failure. Probably the CP is * hanging. No point trying again. */ pr_debug("failed %d to resume KFD\n", r); } pr_debug("restore svm ranges successfully\n"); out_reschedule: mutex_unlock(&svms->lock); mmap_write_unlock(mm); mutex_unlock(&process_info->lock); /* If validation failed, reschedule another attempt */ if (evicted_ranges) { pr_debug("reschedule to restore svm range\n"); schedule_delayed_work(&svms->restore_work, msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); kfd_smi_event_queue_restore_rescheduled(mm); } mmput(mm); } /** * svm_range_evict - evict svm range * @prange: svm range structure * @mm: current process mm_struct * @start: starting process queue number * @last: last process queue number * @event: mmu notifier event when range is evicted or migrated * * Stop all queues of the process to ensure GPU doesn't access the memory, then * return to let CPU evict the buffer and proceed CPU pagetable update. * * Don't need use lock to sync cpu pagetable invalidation with GPU execution. * If invalidation happens while restore work is running, restore work will * restart to ensure to get the latest CPU pages mapping to GPU, then start * the queues. */ static int svm_range_evict(struct svm_range *prange, struct mm_struct *mm, unsigned long start, unsigned long last, enum mmu_notifier_event event) { struct svm_range_list *svms = prange->svms; struct svm_range *pchild; struct kfd_process *p; int r = 0; p = container_of(svms, struct kfd_process, svms); pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, prange->start, prange->last, start, last); if (!p->xnack_enabled || (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) { int evicted_ranges; bool mapped = prange->mapped_to_gpu; list_for_each_entry(pchild, &prange->child_list, child_list) { if (!pchild->mapped_to_gpu) continue; mapped = true; mutex_lock_nested(&pchild->lock, 1); if (pchild->start <= last && pchild->last >= start) { pr_debug("increment pchild invalid [0x%lx 0x%lx]\n", pchild->start, pchild->last); atomic_inc(&pchild->invalid); } mutex_unlock(&pchild->lock); } if (!mapped) return r; if (prange->start <= last && prange->last >= start) atomic_inc(&prange->invalid); evicted_ranges = atomic_inc_return(&svms->evicted_ranges); if (evicted_ranges != 1) return r; pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); /* First eviction, stop the queues */ r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM); if (r) pr_debug("failed to quiesce KFD\n"); pr_debug("schedule to restore svm %p ranges\n", svms); schedule_delayed_work(&svms->restore_work, msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS)); } else { unsigned long s, l; uint32_t trigger; if (event == MMU_NOTIFY_MIGRATE) trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE; else trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY; pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n", prange->svms, start, last); list_for_each_entry(pchild, &prange->child_list, child_list) { mutex_lock_nested(&pchild->lock, 1); s = max(start, pchild->start); l = min(last, pchild->last); if (l >= s) svm_range_unmap_from_gpus(pchild, s, l, trigger); mutex_unlock(&pchild->lock); } s = max(start, prange->start); l = min(last, prange->last); if (l >= s) svm_range_unmap_from_gpus(prange, s, l, trigger); } return r; } static struct svm_range *svm_range_clone(struct svm_range *old) { struct svm_range *new; new = svm_range_new(old->svms, old->start, old->last, false); if (!new) return NULL; if (svm_range_copy_dma_addrs(new, old)) { svm_range_free(new, false); return NULL; } if (old->svm_bo) { new->ttm_res = old->ttm_res; new->offset = old->offset; new->svm_bo = svm_range_bo_ref(old->svm_bo); spin_lock(&new->svm_bo->list_lock); list_add(&new->svm_bo_list, &new->svm_bo->range_list); spin_unlock(&new->svm_bo->list_lock); } new->flags = old->flags; new->preferred_loc = old->preferred_loc; new->prefetch_loc = old->prefetch_loc; new->actual_loc = old->actual_loc; new->granularity = old->granularity; new->mapped_to_gpu = old->mapped_to_gpu; new->vram_pages = old->vram_pages; bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE); bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE); return new; } void svm_range_set_max_pages(struct amdgpu_device *adev) { uint64_t max_pages; uint64_t pages, _pages; uint64_t min_pages = 0; int i, id; for (i = 0; i < adev->kfd.dev->num_nodes; i++) { if (adev->kfd.dev->nodes[i]->xcp) id = adev->kfd.dev->nodes[i]->xcp->id; else id = -1; pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17; pages = clamp(pages, 1ULL << 9, 1ULL << 18); pages = rounddown_pow_of_two(pages); min_pages = min_not_zero(min_pages, pages); } do { max_pages = READ_ONCE(max_svm_range_pages); _pages = min_not_zero(max_pages, min_pages); } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages); } static int svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last, uint64_t max_pages, struct list_head *insert_list, struct list_head *update_list) { struct svm_range *prange; uint64_t l; pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n", max_pages, start, last); while (last >= start) { l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1); prange = svm_range_new(svms, start, l, true); if (!prange) return -ENOMEM; list_add(&prange->list, insert_list); list_add(&prange->update_list, update_list); start = l + 1; } return 0; } /** * svm_range_add - add svm range and handle overlap * @p: the range add to this process svms * @start: page size aligned * @size: page size aligned * @nattr: number of attributes * @attrs: array of attributes * @update_list: output, the ranges need validate and update GPU mapping * @insert_list: output, the ranges need insert to svms * @remove_list: output, the ranges are replaced and need remove from svms * * Check if the virtual address range has overlap with any existing ranges, * split partly overlapping ranges and add new ranges in the gaps. All changes * should be applied to the range_list and interval tree transactionally. If * any range split or allocation fails, the entire update fails. Therefore any * existing overlapping svm_ranges are cloned and the original svm_ranges left * unchanged. * * If the transaction succeeds, the caller can update and insert clones and * new ranges, then free the originals. * * Otherwise the caller can free the clones and new ranges, while the old * svm_ranges remain unchanged. * * Context: Process context, caller must hold svms->lock * * Return: * 0 - OK, otherwise error code */ static int svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs, struct list_head *update_list, struct list_head *insert_list, struct list_head *remove_list) { unsigned long last = start + size - 1UL; struct svm_range_list *svms = &p->svms; struct interval_tree_node *node; struct svm_range *prange; struct svm_range *tmp; struct list_head new_list; int r = 0; pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last); INIT_LIST_HEAD(update_list); INIT_LIST_HEAD(insert_list); INIT_LIST_HEAD(remove_list); INIT_LIST_HEAD(&new_list); node = interval_tree_iter_first(&svms->objects, start, last); while (node) { struct interval_tree_node *next; unsigned long next_start; pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start, node->last); prange = container_of(node, struct svm_range, it_node); next = interval_tree_iter_next(node, start, last); next_start = min(node->last, last) + 1; if (svm_range_is_same_attrs(p, prange, nattr, attrs) && prange->mapped_to_gpu) { /* nothing to do */ } else if (node->start < start || node->last > last) { /* node intersects the update range and its attributes * will change. Clone and split it, apply updates only * to the overlapping part */ struct svm_range *old = prange; prange = svm_range_clone(old); if (!prange) { r = -ENOMEM; goto out; } list_add(&old->update_list, remove_list); list_add(&prange->list, insert_list); list_add(&prange->update_list, update_list); if (node->start < start) { pr_debug("change old range start\n"); r = svm_range_split_head(prange, start, insert_list); if (r) goto out; } if (node->last > last) { pr_debug("change old range last\n"); r = svm_range_split_tail(prange, last, insert_list); if (r) goto out; } } else { /* The node is contained within start..last, * just update it */ list_add(&prange->update_list, update_list); } /* insert a new node if needed */ if (node->start > start) { r = svm_range_split_new(svms, start, node->start - 1, READ_ONCE(max_svm_range_pages), &new_list, update_list); if (r) goto out; } node = next; start = next_start; } /* add a final range at the end if needed */ if (start <= last) r = svm_range_split_new(svms, start, last, READ_ONCE(max_svm_range_pages), &new_list, update_list); out: if (r) { list_for_each_entry_safe(prange, tmp, insert_list, list) svm_range_free(prange, false); list_for_each_entry_safe(prange, tmp, &new_list, list) svm_range_free(prange, true); } else { list_splice(&new_list, insert_list); } return r; } static void svm_range_update_notifier_and_interval_tree(struct mm_struct *mm, struct svm_range *prange) { unsigned long start; unsigned long last; start = prange->notifier.interval_tree.start >> PAGE_SHIFT; last = prange->notifier.interval_tree.last >> PAGE_SHIFT; if (prange->start == start && prange->last == last) return; pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", prange->svms, prange, start, last, prange->start, prange->last); if (start != 0 && last != 0) { interval_tree_remove(&prange->it_node, &prange->svms->objects); svm_range_remove_notifier(prange); } prange->it_node.start = prange->start; prange->it_node.last = prange->last; interval_tree_insert(&prange->it_node, &prange->svms->objects); svm_range_add_notifier_locked(mm, prange); } static void svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange, struct mm_struct *mm) { switch (prange->work_item.op) { case SVM_OP_NULL: pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); break; case SVM_OP_UNMAP_RANGE: pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_unlink(prange); svm_range_remove_notifier(prange); svm_range_free(prange, true); break; case SVM_OP_UPDATE_RANGE_NOTIFIER: pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_update_notifier_and_interval_tree(mm, prange); break; case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP: pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_update_notifier_and_interval_tree(mm, prange); /* TODO: implement deferred validation and mapping */ break; case SVM_OP_ADD_RANGE: pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_add_to_svms(prange); svm_range_add_notifier_locked(mm, prange); break; case SVM_OP_ADD_RANGE_AND_MAP: pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last); svm_range_add_to_svms(prange); svm_range_add_notifier_locked(mm, prange); /* TODO: implement deferred validation and mapping */ break; default: WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange, prange->work_item.op); } } static void svm_range_drain_retry_fault(struct svm_range_list *svms) { struct kfd_process_device *pdd; struct kfd_process *p; int drain; uint32_t i; p = container_of(svms, struct kfd_process, svms); restart: drain = atomic_read(&svms->drain_pagefaults); if (!drain) return; for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) { pdd = p->pdds[i]; if (!pdd) continue; pr_debug("drain retry fault gpu %d svms %p\n", i, svms); amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, pdd->dev->adev->irq.retry_cam_enabled ? &pdd->dev->adev->irq.ih : &pdd->dev->adev->irq.ih1); if (pdd->dev->adev->irq.retry_cam_enabled) amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev, &pdd->dev->adev->irq.ih_soft); pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms); } if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain) goto restart; } static void svm_range_deferred_list_work(struct work_struct *work) { struct svm_range_list *svms; struct svm_range *prange; struct mm_struct *mm; svms = container_of(work, struct svm_range_list, deferred_list_work); pr_debug("enter svms 0x%p\n", svms); spin_lock(&svms->deferred_list_lock); while (!list_empty(&svms->deferred_range_list)) { prange = list_first_entry(&svms->deferred_range_list, struct svm_range, deferred_list); spin_unlock(&svms->deferred_list_lock); pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange, prange->start, prange->last, prange->work_item.op); mm = prange->work_item.mm; retry: mmap_write_lock(mm); /* Checking for the need to drain retry faults must be inside * mmap write lock to serialize with munmap notifiers. */ if (unlikely(atomic_read(&svms->drain_pagefaults))) { mmap_write_unlock(mm); svm_range_drain_retry_fault(svms); goto retry; } /* Remove from deferred_list must be inside mmap write lock, for * two race cases: * 1. unmap_from_cpu may change work_item.op and add the range * to deferred_list again, cause use after free bug. * 2. svm_range_list_lock_and_flush_work may hold mmap write * lock and continue because deferred_list is empty, but * deferred_list work is actually waiting for mmap lock. */ spin_lock(&svms->deferred_list_lock); list_del_init(&prange->deferred_list); spin_unlock(&svms->deferred_list_lock); mutex_lock(&svms->lock); mutex_lock(&prange->migrate_mutex); while (!list_empty(&prange->child_list)) { struct svm_range *pchild; pchild = list_first_entry(&prange->child_list, struct svm_range, child_list); pr_debug("child prange 0x%p op %d\n", pchild, pchild->work_item.op); list_del_init(&pchild->child_list); svm_range_handle_list_op(svms, pchild, mm); } mutex_unlock(&prange->migrate_mutex); svm_range_handle_list_op(svms, prange, mm); mutex_unlock(&svms->lock); mmap_write_unlock(mm); /* Pairs with mmget in svm_range_add_list_work */ mmput(mm); spin_lock(&svms->deferred_list_lock); } spin_unlock(&svms->deferred_list_lock); pr_debug("exit svms 0x%p\n", svms); } void svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange, struct mm_struct *mm, enum svm_work_list_ops op) { spin_lock(&svms->deferred_list_lock); /* if prange is on the deferred list */ if (!list_empty(&prange->deferred_list)) { pr_debug("update exist prange 0x%p work op %d\n", prange, op); WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n"); if (op != SVM_OP_NULL && prange->work_item.op != SVM_OP_UNMAP_RANGE) prange->work_item.op = op; } else { prange->work_item.op = op; /* Pairs with mmput in deferred_list_work */ mmget(mm); prange->work_item.mm = mm; list_add_tail(&prange->deferred_list, &prange->svms->deferred_range_list); pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n", prange, prange->start, prange->last, op); } spin_unlock(&svms->deferred_list_lock); } void schedule_deferred_list_work(struct svm_range_list *svms) { spin_lock(&svms->deferred_list_lock); if (!list_empty(&svms->deferred_range_list)) schedule_work(&svms->deferred_list_work); spin_unlock(&svms->deferred_list_lock); } static void svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent, struct svm_range *prange, unsigned long start, unsigned long last) { struct svm_range *head; struct svm_range *tail; if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange, prange->start, prange->last); return; } if (start > prange->last || last < prange->start) return; head = tail = prange; if (start > prange->start) svm_range_split(prange, prange->start, start - 1, &tail); if (last < tail->last) svm_range_split(tail, last + 1, tail->last, &head); if (head != prange && tail != prange) { svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE); } else if (tail != prange) { svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE); } else if (head != prange) { svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE); } else if (parent != prange) { prange->work_item.op = SVM_OP_UNMAP_RANGE; } } static void svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange, unsigned long start, unsigned long last) { uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU; struct svm_range_list *svms; struct svm_range *pchild; struct kfd_process *p; unsigned long s, l; bool unmap_parent; p = kfd_lookup_process_by_mm(mm); if (!p) return; svms = &p->svms; pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms, prange, prange->start, prange->last, start, last); /* Make sure pending page faults are drained in the deferred worker * before the range is freed to avoid straggler interrupts on * unmapped memory causing "phantom faults". */ atomic_inc(&svms->drain_pagefaults); unmap_parent = start <= prange->start && last >= prange->last; list_for_each_entry(pchild, &prange->child_list, child_list) { mutex_lock_nested(&pchild->lock, 1); s = max(start, pchild->start); l = min(last, pchild->last); if (l >= s) svm_range_unmap_from_gpus(pchild, s, l, trigger); svm_range_unmap_split(mm, prange, pchild, start, last); mutex_unlock(&pchild->lock); } s = max(start, prange->start); l = min(last, prange->last); if (l >= s) svm_range_unmap_from_gpus(prange, s, l, trigger); svm_range_unmap_split(mm, prange, prange, start, last); if (unmap_parent) svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE); else svm_range_add_list_work(svms, prange, mm, SVM_OP_UPDATE_RANGE_NOTIFIER); schedule_deferred_list_work(svms); kfd_unref_process(p); } /** * svm_range_cpu_invalidate_pagetables - interval notifier callback * @mni: mmu_interval_notifier struct * @range: mmu_notifier_range struct * @cur_seq: value to pass to mmu_interval_set_seq() * * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it * is from migration, or CPU page invalidation callback. * * For unmap event, unmap range from GPUs, remove prange from svms in a delayed * work thread, and split prange if only part of prange is unmapped. * * For invalidation event, if GPU retry fault is not enabled, evict the queues, * then schedule svm_range_restore_work to update GPU mapping and resume queues. * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will * update GPU mapping to recover. * * Context: mmap lock, notifier_invalidate_start lock are held * for invalidate event, prange lock is held if this is from migration */ static bool svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni, const struct mmu_notifier_range *range, unsigned long cur_seq) { struct svm_range *prange; unsigned long start; unsigned long last; if (range->event == MMU_NOTIFY_RELEASE) return true; if (!mmget_not_zero(mni->mm)) return true; start = mni->interval_tree.start; last = mni->interval_tree.last; start = max(start, range->start) >> PAGE_SHIFT; last = min(last, range->end - 1) >> PAGE_SHIFT; pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n", start, last, range->start >> PAGE_SHIFT, (range->end - 1) >> PAGE_SHIFT, mni->interval_tree.start >> PAGE_SHIFT, mni->interval_tree.last >> PAGE_SHIFT, range->event); prange = container_of(mni, struct svm_range, notifier); svm_range_lock(prange); mmu_interval_set_seq(mni, cur_seq); switch (range->event) { case MMU_NOTIFY_UNMAP: svm_range_unmap_from_cpu(mni->mm, prange, start, last); break; default: svm_range_evict(prange, mni->mm, start, last, range->event); break; } svm_range_unlock(prange); mmput(mni->mm); return true; } /** * svm_range_from_addr - find svm range from fault address * @svms: svm range list header * @addr: address to search range interval tree, in pages * @parent: parent range if range is on child list * * Context: The caller must hold svms->lock * * Return: the svm_range found or NULL */ struct svm_range * svm_range_from_addr(struct svm_range_list *svms, unsigned long addr, struct svm_range **parent) { struct interval_tree_node *node; struct svm_range *prange; struct svm_range *pchild; node = interval_tree_iter_first(&svms->objects, addr, addr); if (!node) return NULL; prange = container_of(node, struct svm_range, it_node); pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n", addr, prange->start, prange->last, node->start, node->last); if (addr >= prange->start && addr <= prange->last) { if (parent) *parent = prange; return prange; } list_for_each_entry(pchild, &prange->child_list, child_list) if (addr >= pchild->start && addr <= pchild->last) { pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n", addr, pchild->start, pchild->last); if (parent) *parent = prange; return pchild; } return NULL; } /* svm_range_best_restore_location - decide the best fault restore location * @prange: svm range structure * @adev: the GPU on which vm fault happened * * This is only called when xnack is on, to decide the best location to restore * the range mapping after GPU vm fault. Caller uses the best location to do * migration if actual loc is not best location, then update GPU page table * mapping to the best location. * * If the preferred loc is accessible by faulting GPU, use preferred loc. * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then * if range actual loc is cpu, best_loc is cpu * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is * range actual loc. * Otherwise, GPU no access, best_loc is -1. * * Return: * -1 means vm fault GPU no access * 0 for CPU or GPU id */ static int32_t svm_range_best_restore_location(struct svm_range *prange, struct kfd_node *node, int32_t *gpuidx) { struct kfd_node *bo_node, *preferred_node; struct kfd_process *p; uint32_t gpuid; int r; p = container_of(prange->svms, struct kfd_process, svms); r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx); if (r < 0) { pr_debug("failed to get gpuid from kgd\n"); return -1; } if (node->adev->gmc.is_app_apu) return 0; if (prange->preferred_loc == gpuid || prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) { return prange->preferred_loc; } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) { preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc); if (preferred_node && svm_nodes_in_same_hive(node, preferred_node)) return prange->preferred_loc; /* fall through */ } if (test_bit(*gpuidx, prange->bitmap_access)) return gpuid; if (test_bit(*gpuidx, prange->bitmap_aip)) { if (!prange->actual_loc) return 0; bo_node = svm_range_get_node_by_id(prange, prange->actual_loc); if (bo_node && svm_nodes_in_same_hive(node, bo_node)) return prange->actual_loc; else return 0; } return -1; } static int svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr, unsigned long *start, unsigned long *last, bool *is_heap_stack) { struct vm_area_struct *vma; struct interval_tree_node *node; unsigned long start_limit, end_limit; vma = vma_lookup(p->mm, addr << PAGE_SHIFT); if (!vma) { pr_debug("VMA does not exist in address [0x%llx]\n", addr); return -EFAULT; } *is_heap_stack = (vma->vm_start <= vma->vm_mm->brk && vma->vm_end >= vma->vm_mm->start_brk) || (vma->vm_start <= vma->vm_mm->start_stack && vma->vm_end >= vma->vm_mm->start_stack); start_limit = max(vma->vm_start >> PAGE_SHIFT, (unsigned long)ALIGN_DOWN(addr, 2UL << 8)); end_limit = min(vma->vm_end >> PAGE_SHIFT, (unsigned long)ALIGN(addr + 1, 2UL << 8)); /* First range that starts after the fault address */ node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX); if (node) { end_limit = min(end_limit, node->start); /* Last range that ends before the fault address */ node = container_of(rb_prev(&node->rb), struct interval_tree_node, rb); } else { /* Last range must end before addr because * there was no range after addr */ node = container_of(rb_last(&p->svms.objects.rb_root), struct interval_tree_node, rb); } if (node) { if (node->last >= addr) { WARN(1, "Overlap with prev node and page fault addr\n"); return -EFAULT; } start_limit = max(start_limit, node->last + 1); } *start = start_limit; *last = end_limit - 1; pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n", vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT, *start, *last, *is_heap_stack); return 0; } static int svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last, uint64_t *bo_s, uint64_t *bo_l) { struct amdgpu_bo_va_mapping *mapping; struct interval_tree_node *node; struct amdgpu_bo *bo = NULL; unsigned long userptr; uint32_t i; int r; for (i = 0; i < p->n_pdds; i++) { struct amdgpu_vm *vm; if (!p->pdds[i]->drm_priv) continue; vm = drm_priv_to_vm(p->pdds[i]->drm_priv); r = amdgpu_bo_reserve(vm->root.bo, false); if (r) return r; /* Check userptr by searching entire vm->va interval tree */ node = interval_tree_iter_first(&vm->va, 0, ~0ULL); while (node) { mapping = container_of((struct rb_node *)node, struct amdgpu_bo_va_mapping, rb); bo = mapping->bo_va->base.bo; if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm, start << PAGE_SHIFT, last << PAGE_SHIFT, &userptr)) { node = interval_tree_iter_next(node, 0, ~0ULL); continue; } pr_debug("[0x%llx 0x%llx] already userptr mapped\n", start, last); if (bo_s && bo_l) { *bo_s = userptr >> PAGE_SHIFT; *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1; } amdgpu_bo_unreserve(vm->root.bo); return -EADDRINUSE; } amdgpu_bo_unreserve(vm->root.bo); } return 0; } static struct svm_range *svm_range_create_unregistered_range(struct kfd_node *node, struct kfd_process *p, struct mm_struct *mm, int64_t addr) { struct svm_range *prange = NULL; unsigned long start, last; uint32_t gpuid, gpuidx; bool is_heap_stack; uint64_t bo_s = 0; uint64_t bo_l = 0; int r; if (svm_range_get_range_boundaries(p, addr, &start, &last, &is_heap_stack)) return NULL; r = svm_range_check_vm(p, start, last, &bo_s, &bo_l); if (r != -EADDRINUSE) r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l); if (r == -EADDRINUSE) { if (addr >= bo_s && addr <= bo_l) return NULL; /* Create one page svm range if 2MB range overlapping */ start = addr; last = addr; } prange = svm_range_new(&p->svms, start, last, true); if (!prange) { pr_debug("Failed to create prange in address [0x%llx]\n", addr); return NULL; } if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) { pr_debug("failed to get gpuid from kgd\n"); svm_range_free(prange, true); return NULL; } if (is_heap_stack) prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM; svm_range_add_to_svms(prange); svm_range_add_notifier_locked(mm, prange); return prange; } /* svm_range_skip_recover - decide if prange can be recovered * @prange: svm range structure * * GPU vm retry fault handle skip recover the range for cases: * 1. prange is on deferred list to be removed after unmap, it is stale fault, * deferred list work will drain the stale fault before free the prange. * 2. prange is on deferred list to add interval notifier after split, or * 3. prange is child range, it is split from parent prange, recover later * after interval notifier is added. * * Return: true to skip recover, false to recover */ static bool svm_range_skip_recover(struct svm_range *prange) { struct svm_range_list *svms = prange->svms; spin_lock(&svms->deferred_list_lock); if (list_empty(&prange->deferred_list) && list_empty(&prange->child_list)) { spin_unlock(&svms->deferred_list_lock); return false; } spin_unlock(&svms->deferred_list_lock); if (prange->work_item.op == SVM_OP_UNMAP_RANGE) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n", svms, prange, prange->start, prange->last); return true; } if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP || prange->work_item.op == SVM_OP_ADD_RANGE) { pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n", svms, prange, prange->start, prange->last); return true; } return false; } static void svm_range_count_fault(struct kfd_node *node, struct kfd_process *p, int32_t gpuidx) { struct kfd_process_device *pdd; /* fault is on different page of same range * or fault is skipped to recover later * or fault is on invalid virtual address */ if (gpuidx == MAX_GPU_INSTANCE) { uint32_t gpuid; int r; r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx); if (r < 0) return; } /* fault is recovered * or fault cannot recover because GPU no access on the range */ pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (pdd) WRITE_ONCE(pdd->faults, pdd->faults + 1); } static bool svm_fault_allowed(struct vm_area_struct *vma, bool write_fault) { unsigned long requested = VM_READ; if (write_fault) requested |= VM_WRITE; pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested, vma->vm_flags); return (vma->vm_flags & requested) == requested; } int svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid, uint32_t vmid, uint32_t node_id, uint64_t addr, bool write_fault) { unsigned long start, last, size; struct mm_struct *mm = NULL; struct svm_range_list *svms; struct svm_range *prange; struct kfd_process *p; ktime_t timestamp = ktime_get_boottime(); struct kfd_node *node; int32_t best_loc; int32_t gpuidx = MAX_GPU_INSTANCE; bool write_locked = false; struct vm_area_struct *vma; bool migration = false; int r = 0; if (!KFD_IS_SVM_API_SUPPORTED(adev)) { pr_debug("device does not support SVM\n"); return -EFAULT; } p = kfd_lookup_process_by_pasid(pasid); if (!p) { pr_debug("kfd process not founded pasid 0x%x\n", pasid); return 0; } svms = &p->svms; pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr); if (atomic_read(&svms->drain_pagefaults)) { pr_debug("draining retry fault, drop fault 0x%llx\n", addr); r = 0; goto out; } if (!p->xnack_enabled) { pr_debug("XNACK not enabled for pasid 0x%x\n", pasid); r = -EFAULT; goto out; } /* p->lead_thread is available as kfd_process_wq_release flush the work * before releasing task ref. */ mm = get_task_mm(p->lead_thread); if (!mm) { pr_debug("svms 0x%p failed to get mm\n", svms); r = 0; goto out; } node = kfd_node_by_irq_ids(adev, node_id, vmid); if (!node) { pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id, vmid); r = -EFAULT; goto out; } mmap_read_lock(mm); retry_write_locked: mutex_lock(&svms->lock); prange = svm_range_from_addr(svms, addr, NULL); if (!prange) { pr_debug("failed to find prange svms 0x%p address [0x%llx]\n", svms, addr); if (!write_locked) { /* Need the write lock to create new range with MMU notifier. * Also flush pending deferred work to make sure the interval * tree is up to date before we add a new range */ mutex_unlock(&svms->lock); mmap_read_unlock(mm); mmap_write_lock(mm); write_locked = true; goto retry_write_locked; } prange = svm_range_create_unregistered_range(node, p, mm, addr); if (!prange) { pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n", svms, addr); mmap_write_downgrade(mm); r = -EFAULT; goto out_unlock_svms; } } if (write_locked) mmap_write_downgrade(mm); mutex_lock(&prange->migrate_mutex); if (svm_range_skip_recover(prange)) { amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); r = 0; goto out_unlock_range; } /* skip duplicate vm fault on different pages of same range */ if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp, AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) { pr_debug("svms 0x%p [0x%lx %lx] already restored\n", svms, prange->start, prange->last); r = 0; goto out_unlock_range; } /* __do_munmap removed VMA, return success as we are handling stale * retry fault. */ vma = vma_lookup(mm, addr << PAGE_SHIFT); if (!vma) { pr_debug("address 0x%llx VMA is removed\n", addr); r = 0; goto out_unlock_range; } if (!svm_fault_allowed(vma, write_fault)) { pr_debug("fault addr 0x%llx no %s permission\n", addr, write_fault ? "write" : "read"); r = -EPERM; goto out_unlock_range; } best_loc = svm_range_best_restore_location(prange, node, &gpuidx); if (best_loc == -1) { pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n", svms, prange->start, prange->last); r = -EACCES; goto out_unlock_range; } pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n", svms, prange->start, prange->last, best_loc, prange->actual_loc); kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr, write_fault, timestamp); if (prange->actual_loc != 0 || best_loc != 0) { migration = true; /* Align migration range start and size to granularity size */ size = 1UL << prange->granularity; start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start); last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last); if (best_loc) { r = svm_migrate_to_vram(prange, best_loc, start, last, mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU); if (r) { pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n", r, addr); /* Fallback to system memory if migration to * VRAM failed */ if (prange->actual_loc && prange->actual_loc != best_loc) r = svm_migrate_vram_to_ram(prange, mm, start, last, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL); else r = 0; } } else { r = svm_migrate_vram_to_ram(prange, mm, start, last, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL); } if (r) { pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n", r, svms, start, last); goto out_unlock_range; } } r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false); if (r) pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n", r, svms, prange->start, prange->last); kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr, migration); out_unlock_range: mutex_unlock(&prange->migrate_mutex); out_unlock_svms: mutex_unlock(&svms->lock); mmap_read_unlock(mm); svm_range_count_fault(node, p, gpuidx); mmput(mm); out: kfd_unref_process(p); if (r == -EAGAIN) { pr_debug("recover vm fault later\n"); amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid); r = 0; } return r; } int svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled) { struct svm_range *prange, *pchild; uint64_t reserved_size = 0; uint64_t size; int r = 0; pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled); mutex_lock(&p->svms.lock); list_for_each_entry(prange, &p->svms.list, list) { svm_range_lock(prange); list_for_each_entry(pchild, &prange->child_list, child_list) { size = (pchild->last - pchild->start + 1) << PAGE_SHIFT; if (xnack_enabled) { amdgpu_amdkfd_unreserve_mem_limit(NULL, size, KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); } else { r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); if (r) goto out_unlock; reserved_size += size; } } size = (prange->last - prange->start + 1) << PAGE_SHIFT; if (xnack_enabled) { amdgpu_amdkfd_unreserve_mem_limit(NULL, size, KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); } else { r = amdgpu_amdkfd_reserve_mem_limit(NULL, size, KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); if (r) goto out_unlock; reserved_size += size; } out_unlock: svm_range_unlock(prange); if (r) break; } if (r) amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size, KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0); else /* Change xnack mode must be inside svms lock, to avoid race with * svm_range_deferred_list_work unreserve memory in parallel. */ p->xnack_enabled = xnack_enabled; mutex_unlock(&p->svms.lock); return r; } void svm_range_list_fini(struct kfd_process *p) { struct svm_range *prange; struct svm_range *next; pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms); cancel_delayed_work_sync(&p->svms.restore_work); /* Ensure list work is finished before process is destroyed */ flush_work(&p->svms.deferred_list_work); /* * Ensure no retry fault comes in afterwards, as page fault handler will * not find kfd process and take mm lock to recover fault. */ atomic_inc(&p->svms.drain_pagefaults); svm_range_drain_retry_fault(&p->svms); list_for_each_entry_safe(prange, next, &p->svms.list, list) { svm_range_unlink(prange); svm_range_remove_notifier(prange); svm_range_free(prange, true); } mutex_destroy(&p->svms.lock); pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms); } int svm_range_list_init(struct kfd_process *p) { struct svm_range_list *svms = &p->svms; int i; svms->objects = RB_ROOT_CACHED; mutex_init(&svms->lock); INIT_LIST_HEAD(&svms->list); atomic_set(&svms->evicted_ranges, 0); atomic_set(&svms->drain_pagefaults, 0); INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work); INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work); INIT_LIST_HEAD(&svms->deferred_range_list); INIT_LIST_HEAD(&svms->criu_svm_metadata_list); spin_lock_init(&svms->deferred_list_lock); for (i = 0; i < p->n_pdds; i++) if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev)) bitmap_set(svms->bitmap_supported, i, 1); return 0; } /** * svm_range_check_vm - check if virtual address range mapped already * @p: current kfd_process * @start: range start address, in pages * @last: range last address, in pages * @bo_s: mapping start address in pages if address range already mapped * @bo_l: mapping last address in pages if address range already mapped * * The purpose is to avoid virtual address ranges already allocated by * kfd_ioctl_alloc_memory_of_gpu ioctl. * It looks for each pdd in the kfd_process. * * Context: Process context * * Return 0 - OK, if the range is not mapped. * Otherwise error code: * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by * a signal. Release all buffer reservations and return to user-space. */ static int svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last, uint64_t *bo_s, uint64_t *bo_l) { struct amdgpu_bo_va_mapping *mapping; struct interval_tree_node *node; uint32_t i; int r; for (i = 0; i < p->n_pdds; i++) { struct amdgpu_vm *vm; if (!p->pdds[i]->drm_priv) continue; vm = drm_priv_to_vm(p->pdds[i]->drm_priv); r = amdgpu_bo_reserve(vm->root.bo, false); if (r) return r; node = interval_tree_iter_first(&vm->va, start, last); if (node) { pr_debug("range [0x%llx 0x%llx] already TTM mapped\n", start, last); mapping = container_of((struct rb_node *)node, struct amdgpu_bo_va_mapping, rb); if (bo_s && bo_l) { *bo_s = mapping->start; *bo_l = mapping->last; } amdgpu_bo_unreserve(vm->root.bo); return -EADDRINUSE; } amdgpu_bo_unreserve(vm->root.bo); } return 0; } /** * svm_range_is_valid - check if virtual address range is valid * @p: current kfd_process * @start: range start address, in pages * @size: range size, in pages * * Valid virtual address range means it belongs to one or more VMAs * * Context: Process context * * Return: * 0 - OK, otherwise error code */ static int svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size) { const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP; struct vm_area_struct *vma; unsigned long end; unsigned long start_unchg = start; start <<= PAGE_SHIFT; end = start + (size << PAGE_SHIFT); do { vma = vma_lookup(p->mm, start); if (!vma || (vma->vm_flags & device_vma)) return -EFAULT; start = min(end, vma->vm_end); } while (start < end); return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL, NULL); } /** * svm_range_best_prefetch_location - decide the best prefetch location * @prange: svm range structure * * For xnack off: * If range map to single GPU, the best prefetch location is prefetch_loc, which * can be CPU or GPU. * * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise * the best prefetch location is always CPU, because GPU can not have coherent * mapping VRAM of other GPUs even with large-BAR PCIe connection. * * For xnack on: * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is * prefetch_loc, other GPU access will generate vm fault and trigger migration. * * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same * hive, the best prefetch location is prefetch_loc GPU, otherwise the best * prefetch location is always CPU. * * Context: Process context * * Return: * 0 for CPU or GPU id */ static uint32_t svm_range_best_prefetch_location(struct svm_range *prange) { DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE); uint32_t best_loc = prange->prefetch_loc; struct kfd_process_device *pdd; struct kfd_node *bo_node; struct kfd_process *p; uint32_t gpuidx; p = container_of(prange->svms, struct kfd_process, svms); if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) goto out; bo_node = svm_range_get_node_by_id(prange, best_loc); if (!bo_node) { WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc); best_loc = 0; goto out; } if (bo_node->adev->gmc.is_app_apu) { best_loc = 0; goto out; } if (p->xnack_enabled) bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE); else bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip, MAX_GPU_INSTANCE); for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) { pdd = kfd_process_device_from_gpuidx(p, gpuidx); if (!pdd) { pr_debug("failed to get device by idx 0x%x\n", gpuidx); continue; } if (pdd->dev->adev == bo_node->adev) continue; if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) { best_loc = 0; break; } } out: pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n", p->xnack_enabled, &p->svms, prange->start, prange->last, best_loc); return best_loc; } /* svm_range_trigger_migration - start page migration if prefetch loc changed * @mm: current process mm_struct * @prange: svm range structure * @migrated: output, true if migration is triggered * * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range * from ram to vram. * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range * from vram to ram. * * If GPU vm fault retry is not enabled, migration interact with MMU notifier * and restore work: * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict * stops all queues, schedule restore work * 2. svm_range_restore_work wait for migration is done by * a. svm_range_validate_vram takes prange->migrate_mutex * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns * 3. restore work update mappings of GPU, resume all queues. * * Context: Process context * * Return: * 0 - OK, otherwise - error code of migration */ static int svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange, bool *migrated) { uint32_t best_loc; int r = 0; *migrated = false; best_loc = svm_range_best_prefetch_location(prange); /* when best_loc is a gpu node and same as prange->actual_loc * we still need do migration as prange->actual_loc !=0 does * not mean all pages in prange are vram. hmm migrate will pick * up right pages during migration. */ if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) || (best_loc == 0 && prange->actual_loc == 0)) return 0; if (!best_loc) { r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, KFD_MIGRATE_TRIGGER_PREFETCH, NULL); *migrated = !r; return r; } r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last, mm, KFD_MIGRATE_TRIGGER_PREFETCH); *migrated = !r; return r; } int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence) { if (!fence) return -EINVAL; if (dma_fence_is_signaled(&fence->base)) return 0; if (fence->svm_bo) { WRITE_ONCE(fence->svm_bo->evicting, 1); schedule_work(&fence->svm_bo->eviction_work); } return 0; } static void svm_range_evict_svm_bo_worker(struct work_struct *work) { struct svm_range_bo *svm_bo; struct mm_struct *mm; int r = 0; svm_bo = container_of(work, struct svm_range_bo, eviction_work); if (!svm_bo_ref_unless_zero(svm_bo)) return; /* svm_bo was freed while eviction was pending */ if (mmget_not_zero(svm_bo->eviction_fence->mm)) { mm = svm_bo->eviction_fence->mm; } else { svm_range_bo_unref(svm_bo); return; } mmap_read_lock(mm); spin_lock(&svm_bo->list_lock); while (!list_empty(&svm_bo->range_list) && !r) { struct svm_range *prange = list_first_entry(&svm_bo->range_list, struct svm_range, svm_bo_list); int retries = 3; list_del_init(&prange->svm_bo_list); spin_unlock(&svm_bo->list_lock); pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, prange->last); mutex_lock(&prange->migrate_mutex); do { /* migrate all vram pages in this prange to sys ram * after that prange->actual_loc should be zero */ r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last, KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL); } while (!r && prange->actual_loc && --retries); if (!r && prange->actual_loc) pr_info_once("Migration failed during eviction"); if (!prange->actual_loc) { mutex_lock(&prange->lock); prange->svm_bo = NULL; mutex_unlock(&prange->lock); } mutex_unlock(&prange->migrate_mutex); spin_lock(&svm_bo->list_lock); } spin_unlock(&svm_bo->list_lock); mmap_read_unlock(mm); mmput(mm); dma_fence_signal(&svm_bo->eviction_fence->base); /* This is the last reference to svm_bo, after svm_range_vram_node_free * has been called in svm_migrate_vram_to_ram */ WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n"); svm_range_bo_unref(svm_bo); } static int svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm, uint64_t start, uint64_t size, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) { struct amdkfd_process_info *process_info = p->kgd_process_info; struct list_head update_list; struct list_head insert_list; struct list_head remove_list; struct svm_range_list *svms; struct svm_range *prange; struct svm_range *next; bool update_mapping = false; bool flush_tlb; int r, ret = 0; pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n", p->pasid, &p->svms, start, start + size - 1, size); r = svm_range_check_attr(p, nattr, attrs); if (r) return r; svms = &p->svms; mutex_lock(&process_info->lock); svm_range_list_lock_and_flush_work(svms, mm); r = svm_range_is_valid(p, start, size); if (r) { pr_debug("invalid range r=%d\n", r); mmap_write_unlock(mm); goto out; } mutex_lock(&svms->lock); /* Add new range and split existing ranges as needed */ r = svm_range_add(p, start, size, nattr, attrs, &update_list, &insert_list, &remove_list); if (r) { mutex_unlock(&svms->lock); mmap_write_unlock(mm); goto out; } /* Apply changes as a transaction */ list_for_each_entry_safe(prange, next, &insert_list, list) { svm_range_add_to_svms(prange); svm_range_add_notifier_locked(mm, prange); } list_for_each_entry(prange, &update_list, update_list) { svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping); /* TODO: unmap ranges from GPU that lost access */ } list_for_each_entry_safe(prange, next, &remove_list, update_list) { pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange, prange->start, prange->last); svm_range_unlink(prange); svm_range_remove_notifier(prange); svm_range_free(prange, false); } mmap_write_downgrade(mm); /* Trigger migrations and revalidate and map to GPUs as needed. If * this fails we may be left with partially completed actions. There * is no clean way of rolling back to the previous state in such a * case because the rollback wouldn't be guaranteed to work either. */ list_for_each_entry(prange, &update_list, update_list) { bool migrated; mutex_lock(&prange->migrate_mutex); r = svm_range_trigger_migration(mm, prange, &migrated); if (r) goto out_unlock_range; if (migrated && (!p->xnack_enabled || (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) && prange->mapped_to_gpu) { pr_debug("restore_work will update mappings of GPUs\n"); mutex_unlock(&prange->migrate_mutex); continue; } if (!migrated && !update_mapping) { mutex_unlock(&prange->migrate_mutex); continue; } flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu; r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE, true, true, flush_tlb); if (r) pr_debug("failed %d to map svm range\n", r); out_unlock_range: mutex_unlock(&prange->migrate_mutex); if (r) ret = r; } dynamic_svm_range_dump(svms); mutex_unlock(&svms->lock); mmap_read_unlock(mm); out: mutex_unlock(&process_info->lock); pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid, &p->svms, start, start + size - 1, r); return ret ? ret : r; } static int svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm, uint64_t start, uint64_t size, uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs) { DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE); DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE); bool get_preferred_loc = false; bool get_prefetch_loc = false; bool get_granularity = false; bool get_accessible = false; bool get_flags = false; uint64_t last = start + size - 1UL; uint8_t granularity = 0xff; struct interval_tree_node *node; struct svm_range_list *svms; struct svm_range *prange; uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; uint32_t flags_and = 0xffffffff; uint32_t flags_or = 0; int gpuidx; uint32_t i; int r = 0; pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start, start + size - 1, nattr); /* Flush pending deferred work to avoid racing with deferred actions from * previous memory map changes (e.g. munmap). Concurrent memory map changes * can still race with get_attr because we don't hold the mmap lock. But that * would be a race condition in the application anyway, and undefined * behaviour is acceptable in that case. */ flush_work(&p->svms.deferred_list_work); mmap_read_lock(mm); r = svm_range_is_valid(p, start, size); mmap_read_unlock(mm); if (r) { pr_debug("invalid range r=%d\n", r); return r; } for (i = 0; i < nattr; i++) { switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: get_preferred_loc = true; break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: get_prefetch_loc = true; break; case KFD_IOCTL_SVM_ATTR_ACCESS: get_accessible = true; break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: get_flags = true; break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: get_granularity = true; break; case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE: case KFD_IOCTL_SVM_ATTR_NO_ACCESS: fallthrough; default: pr_debug("get invalid attr type 0x%x\n", attrs[i].type); return -EINVAL; } } svms = &p->svms; mutex_lock(&svms->lock); node = interval_tree_iter_first(&svms->objects, start, last); if (!node) { pr_debug("range attrs not found return default values\n"); svm_range_set_default_attributes(&location, &prefetch_loc, &granularity, &flags_and); flags_or = flags_and; if (p->xnack_enabled) bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); else bitmap_zero(bitmap_access, MAX_GPU_INSTANCE); bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE); goto fill_values; } bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE); bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE); while (node) { struct interval_tree_node *next; prange = container_of(node, struct svm_range, it_node); next = interval_tree_iter_next(node, start, last); if (get_preferred_loc) { if (prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED && location != prange->preferred_loc)) { location = KFD_IOCTL_SVM_LOCATION_UNDEFINED; get_preferred_loc = false; } else { location = prange->preferred_loc; } } if (get_prefetch_loc) { if (prange->prefetch_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED || (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED && prefetch_loc != prange->prefetch_loc)) { prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED; get_prefetch_loc = false; } else { prefetch_loc = prange->prefetch_loc; } } if (get_accessible) { bitmap_and(bitmap_access, bitmap_access, prange->bitmap_access, MAX_GPU_INSTANCE); bitmap_and(bitmap_aip, bitmap_aip, prange->bitmap_aip, MAX_GPU_INSTANCE); } if (get_flags) { flags_and &= prange->flags; flags_or |= prange->flags; } if (get_granularity && prange->granularity < granularity) granularity = prange->granularity; node = next; } fill_values: mutex_unlock(&svms->lock); for (i = 0; i < nattr; i++) { switch (attrs[i].type) { case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC: attrs[i].value = location; break; case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: attrs[i].value = prefetch_loc; break; case KFD_IOCTL_SVM_ATTR_ACCESS: gpuidx = kfd_process_gpuidx_from_gpuid(p, attrs[i].value); if (gpuidx < 0) { pr_debug("invalid gpuid %x\n", attrs[i].value); return -EINVAL; } if (test_bit(gpuidx, bitmap_access)) attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS; else if (test_bit(gpuidx, bitmap_aip)) attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE; else attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS; break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: attrs[i].value = flags_and; break; case KFD_IOCTL_SVM_ATTR_CLR_FLAGS: attrs[i].value = ~flags_or; break; case KFD_IOCTL_SVM_ATTR_GRANULARITY: attrs[i].value = (uint32_t)granularity; break; } } return 0; } int kfd_criu_resume_svm(struct kfd_process *p) { struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL; int nattr_common = 4, nattr_accessibility = 1; struct criu_svm_metadata *criu_svm_md = NULL; struct svm_range_list *svms = &p->svms; struct criu_svm_metadata *next = NULL; uint32_t set_flags = 0xffffffff; int i, j, num_attrs, ret = 0; uint64_t set_attr_size; struct mm_struct *mm; if (list_empty(&svms->criu_svm_metadata_list)) { pr_debug("No SVM data from CRIU restore stage 2\n"); return ret; } mm = get_task_mm(p->lead_thread); if (!mm) { pr_err("failed to get mm for the target process\n"); return -ESRCH; } num_attrs = nattr_common + (nattr_accessibility * p->n_pdds); i = j = 0; list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) { pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n", i, criu_svm_md->data.start_addr, criu_svm_md->data.size); for (j = 0; j < num_attrs; j++) { pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n", i, j, criu_svm_md->data.attrs[j].type, i, j, criu_svm_md->data.attrs[j].value); switch (criu_svm_md->data.attrs[j].type) { /* During Checkpoint operation, the query for * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were * not used by the range which was checkpointed. Care * must be taken to not restore with an invalid value * otherwise the gpuidx value will be invalid and * set_attr would eventually fail so just replace those * with another dummy attribute such as * KFD_IOCTL_SVM_ATTR_SET_FLAGS. */ case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC: if (criu_svm_md->data.attrs[j].value == KFD_IOCTL_SVM_LOCATION_UNDEFINED) { criu_svm_md->data.attrs[j].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; criu_svm_md->data.attrs[j].value = 0; } break; case KFD_IOCTL_SVM_ATTR_SET_FLAGS: set_flags = criu_svm_md->data.attrs[j].value; break; default: break; } } /* CLR_FLAGS is not available via get_attr during checkpoint but * it needs to be inserted before restoring the ranges so * allocate extra space for it before calling set_attr */ set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * (num_attrs + 1); set_attr_new = krealloc(set_attr, set_attr_size, GFP_KERNEL); if (!set_attr_new) { ret = -ENOMEM; goto exit; } set_attr = set_attr_new; memcpy(set_attr, criu_svm_md->data.attrs, num_attrs * sizeof(struct kfd_ioctl_svm_attribute)); set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS; set_attr[num_attrs].value = ~set_flags; ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr, criu_svm_md->data.size, num_attrs + 1, set_attr); if (ret) { pr_err("CRIU: failed to set range attributes\n"); goto exit; } i++; } exit: kfree(set_attr); list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) { pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n", criu_svm_md->data.start_addr); kfree(criu_svm_md); } mmput(mm); return ret; } int kfd_criu_restore_svm(struct kfd_process *p, uint8_t __user *user_priv_ptr, uint64_t *priv_data_offset, uint64_t max_priv_data_size) { uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size; int nattr_common = 4, nattr_accessibility = 1; struct criu_svm_metadata *criu_svm_md = NULL; struct svm_range_list *svms = &p->svms; uint32_t num_devices; int ret = 0; num_devices = p->n_pdds; /* Handle one SVM range object at a time, also the number of gpus are * assumed to be same on the restore node, checking must be done while * evaluating the topology earlier */ svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) * (nattr_common + nattr_accessibility * num_devices); svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size; svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) + svm_attrs_size; criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL); if (!criu_svm_md) { pr_err("failed to allocate memory to store svm metadata\n"); return -ENOMEM; } if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) { ret = -EINVAL; goto exit; } ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset, svm_priv_data_size); if (ret) { ret = -EFAULT; goto exit; } *priv_data_offset += svm_priv_data_size; list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list); return 0; exit: kfree(criu_svm_md); return ret; } int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges, uint64_t *svm_priv_data_size) { uint64_t total_size, accessibility_size, common_attr_size; int nattr_common = 4, nattr_accessibility = 1; int num_devices = p->n_pdds; struct svm_range_list *svms; struct svm_range *prange; uint32_t count = 0; *svm_priv_data_size = 0; svms = &p->svms; if (!svms) return -EINVAL; mutex_lock(&svms->lock); list_for_each_entry(prange, &svms->list, list) { pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n", prange, prange->start, prange->npages, prange->start + prange->npages - 1); count++; } mutex_unlock(&svms->lock); *num_svm_ranges = count; /* Only the accessbility attributes need to be queried for all the gpus * individually, remaining ones are spanned across the entire process * regardless of the various gpu nodes. Of the remaining attributes, * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved. * * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC * KFD_IOCTL_SVM_ATTR_SET_FLAGS * KFD_IOCTL_SVM_ATTR_GRANULARITY * * ** ACCESSBILITY ATTRIBUTES ** * (Considered as one, type is altered during query, value is gpuid) * KFD_IOCTL_SVM_ATTR_ACCESS * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE * KFD_IOCTL_SVM_ATTR_NO_ACCESS */ if (*num_svm_ranges > 0) { common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * nattr_common; accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) * nattr_accessibility * num_devices; total_size = sizeof(struct kfd_criu_svm_range_priv_data) + common_attr_size + accessibility_size; *svm_priv_data_size = *num_svm_ranges * total_size; } pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges, *svm_priv_data_size); return 0; } int kfd_criu_checkpoint_svm(struct kfd_process *p, uint8_t __user *user_priv_data, uint64_t *priv_data_offset) { struct kfd_criu_svm_range_priv_data *svm_priv = NULL; struct kfd_ioctl_svm_attribute *query_attr = NULL; uint64_t svm_priv_data_size, query_attr_size = 0; int index, nattr_common = 4, ret = 0; struct svm_range_list *svms; int num_devices = p->n_pdds; struct svm_range *prange; struct mm_struct *mm; svms = &p->svms; if (!svms) return -EINVAL; mm = get_task_mm(p->lead_thread); if (!mm) { pr_err("failed to get mm for the target process\n"); return -ESRCH; } query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) * (nattr_common + num_devices); query_attr = kzalloc(query_attr_size, GFP_KERNEL); if (!query_attr) { ret = -ENOMEM; goto exit; } query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC; query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC; query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS; query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY; for (index = 0; index < num_devices; index++) { struct kfd_process_device *pdd = p->pdds[index]; query_attr[index + nattr_common].type = KFD_IOCTL_SVM_ATTR_ACCESS; query_attr[index + nattr_common].value = pdd->user_gpu_id; } svm_priv_data_size = sizeof(*svm_priv) + query_attr_size; svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL); if (!svm_priv) { ret = -ENOMEM; goto exit_query; } index = 0; list_for_each_entry(prange, &svms->list, list) { svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE; svm_priv->start_addr = prange->start; svm_priv->size = prange->npages; memcpy(&svm_priv->attrs, query_attr, query_attr_size); pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n", prange, prange->start, prange->npages, prange->start + prange->npages - 1, prange->npages * PAGE_SIZE); ret = svm_range_get_attr(p, mm, svm_priv->start_addr, svm_priv->size, (nattr_common + num_devices), svm_priv->attrs); if (ret) { pr_err("CRIU: failed to obtain range attributes\n"); goto exit_priv; } if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv, svm_priv_data_size)) { pr_err("Failed to copy svm priv to user\n"); ret = -EFAULT; goto exit_priv; } *priv_data_offset += svm_priv_data_size; } exit_priv: kfree(svm_priv); exit_query: kfree(query_attr); exit: mmput(mm); return ret; } int svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start, uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs) { struct mm_struct *mm = current->mm; int r; start >>= PAGE_SHIFT; size >>= PAGE_SHIFT; switch (op) { case KFD_IOCTL_SVM_OP_SET_ATTR: r = svm_range_set_attr(p, mm, start, size, nattrs, attrs); break; case KFD_IOCTL_SVM_OP_GET_ATTR: r = svm_range_get_attr(p, mm, start, size, nattrs, attrs); break; default: r = EINVAL; break; } return r; }