/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Keith Packard * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "intel_drv.h" #include #include "i915_drv.h" #define DP_DPRX_ESI_LEN 14 /* Compliance test status bits */ #define INTEL_DP_RESOLUTION_SHIFT_MASK 0 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK) #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK) struct dp_link_dpll { int clock; struct dpll dpll; }; static const struct dp_link_dpll g4x_dpll[] = { { 162000, { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } }, { 270000, { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } } }; static const struct dp_link_dpll pch_dpll[] = { { 162000, { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } }, { 270000, { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } } }; static const struct dp_link_dpll vlv_dpll[] = { { 162000, { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } }, { 270000, { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } } }; /* * CHV supports eDP 1.4 that have more link rates. * Below only provides the fixed rate but exclude variable rate. */ static const struct dp_link_dpll chv_dpll[] = { /* * CHV requires to program fractional division for m2. * m2 is stored in fixed point format using formula below * (m2_int << 22) | m2_fraction */ { 162000, /* m2_int = 32, m2_fraction = 1677722 */ { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } }, { 270000, /* m2_int = 27, m2_fraction = 0 */ { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }, }; /** * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH) * @intel_dp: DP struct * * If a CPU or PCH DP output is attached to an eDP panel, this function * will return true, and false otherwise. */ bool intel_dp_is_edp(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); return intel_dig_port->base.type == INTEL_OUTPUT_EDP; } static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); return intel_dig_port->base.base.dev; } static struct intel_dp *intel_attached_dp(struct drm_connector *connector) { return enc_to_intel_dp(&intel_attached_encoder(connector)->base); } static void intel_dp_link_down(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state); static bool edp_panel_vdd_on(struct intel_dp *intel_dp); static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync); static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state); static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, enum pipe pipe); static void intel_dp_unset_edid(struct intel_dp *intel_dp); /* update sink rates from dpcd */ static void intel_dp_set_sink_rates(struct intel_dp *intel_dp) { static const int dp_rates[] = { 162000, 270000, 540000, 810000 }; int i, max_rate; max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]); for (i = 0; i < ARRAY_SIZE(dp_rates); i++) { if (dp_rates[i] > max_rate) break; intel_dp->sink_rates[i] = dp_rates[i]; } intel_dp->num_sink_rates = i; } /* Get length of rates array potentially limited by max_rate. */ static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate) { int i; /* Limit results by potentially reduced max rate */ for (i = 0; i < len; i++) { if (rates[len - i - 1] <= max_rate) return len - i; } return 0; } /* Get length of common rates array potentially limited by max_rate. */ static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp, int max_rate) { return intel_dp_rate_limit_len(intel_dp->common_rates, intel_dp->num_common_rates, max_rate); } /* Theoretical max between source and sink */ static int intel_dp_max_common_rate(struct intel_dp *intel_dp) { return intel_dp->common_rates[intel_dp->num_common_rates - 1]; } /* Theoretical max between source and sink */ static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); int source_max = intel_dig_port->max_lanes; int sink_max = drm_dp_max_lane_count(intel_dp->dpcd); return min(source_max, sink_max); } int intel_dp_max_lane_count(struct intel_dp *intel_dp) { return intel_dp->max_link_lane_count; } int intel_dp_link_required(int pixel_clock, int bpp) { /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */ return DIV_ROUND_UP(pixel_clock * bpp, 8); } int intel_dp_max_data_rate(int max_link_clock, int max_lanes) { /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the * link rate that is generally expressed in Gbps. Since, 8 bits of data * is transmitted every LS_Clk per lane, there is no need to account for * the channel encoding that is done in the PHY layer here. */ return max_link_clock * max_lanes; } static int intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct intel_encoder *encoder = &intel_dig_port->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); int max_dotclk = dev_priv->max_dotclk_freq; int ds_max_dotclk; int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; if (type != DP_DS_PORT_TYPE_VGA) return max_dotclk; ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd, intel_dp->downstream_ports); if (ds_max_dotclk != 0) max_dotclk = min(max_dotclk, ds_max_dotclk); return max_dotclk; } static int cnl_max_source_rate(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); enum port port = dig_port->base.port; u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK; /* Low voltage SKUs are limited to max of 5.4G */ if (voltage == VOLTAGE_INFO_0_85V) return 540000; /* For this SKU 8.1G is supported in all ports */ if (IS_CNL_WITH_PORT_F(dev_priv)) return 810000; /* For other SKUs, max rate on ports A and D is 5.4G */ if (port == PORT_A || port == PORT_D) return 540000; return 810000; } static int icl_max_source_rate(struct intel_dp *intel_dp) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); enum port port = dig_port->base.port; if (port == PORT_B) return 540000; return 810000; } static void intel_dp_set_source_rates(struct intel_dp *intel_dp) { /* The values must be in increasing order */ static const int cnl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000 }; static const int bxt_rates[] = { 162000, 216000, 243000, 270000, 324000, 432000, 540000 }; static const int skl_rates[] = { 162000, 216000, 270000, 324000, 432000, 540000 }; static const int hsw_rates[] = { 162000, 270000, 540000 }; static const int g4x_rates[] = { 162000, 270000 }; struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); const struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[dig_port->base.port]; const int *source_rates; int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate; /* This should only be done once */ WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates); if (INTEL_GEN(dev_priv) >= 10) { source_rates = cnl_rates; size = ARRAY_SIZE(cnl_rates); if (INTEL_GEN(dev_priv) == 10) max_rate = cnl_max_source_rate(intel_dp); else max_rate = icl_max_source_rate(intel_dp); } else if (IS_GEN9_LP(dev_priv)) { source_rates = bxt_rates; size = ARRAY_SIZE(bxt_rates); } else if (IS_GEN9_BC(dev_priv)) { source_rates = skl_rates; size = ARRAY_SIZE(skl_rates); } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) || IS_BROADWELL(dev_priv)) { source_rates = hsw_rates; size = ARRAY_SIZE(hsw_rates); } else { source_rates = g4x_rates; size = ARRAY_SIZE(g4x_rates); } if (max_rate && vbt_max_rate) max_rate = min(max_rate, vbt_max_rate); else if (vbt_max_rate) max_rate = vbt_max_rate; if (max_rate) size = intel_dp_rate_limit_len(source_rates, size, max_rate); intel_dp->source_rates = source_rates; intel_dp->num_source_rates = size; } static int intersect_rates(const int *source_rates, int source_len, const int *sink_rates, int sink_len, int *common_rates) { int i = 0, j = 0, k = 0; while (i < source_len && j < sink_len) { if (source_rates[i] == sink_rates[j]) { if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES)) return k; common_rates[k] = source_rates[i]; ++k; ++i; ++j; } else if (source_rates[i] < sink_rates[j]) { ++i; } else { ++j; } } return k; } /* return index of rate in rates array, or -1 if not found */ static int intel_dp_rate_index(const int *rates, int len, int rate) { int i; for (i = 0; i < len; i++) if (rate == rates[i]) return i; return -1; } static void intel_dp_set_common_rates(struct intel_dp *intel_dp) { WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates); intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates, intel_dp->num_source_rates, intel_dp->sink_rates, intel_dp->num_sink_rates, intel_dp->common_rates); /* Paranoia, there should always be something in common. */ if (WARN_ON(intel_dp->num_common_rates == 0)) { intel_dp->common_rates[0] = 162000; intel_dp->num_common_rates = 1; } } static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate, uint8_t lane_count) { /* * FIXME: we need to synchronize the current link parameters with * hardware readout. Currently fast link training doesn't work on * boot-up. */ if (link_rate == 0 || link_rate > intel_dp->max_link_rate) return false; if (lane_count == 0 || lane_count > intel_dp_max_lane_count(intel_dp)) return false; return true; } static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp, int link_rate, uint8_t lane_count) { const struct drm_display_mode *fixed_mode = intel_dp->attached_connector->panel.fixed_mode; int mode_rate, max_rate; mode_rate = intel_dp_link_required(fixed_mode->clock, 18); max_rate = intel_dp_max_data_rate(link_rate, lane_count); if (mode_rate > max_rate) return false; return true; } int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp, int link_rate, uint8_t lane_count) { int index; index = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, link_rate); if (index > 0) { if (intel_dp_is_edp(intel_dp) && !intel_dp_can_link_train_fallback_for_edp(intel_dp, intel_dp->common_rates[index - 1], lane_count)) { DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); return 0; } intel_dp->max_link_rate = intel_dp->common_rates[index - 1]; intel_dp->max_link_lane_count = lane_count; } else if (lane_count > 1) { if (intel_dp_is_edp(intel_dp) && !intel_dp_can_link_train_fallback_for_edp(intel_dp, intel_dp_max_common_rate(intel_dp), lane_count >> 1)) { DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n"); return 0; } intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); intel_dp->max_link_lane_count = lane_count >> 1; } else { DRM_ERROR("Link Training Unsuccessful\n"); return -1; } return 0; } static enum drm_mode_status intel_dp_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; int target_clock = mode->clock; int max_rate, mode_rate, max_lanes, max_link_clock; int max_dotclk; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; max_dotclk = intel_dp_downstream_max_dotclock(intel_dp); if (intel_dp_is_edp(intel_dp) && fixed_mode) { if (mode->hdisplay > fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > fixed_mode->vdisplay) return MODE_PANEL; target_clock = fixed_mode->clock; } max_link_clock = intel_dp_max_link_rate(intel_dp); max_lanes = intel_dp_max_lane_count(intel_dp); max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes); mode_rate = intel_dp_link_required(target_clock, 18); if (mode_rate > max_rate || target_clock > max_dotclk) return MODE_CLOCK_HIGH; if (mode->clock < 10000) return MODE_CLOCK_LOW; if (mode->flags & DRM_MODE_FLAG_DBLCLK) return MODE_H_ILLEGAL; return MODE_OK; } uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes) { int i; uint32_t v = 0; if (src_bytes > 4) src_bytes = 4; for (i = 0; i < src_bytes; i++) v |= ((uint32_t) src[i]) << ((3-i) * 8); return v; } static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes) { int i; if (dst_bytes > 4) dst_bytes = 4; for (i = 0; i < dst_bytes; i++) dst[i] = src >> ((3-i) * 8); } static void intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp); static void intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, bool force_disable_vdd); static void intel_dp_pps_init(struct intel_dp *intel_dp); static void pps_lock(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); /* * See intel_power_sequencer_reset() why we need * a power domain reference here. */ intel_display_power_get(dev_priv, intel_dp->aux_power_domain); mutex_lock(&dev_priv->pps_mutex); } static void pps_unlock(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); mutex_unlock(&dev_priv->pps_mutex); intel_display_power_put(dev_priv, intel_dp->aux_power_domain); } static void vlv_power_sequencer_kick(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum pipe pipe = intel_dp->pps_pipe; bool pll_enabled, release_cl_override = false; enum dpio_phy phy = DPIO_PHY(pipe); enum dpio_channel ch = vlv_pipe_to_channel(pipe); uint32_t DP; if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN, "skipping pipe %c power sequencer kick due to port %c being active\n", pipe_name(pipe), port_name(intel_dig_port->base.port))) return; DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n", pipe_name(pipe), port_name(intel_dig_port->base.port)); /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; DP |= DP_PORT_WIDTH(1); DP |= DP_LINK_TRAIN_PAT_1; if (IS_CHERRYVIEW(dev_priv)) DP |= DP_PIPE_SEL_CHV(pipe); else DP |= DP_PIPE_SEL(pipe); pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE; /* * The DPLL for the pipe must be enabled for this to work. * So enable temporarily it if it's not already enabled. */ if (!pll_enabled) { release_cl_override = IS_CHERRYVIEW(dev_priv) && !chv_phy_powergate_ch(dev_priv, phy, ch, true); if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ? &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) { DRM_ERROR("Failed to force on pll for pipe %c!\n", pipe_name(pipe)); return; } } /* * Similar magic as in intel_dp_enable_port(). * We _must_ do this port enable + disable trick * to make this power sequencer lock onto the port. * Otherwise even VDD force bit won't work. */ I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN); POSTING_READ(intel_dp->output_reg); I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN); POSTING_READ(intel_dp->output_reg); if (!pll_enabled) { vlv_force_pll_off(dev_priv, pipe); if (release_cl_override) chv_phy_powergate_ch(dev_priv, phy, ch, false); } } static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B); /* * We don't have power sequencer currently. * Pick one that's not used by other ports. */ for_each_intel_dp(&dev_priv->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); if (encoder->type == INTEL_OUTPUT_EDP) { WARN_ON(intel_dp->active_pipe != INVALID_PIPE && intel_dp->active_pipe != intel_dp->pps_pipe); if (intel_dp->pps_pipe != INVALID_PIPE) pipes &= ~(1 << intel_dp->pps_pipe); } else { WARN_ON(intel_dp->pps_pipe != INVALID_PIPE); if (intel_dp->active_pipe != INVALID_PIPE) pipes &= ~(1 << intel_dp->active_pipe); } } if (pipes == 0) return INVALID_PIPE; return ffs(pipes) - 1; } static enum pipe vlv_power_sequencer_pipe(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum pipe pipe; lockdep_assert_held(&dev_priv->pps_mutex); /* We should never land here with regular DP ports */ WARN_ON(!intel_dp_is_edp(intel_dp)); WARN_ON(intel_dp->active_pipe != INVALID_PIPE && intel_dp->active_pipe != intel_dp->pps_pipe); if (intel_dp->pps_pipe != INVALID_PIPE) return intel_dp->pps_pipe; pipe = vlv_find_free_pps(dev_priv); /* * Didn't find one. This should not happen since there * are two power sequencers and up to two eDP ports. */ if (WARN_ON(pipe == INVALID_PIPE)) pipe = PIPE_A; vlv_steal_power_sequencer(dev_priv, pipe); intel_dp->pps_pipe = pipe; DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n", pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->base.port)); /* init power sequencer on this pipe and port */ intel_dp_init_panel_power_sequencer(intel_dp); intel_dp_init_panel_power_sequencer_registers(intel_dp, true); /* * Even vdd force doesn't work until we've made * the power sequencer lock in on the port. */ vlv_power_sequencer_kick(intel_dp); return intel_dp->pps_pipe; } static int bxt_power_sequencer_idx(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); int backlight_controller = dev_priv->vbt.backlight.controller; lockdep_assert_held(&dev_priv->pps_mutex); /* We should never land here with regular DP ports */ WARN_ON(!intel_dp_is_edp(intel_dp)); if (!intel_dp->pps_reset) return backlight_controller; intel_dp->pps_reset = false; /* * Only the HW needs to be reprogrammed, the SW state is fixed and * has been setup during connector init. */ intel_dp_init_panel_power_sequencer_registers(intel_dp, false); return backlight_controller; } typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv, enum pipe pipe); static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv, enum pipe pipe) { return I915_READ(PP_STATUS(pipe)) & PP_ON; } static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv, enum pipe pipe) { return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD; } static bool vlv_pipe_any(struct drm_i915_private *dev_priv, enum pipe pipe) { return true; } static enum pipe vlv_initial_pps_pipe(struct drm_i915_private *dev_priv, enum port port, vlv_pipe_check pipe_check) { enum pipe pipe; for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) { u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) & PANEL_PORT_SELECT_MASK; if (port_sel != PANEL_PORT_SELECT_VLV(port)) continue; if (!pipe_check(dev_priv, pipe)) continue; return pipe; } return INVALID_PIPE; } static void vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->base.port; lockdep_assert_held(&dev_priv->pps_mutex); /* try to find a pipe with this port selected */ /* first pick one where the panel is on */ intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_has_pp_on); /* didn't find one? pick one where vdd is on */ if (intel_dp->pps_pipe == INVALID_PIPE) intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_has_vdd_on); /* didn't find one? pick one with just the correct port */ if (intel_dp->pps_pipe == INVALID_PIPE) intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port, vlv_pipe_any); /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */ if (intel_dp->pps_pipe == INVALID_PIPE) { DRM_DEBUG_KMS("no initial power sequencer for port %c\n", port_name(port)); return; } DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n", port_name(port), pipe_name(intel_dp->pps_pipe)); intel_dp_init_panel_power_sequencer(intel_dp); intel_dp_init_panel_power_sequencer_registers(intel_dp, false); } void intel_power_sequencer_reset(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))) return; /* * We can't grab pps_mutex here due to deadlock with power_domain * mutex when power_domain functions are called while holding pps_mutex. * That also means that in order to use pps_pipe the code needs to * hold both a power domain reference and pps_mutex, and the power domain * reference get/put must be done while _not_ holding pps_mutex. * pps_{lock,unlock}() do these steps in the correct order, so one * should use them always. */ for_each_intel_dp(&dev_priv->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); WARN_ON(intel_dp->active_pipe != INVALID_PIPE); if (encoder->type != INTEL_OUTPUT_EDP) continue; if (IS_GEN9_LP(dev_priv)) intel_dp->pps_reset = true; else intel_dp->pps_pipe = INVALID_PIPE; } } struct pps_registers { i915_reg_t pp_ctrl; i915_reg_t pp_stat; i915_reg_t pp_on; i915_reg_t pp_off; i915_reg_t pp_div; }; static void intel_pps_get_registers(struct intel_dp *intel_dp, struct pps_registers *regs) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); int pps_idx = 0; memset(regs, 0, sizeof(*regs)); if (IS_GEN9_LP(dev_priv)) pps_idx = bxt_power_sequencer_idx(intel_dp); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) pps_idx = vlv_power_sequencer_pipe(intel_dp); regs->pp_ctrl = PP_CONTROL(pps_idx); regs->pp_stat = PP_STATUS(pps_idx); regs->pp_on = PP_ON_DELAYS(pps_idx); regs->pp_off = PP_OFF_DELAYS(pps_idx); if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) && !HAS_PCH_ICP(dev_priv)) regs->pp_div = PP_DIVISOR(pps_idx); } static i915_reg_t _pp_ctrl_reg(struct intel_dp *intel_dp) { struct pps_registers regs; intel_pps_get_registers(intel_dp, ®s); return regs.pp_ctrl; } static i915_reg_t _pp_stat_reg(struct intel_dp *intel_dp) { struct pps_registers regs; intel_pps_get_registers(intel_dp, ®s); return regs.pp_stat; } /* Reboot notifier handler to shutdown panel power to guarantee T12 timing This function only applicable when panel PM state is not to be tracked */ static int edp_notify_handler(struct notifier_block *this, unsigned long code, void *unused) { struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp), edp_notifier); struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART) return 0; pps_lock(intel_dp); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { enum pipe pipe = vlv_power_sequencer_pipe(intel_dp); i915_reg_t pp_ctrl_reg, pp_div_reg; u32 pp_div; pp_ctrl_reg = PP_CONTROL(pipe); pp_div_reg = PP_DIVISOR(pipe); pp_div = I915_READ(pp_div_reg); pp_div &= PP_REFERENCE_DIVIDER_MASK; /* 0x1F write to PP_DIV_REG sets max cycle delay */ I915_WRITE(pp_div_reg, pp_div | 0x1F); I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF); msleep(intel_dp->panel_power_cycle_delay); } pps_unlock(intel_dp); return 0; } static bool edp_have_panel_power(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); lockdep_assert_held(&dev_priv->pps_mutex); if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_dp->pps_pipe == INVALID_PIPE) return false; return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0; } static bool edp_have_panel_vdd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); lockdep_assert_held(&dev_priv->pps_mutex); if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_dp->pps_pipe == INVALID_PIPE) return false; return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD; } static void intel_dp_check_edp(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); if (!intel_dp_is_edp(intel_dp)) return; if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) { WARN(1, "eDP powered off while attempting aux channel communication.\n"); DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n", I915_READ(_pp_stat_reg(intel_dp)), I915_READ(_pp_ctrl_reg(intel_dp))); } } static uint32_t intel_dp_aux_wait_done(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); uint32_t status; bool done; #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0) done = wait_event_timeout(dev_priv->gmbus_wait_queue, C, msecs_to_jiffies_timeout(10)); if (!done) DRM_ERROR("dp aux hw did not signal timeout!\n"); #undef C return status; } static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); if (index) return 0; /* * The clock divider is based off the hrawclk, and would like to run at * 2MHz. So, take the hrawclk value and divide by 2000 and use that */ return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); } static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); if (index) return 0; /* * The clock divider is based off the cdclk or PCH rawclk, and would * like to run at 2MHz. So, take the cdclk or PCH rawclk value and * divide by 2000 and use that */ if (intel_dp->aux_ch == AUX_CH_A) return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000); else return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000); } static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); if (intel_dp->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) { /* Workaround for non-ULT HSW */ switch (index) { case 0: return 63; case 1: return 72; default: return 0; } } return ilk_get_aux_clock_divider(intel_dp, index); } static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index) { /* * SKL doesn't need us to program the AUX clock divider (Hardware will * derive the clock from CDCLK automatically). We still implement the * get_aux_clock_divider vfunc to plug-in into the existing code. */ return index ? 0 : 1; } static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp, int send_bytes, uint32_t aux_clock_divider) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); uint32_t precharge, timeout; if (IS_GEN6(dev_priv)) precharge = 3; else precharge = 5; if (IS_BROADWELL(dev_priv)) timeout = DP_AUX_CH_CTL_TIME_OUT_600us; else timeout = DP_AUX_CH_CTL_TIME_OUT_400us; return DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_INTERRUPT | DP_AUX_CH_CTL_TIME_OUT_ERROR | timeout | DP_AUX_CH_CTL_RECEIVE_ERROR | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) | (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT); } static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp, int send_bytes, uint32_t unused) { return DP_AUX_CH_CTL_SEND_BUSY | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_INTERRUPT | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_TIME_OUT_MAX | DP_AUX_CH_CTL_RECEIVE_ERROR | (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) | DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) | DP_AUX_CH_CTL_SYNC_PULSE_SKL(32); } static int intel_dp_aux_xfer(struct intel_dp *intel_dp, const uint8_t *send, int send_bytes, uint8_t *recv, int recv_size, u32 aux_send_ctl_flags) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); i915_reg_t ch_ctl, ch_data[5]; uint32_t aux_clock_divider; int i, ret, recv_bytes; uint32_t status; int try, clock = 0; bool vdd; ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp); for (i = 0; i < ARRAY_SIZE(ch_data); i++) ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i); pps_lock(intel_dp); /* * We will be called with VDD already enabled for dpcd/edid/oui reads. * In such cases we want to leave VDD enabled and it's up to upper layers * to turn it off. But for eg. i2c-dev access we need to turn it on/off * ourselves. */ vdd = edp_panel_vdd_on(intel_dp); /* dp aux is extremely sensitive to irq latency, hence request the * lowest possible wakeup latency and so prevent the cpu from going into * deep sleep states. */ pm_qos_update_request(&dev_priv->pm_qos, 0); intel_dp_check_edp(intel_dp); /* Try to wait for any previous AUX channel activity */ for (try = 0; try < 3; try++) { status = I915_READ_NOTRACE(ch_ctl); if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0) break; msleep(1); } if (try == 3) { static u32 last_status = -1; const u32 status = I915_READ(ch_ctl); if (status != last_status) { WARN(1, "dp_aux_ch not started status 0x%08x\n", status); last_status = status; } ret = -EBUSY; goto out; } /* Only 5 data registers! */ if (WARN_ON(send_bytes > 20 || recv_size > 20)) { ret = -E2BIG; goto out; } while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) { u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp, send_bytes, aux_clock_divider); send_ctl |= aux_send_ctl_flags; /* Must try at least 3 times according to DP spec */ for (try = 0; try < 5; try++) { /* Load the send data into the aux channel data registers */ for (i = 0; i < send_bytes; i += 4) I915_WRITE(ch_data[i >> 2], intel_dp_pack_aux(send + i, send_bytes - i)); /* Send the command and wait for it to complete */ I915_WRITE(ch_ctl, send_ctl); status = intel_dp_aux_wait_done(intel_dp); /* Clear done status and any errors */ I915_WRITE(ch_ctl, status | DP_AUX_CH_CTL_DONE | DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR); /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2 * 400us delay required for errors and timeouts * Timeout errors from the HW already meet this * requirement so skip to next iteration */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) continue; if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { usleep_range(400, 500); continue; } if (status & DP_AUX_CH_CTL_DONE) goto done; } } if ((status & DP_AUX_CH_CTL_DONE) == 0) { DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status); ret = -EBUSY; goto out; } done: /* Check for timeout or receive error. * Timeouts occur when the sink is not connected */ if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) { DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status); ret = -EIO; goto out; } /* Timeouts occur when the device isn't connected, so they're * "normal" -- don't fill the kernel log with these */ if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) { DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status); ret = -ETIMEDOUT; goto out; } /* Unload any bytes sent back from the other side */ recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >> DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT); /* * By BSpec: "Message sizes of 0 or >20 are not allowed." * We have no idea of what happened so we return -EBUSY so * drm layer takes care for the necessary retries. */ if (recv_bytes == 0 || recv_bytes > 20) { DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n", recv_bytes); ret = -EBUSY; goto out; } if (recv_bytes > recv_size) recv_bytes = recv_size; for (i = 0; i < recv_bytes; i += 4) intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]), recv + i, recv_bytes - i); ret = recv_bytes; out: pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE); if (vdd) edp_panel_vdd_off(intel_dp, false); pps_unlock(intel_dp); return ret; } #define BARE_ADDRESS_SIZE 3 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1) static void intel_dp_aux_header(u8 txbuf[HEADER_SIZE], const struct drm_dp_aux_msg *msg) { txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf); txbuf[1] = (msg->address >> 8) & 0xff; txbuf[2] = msg->address & 0xff; txbuf[3] = msg->size - 1; } static ssize_t intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg) { struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux); uint8_t txbuf[20], rxbuf[20]; size_t txsize, rxsize; int ret; intel_dp_aux_header(txbuf, msg); switch (msg->request & ~DP_AUX_I2C_MOT) { case DP_AUX_NATIVE_WRITE: case DP_AUX_I2C_WRITE: case DP_AUX_I2C_WRITE_STATUS_UPDATE: txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE; rxsize = 2; /* 0 or 1 data bytes */ if (WARN_ON(txsize > 20)) return -E2BIG; WARN_ON(!msg->buffer != !msg->size); if (msg->buffer) memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size); ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, rxbuf, rxsize, 0); if (ret > 0) { msg->reply = rxbuf[0] >> 4; if (ret > 1) { /* Number of bytes written in a short write. */ ret = clamp_t(int, rxbuf[1], 0, msg->size); } else { /* Return payload size. */ ret = msg->size; } } break; case DP_AUX_NATIVE_READ: case DP_AUX_I2C_READ: txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE; rxsize = msg->size + 1; if (WARN_ON(rxsize > 20)) return -E2BIG; ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize, rxbuf, rxsize, 0); if (ret > 0) { msg->reply = rxbuf[0] >> 4; /* * Assume happy day, and copy the data. The caller is * expected to check msg->reply before touching it. * * Return payload size. */ ret--; memcpy(msg->buffer, rxbuf + 1, ret); } break; default: ret = -EINVAL; break; } return ret; } static enum aux_ch intel_aux_ch(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); enum port port = encoder->port; const struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; enum aux_ch aux_ch; if (!info->alternate_aux_channel) { aux_ch = (enum aux_ch) port; DRM_DEBUG_KMS("using AUX %c for port %c (platform default)\n", aux_ch_name(aux_ch), port_name(port)); return aux_ch; } switch (info->alternate_aux_channel) { case DP_AUX_A: aux_ch = AUX_CH_A; break; case DP_AUX_B: aux_ch = AUX_CH_B; break; case DP_AUX_C: aux_ch = AUX_CH_C; break; case DP_AUX_D: aux_ch = AUX_CH_D; break; case DP_AUX_E: aux_ch = AUX_CH_E; break; case DP_AUX_F: aux_ch = AUX_CH_F; break; default: MISSING_CASE(info->alternate_aux_channel); aux_ch = AUX_CH_A; break; } DRM_DEBUG_KMS("using AUX %c for port %c (VBT)\n", aux_ch_name(aux_ch), port_name(port)); return aux_ch; } static enum intel_display_power_domain intel_aux_power_domain(struct intel_dp *intel_dp) { switch (intel_dp->aux_ch) { case AUX_CH_A: return POWER_DOMAIN_AUX_A; case AUX_CH_B: return POWER_DOMAIN_AUX_B; case AUX_CH_C: return POWER_DOMAIN_AUX_C; case AUX_CH_D: return POWER_DOMAIN_AUX_D; case AUX_CH_E: return POWER_DOMAIN_AUX_E; case AUX_CH_F: return POWER_DOMAIN_AUX_F; default: MISSING_CASE(intel_dp->aux_ch); return POWER_DOMAIN_AUX_A; } } static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); enum aux_ch aux_ch = intel_dp->aux_ch; switch (aux_ch) { case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_B); } } static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); enum aux_ch aux_ch = intel_dp->aux_ch; switch (aux_ch) { case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_B, index); } } static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); enum aux_ch aux_ch = intel_dp->aux_ch; switch (aux_ch) { case AUX_CH_A: return DP_AUX_CH_CTL(aux_ch); case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return PCH_DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_A); } } static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); enum aux_ch aux_ch = intel_dp->aux_ch; switch (aux_ch) { case AUX_CH_A: return DP_AUX_CH_DATA(aux_ch, index); case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: return PCH_DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_A, index); } } static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); enum aux_ch aux_ch = intel_dp->aux_ch; switch (aux_ch) { case AUX_CH_A: case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: case AUX_CH_E: case AUX_CH_F: return DP_AUX_CH_CTL(aux_ch); default: MISSING_CASE(aux_ch); return DP_AUX_CH_CTL(AUX_CH_A); } } static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); enum aux_ch aux_ch = intel_dp->aux_ch; switch (aux_ch) { case AUX_CH_A: case AUX_CH_B: case AUX_CH_C: case AUX_CH_D: case AUX_CH_E: case AUX_CH_F: return DP_AUX_CH_DATA(aux_ch, index); default: MISSING_CASE(aux_ch); return DP_AUX_CH_DATA(AUX_CH_A, index); } } static void intel_dp_aux_fini(struct intel_dp *intel_dp) { kfree(intel_dp->aux.name); } static void intel_dp_aux_init(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; intel_dp->aux_ch = intel_aux_ch(intel_dp); intel_dp->aux_power_domain = intel_aux_power_domain(intel_dp); if (INTEL_GEN(dev_priv) >= 9) { intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg; intel_dp->aux_ch_data_reg = skl_aux_data_reg; } else if (HAS_PCH_SPLIT(dev_priv)) { intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg; intel_dp->aux_ch_data_reg = ilk_aux_data_reg; } else { intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg; intel_dp->aux_ch_data_reg = g4x_aux_data_reg; } if (INTEL_GEN(dev_priv) >= 9) intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider; else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider; else if (HAS_PCH_SPLIT(dev_priv)) intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider; else intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider; if (INTEL_GEN(dev_priv) >= 9) intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl; else intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl; drm_dp_aux_init(&intel_dp->aux); /* Failure to allocate our preferred name is not critical */ intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(encoder->port)); intel_dp->aux.transfer = intel_dp_aux_transfer; } bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp) { int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; return max_rate >= 540000; } bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp) { int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1]; return max_rate >= 810000; } static void intel_dp_set_clock(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); const struct dp_link_dpll *divisor = NULL; int i, count = 0; if (IS_G4X(dev_priv)) { divisor = g4x_dpll; count = ARRAY_SIZE(g4x_dpll); } else if (HAS_PCH_SPLIT(dev_priv)) { divisor = pch_dpll; count = ARRAY_SIZE(pch_dpll); } else if (IS_CHERRYVIEW(dev_priv)) { divisor = chv_dpll; count = ARRAY_SIZE(chv_dpll); } else if (IS_VALLEYVIEW(dev_priv)) { divisor = vlv_dpll; count = ARRAY_SIZE(vlv_dpll); } if (divisor && count) { for (i = 0; i < count; i++) { if (pipe_config->port_clock == divisor[i].clock) { pipe_config->dpll = divisor[i].dpll; pipe_config->clock_set = true; break; } } } } static void snprintf_int_array(char *str, size_t len, const int *array, int nelem) { int i; str[0] = '\0'; for (i = 0; i < nelem; i++) { int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]); if (r >= len) return; str += r; len -= r; } } static void intel_dp_print_rates(struct intel_dp *intel_dp) { char str[128]; /* FIXME: too big for stack? */ if ((drm_debug & DRM_UT_KMS) == 0) return; snprintf_int_array(str, sizeof(str), intel_dp->source_rates, intel_dp->num_source_rates); DRM_DEBUG_KMS("source rates: %s\n", str); snprintf_int_array(str, sizeof(str), intel_dp->sink_rates, intel_dp->num_sink_rates); DRM_DEBUG_KMS("sink rates: %s\n", str); snprintf_int_array(str, sizeof(str), intel_dp->common_rates, intel_dp->num_common_rates); DRM_DEBUG_KMS("common rates: %s\n", str); } int intel_dp_max_link_rate(struct intel_dp *intel_dp) { int len; len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); if (WARN_ON(len <= 0)) return 162000; return intel_dp->common_rates[len - 1]; } int intel_dp_rate_select(struct intel_dp *intel_dp, int rate) { int i = intel_dp_rate_index(intel_dp->sink_rates, intel_dp->num_sink_rates, rate); if (WARN_ON(i < 0)) i = 0; return i; } void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock, uint8_t *link_bw, uint8_t *rate_select) { /* eDP 1.4 rate select method. */ if (intel_dp->use_rate_select) { *link_bw = 0; *rate_select = intel_dp_rate_select(intel_dp, port_clock); } else { *link_bw = drm_dp_link_rate_to_bw_code(port_clock); *rate_select = 0; } } struct link_config_limits { int min_clock, max_clock; int min_lane_count, max_lane_count; int min_bpp, max_bpp; }; static int intel_dp_compute_bpp(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_connector *intel_connector = intel_dp->attached_connector; int bpp, bpc; bpp = pipe_config->pipe_bpp; bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports); if (bpc > 0) bpp = min(bpp, 3*bpc); if (intel_dp_is_edp(intel_dp)) { /* Get bpp from vbt only for panels that dont have bpp in edid */ if (intel_connector->base.display_info.bpc == 0 && dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) { DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n", dev_priv->vbt.edp.bpp); bpp = dev_priv->vbt.edp.bpp; } } return bpp; } /* Adjust link config limits based on compliance test requests. */ static void intel_dp_adjust_compliance_config(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, struct link_config_limits *limits) { /* For DP Compliance we override the computed bpp for the pipe */ if (intel_dp->compliance.test_data.bpc != 0) { int bpp = 3 * intel_dp->compliance.test_data.bpc; limits->min_bpp = limits->max_bpp = bpp; pipe_config->dither_force_disable = bpp == 6 * 3; DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp); } /* Use values requested by Compliance Test Request */ if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { int index; /* Validate the compliance test data since max values * might have changed due to link train fallback. */ if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate, intel_dp->compliance.test_lane_count)) { index = intel_dp_rate_index(intel_dp->common_rates, intel_dp->num_common_rates, intel_dp->compliance.test_link_rate); if (index >= 0) limits->min_clock = limits->max_clock = index; limits->min_lane_count = limits->max_lane_count = intel_dp->compliance.test_lane_count; } } } /* Optimize link config in order: max bpp, min clock, min lanes */ static bool intel_dp_compute_link_config_wide(struct intel_dp *intel_dp, struct intel_crtc_state *pipe_config, const struct link_config_limits *limits) { struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; int bpp, clock, lane_count; int mode_rate, link_clock, link_avail; for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) { mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock, bpp); for (clock = limits->min_clock; clock <= limits->max_clock; clock++) { for (lane_count = limits->min_lane_count; lane_count <= limits->max_lane_count; lane_count <<= 1) { link_clock = intel_dp->common_rates[clock]; link_avail = intel_dp_max_data_rate(link_clock, lane_count); if (mode_rate <= link_avail) { pipe_config->lane_count = lane_count; pipe_config->pipe_bpp = bpp; pipe_config->port_clock = link_clock; return true; } } } } return false; } static bool intel_dp_compute_link_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct link_config_limits limits; int common_len; common_len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate); /* No common link rates between source and sink */ WARN_ON(common_len <= 0); limits.min_clock = 0; limits.max_clock = common_len - 1; limits.min_lane_count = 1; limits.max_lane_count = intel_dp_max_lane_count(intel_dp); limits.min_bpp = 6 * 3; limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config); if (intel_dp_is_edp(intel_dp)) { /* * Use the maximum clock and number of lanes the eDP panel * advertizes being capable of. The panels are generally * designed to support only a single clock and lane * configuration, and typically these values correspond to the * native resolution of the panel. */ limits.min_lane_count = limits.max_lane_count; limits.min_clock = limits.max_clock; } intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits); DRM_DEBUG_KMS("DP link computation with max lane count %i " "max rate %d max bpp %d pixel clock %iKHz\n", limits.max_lane_count, intel_dp->common_rates[limits.max_clock], limits.max_bpp, adjusted_mode->crtc_clock); /* * Optimize for slow and wide. This is the place to add alternative * optimization policy. */ if (!intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits)) return false; DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n", pipe_config->lane_count, pipe_config->port_clock, pipe_config->pipe_bpp); DRM_DEBUG_KMS("DP link rate required %i available %i\n", intel_dp_link_required(adjusted_mode->crtc_clock, pipe_config->pipe_bpp), intel_dp_max_data_rate(pipe_config->port_clock, pipe_config->lane_count)); return true; } bool intel_dp_compute_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config, struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = encoder->port; struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); struct intel_connector *intel_connector = intel_dp->attached_connector; struct intel_digital_connector_state *intel_conn_state = to_intel_digital_connector_state(conn_state); bool reduce_m_n = drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_LIMITED_M_N); if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A) pipe_config->has_pch_encoder = true; pipe_config->has_drrs = false; if (IS_G4X(dev_priv) || port == PORT_A) pipe_config->has_audio = false; else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO) pipe_config->has_audio = intel_dp->has_audio; else pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON; if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) { intel_fixed_panel_mode(intel_connector->panel.fixed_mode, adjusted_mode); if (INTEL_GEN(dev_priv) >= 9) { int ret; ret = skl_update_scaler_crtc(pipe_config); if (ret) return ret; } if (HAS_GMCH_DISPLAY(dev_priv)) intel_gmch_panel_fitting(intel_crtc, pipe_config, conn_state->scaling_mode); else intel_pch_panel_fitting(intel_crtc, pipe_config, conn_state->scaling_mode); } if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) return false; if (HAS_GMCH_DISPLAY(dev_priv) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) return false; if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) return false; if (!intel_dp_compute_link_config(encoder, pipe_config)) return false; if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) { /* * See: * CEA-861-E - 5.1 Default Encoding Parameters * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry */ pipe_config->limited_color_range = pipe_config->pipe_bpp != 18 && drm_default_rgb_quant_range(adjusted_mode) == HDMI_QUANTIZATION_RANGE_LIMITED; } else { pipe_config->limited_color_range = intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED; } intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count, adjusted_mode->crtc_clock, pipe_config->port_clock, &pipe_config->dp_m_n, reduce_m_n); if (intel_connector->panel.downclock_mode != NULL && dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) { pipe_config->has_drrs = true; intel_link_compute_m_n(pipe_config->pipe_bpp, pipe_config->lane_count, intel_connector->panel.downclock_mode->clock, pipe_config->port_clock, &pipe_config->dp_m2_n2, reduce_m_n); } if (!HAS_DDI(dev_priv)) intel_dp_set_clock(encoder, pipe_config); intel_psr_compute_config(intel_dp, pipe_config); return true; } void intel_dp_set_link_params(struct intel_dp *intel_dp, int link_rate, uint8_t lane_count, bool link_mst) { intel_dp->link_trained = false; intel_dp->link_rate = link_rate; intel_dp->lane_count = lane_count; intel_dp->link_mst = link_mst; } static void intel_dp_prepare(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = encoder->port; struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode; intel_dp_set_link_params(intel_dp, pipe_config->port_clock, pipe_config->lane_count, intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)); /* * There are four kinds of DP registers: * * IBX PCH * SNB CPU * IVB CPU * CPT PCH * * IBX PCH and CPU are the same for almost everything, * except that the CPU DP PLL is configured in this * register * * CPT PCH is quite different, having many bits moved * to the TRANS_DP_CTL register instead. That * configuration happens (oddly) in ironlake_pch_enable */ /* Preserve the BIOS-computed detected bit. This is * supposed to be read-only. */ intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED; /* Handle DP bits in common between all three register formats */ intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0; intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count); /* Split out the IBX/CPU vs CPT settings */ if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe); } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { u32 trans_dp; intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT; trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) trans_dp |= TRANS_DP_ENH_FRAMING; else trans_dp &= ~TRANS_DP_ENH_FRAMING; I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp); } else { if (IS_G4X(dev_priv) && pipe_config->limited_color_range) intel_dp->DP |= DP_COLOR_RANGE_16_235; if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) intel_dp->DP |= DP_SYNC_HS_HIGH; if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) intel_dp->DP |= DP_SYNC_VS_HIGH; intel_dp->DP |= DP_LINK_TRAIN_OFF; if (drm_dp_enhanced_frame_cap(intel_dp->dpcd)) intel_dp->DP |= DP_ENHANCED_FRAMING; if (IS_CHERRYVIEW(dev_priv)) intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe); else intel_dp->DP |= DP_PIPE_SEL(crtc->pipe); } } #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK) #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE) #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0) #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0) #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK) #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE) static void intel_pps_verify_state(struct intel_dp *intel_dp); static void wait_panel_status(struct intel_dp *intel_dp, u32 mask, u32 value) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); i915_reg_t pp_stat_reg, pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); intel_pps_verify_state(intel_dp); pp_stat_reg = _pp_stat_reg(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n", mask, value, I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); if (intel_wait_for_register(dev_priv, pp_stat_reg, mask, value, 5000)) DRM_ERROR("Panel status timeout: status %08x control %08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); DRM_DEBUG_KMS("Wait complete\n"); } static void wait_panel_on(struct intel_dp *intel_dp) { DRM_DEBUG_KMS("Wait for panel power on\n"); wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE); } static void wait_panel_off(struct intel_dp *intel_dp) { DRM_DEBUG_KMS("Wait for panel power off time\n"); wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE); } static void wait_panel_power_cycle(struct intel_dp *intel_dp) { ktime_t panel_power_on_time; s64 panel_power_off_duration; DRM_DEBUG_KMS("Wait for panel power cycle\n"); /* take the difference of currrent time and panel power off time * and then make panel wait for t11_t12 if needed. */ panel_power_on_time = ktime_get_boottime(); panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time); /* When we disable the VDD override bit last we have to do the manual * wait. */ if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay) wait_remaining_ms_from_jiffies(jiffies, intel_dp->panel_power_cycle_delay - panel_power_off_duration); wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE); } static void wait_backlight_on(struct intel_dp *intel_dp) { wait_remaining_ms_from_jiffies(intel_dp->last_power_on, intel_dp->backlight_on_delay); } static void edp_wait_backlight_off(struct intel_dp *intel_dp) { wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off, intel_dp->backlight_off_delay); } /* Read the current pp_control value, unlocking the register if it * is locked */ static u32 ironlake_get_pp_control(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); u32 control; lockdep_assert_held(&dev_priv->pps_mutex); control = I915_READ(_pp_ctrl_reg(intel_dp)); if (WARN_ON(!HAS_DDI(dev_priv) && (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) { control &= ~PANEL_UNLOCK_MASK; control |= PANEL_UNLOCK_REGS; } return control; } /* * Must be paired with edp_panel_vdd_off(). * Must hold pps_mutex around the whole on/off sequence. * Can be nested with intel_edp_panel_vdd_{on,off}() calls. */ static bool edp_panel_vdd_on(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); u32 pp; i915_reg_t pp_stat_reg, pp_ctrl_reg; bool need_to_disable = !intel_dp->want_panel_vdd; lockdep_assert_held(&dev_priv->pps_mutex); if (!intel_dp_is_edp(intel_dp)) return false; cancel_delayed_work(&intel_dp->panel_vdd_work); intel_dp->want_panel_vdd = true; if (edp_have_panel_vdd(intel_dp)) return need_to_disable; intel_display_power_get(dev_priv, intel_dp->aux_power_domain); DRM_DEBUG_KMS("Turning eDP port %c VDD on\n", port_name(intel_dig_port->base.port)); if (!edp_have_panel_power(intel_dp)) wait_panel_power_cycle(intel_dp); pp = ironlake_get_pp_control(intel_dp); pp |= EDP_FORCE_VDD; pp_stat_reg = _pp_stat_reg(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); /* * If the panel wasn't on, delay before accessing aux channel */ if (!edp_have_panel_power(intel_dp)) { DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n", port_name(intel_dig_port->base.port)); msleep(intel_dp->panel_power_up_delay); } return need_to_disable; } /* * Must be paired with intel_edp_panel_vdd_off() or * intel_edp_panel_off(). * Nested calls to these functions are not allowed since * we drop the lock. Caller must use some higher level * locking to prevent nested calls from other threads. */ void intel_edp_panel_vdd_on(struct intel_dp *intel_dp) { bool vdd; if (!intel_dp_is_edp(intel_dp)) return; pps_lock(intel_dp); vdd = edp_panel_vdd_on(intel_dp); pps_unlock(intel_dp); I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n", port_name(dp_to_dig_port(intel_dp)->base.port)); } static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); u32 pp; i915_reg_t pp_stat_reg, pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); WARN_ON(intel_dp->want_panel_vdd); if (!edp_have_panel_vdd(intel_dp)) return; DRM_DEBUG_KMS("Turning eDP port %c VDD off\n", port_name(intel_dig_port->base.port)); pp = ironlake_get_pp_control(intel_dp); pp &= ~EDP_FORCE_VDD; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); pp_stat_reg = _pp_stat_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); /* Make sure sequencer is idle before allowing subsequent activity */ DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n", I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg)); if ((pp & PANEL_POWER_ON) == 0) intel_dp->panel_power_off_time = ktime_get_boottime(); intel_display_power_put(dev_priv, intel_dp->aux_power_domain); } static void edp_panel_vdd_work(struct work_struct *__work) { struct intel_dp *intel_dp = container_of(to_delayed_work(__work), struct intel_dp, panel_vdd_work); pps_lock(intel_dp); if (!intel_dp->want_panel_vdd) edp_panel_vdd_off_sync(intel_dp); pps_unlock(intel_dp); } static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp) { unsigned long delay; /* * Queue the timer to fire a long time from now (relative to the power * down delay) to keep the panel power up across a sequence of * operations. */ delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5); schedule_delayed_work(&intel_dp->panel_vdd_work, delay); } /* * Must be paired with edp_panel_vdd_on(). * Must hold pps_mutex around the whole on/off sequence. * Can be nested with intel_edp_panel_vdd_{on,off}() calls. */ static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); lockdep_assert_held(&dev_priv->pps_mutex); if (!intel_dp_is_edp(intel_dp)) return; I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on", port_name(dp_to_dig_port(intel_dp)->base.port)); intel_dp->want_panel_vdd = false; if (sync) edp_panel_vdd_off_sync(intel_dp); else edp_panel_vdd_schedule_off(intel_dp); } static void edp_panel_on(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); u32 pp; i915_reg_t pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); if (!intel_dp_is_edp(intel_dp)) return; DRM_DEBUG_KMS("Turn eDP port %c panel power on\n", port_name(dp_to_dig_port(intel_dp)->base.port)); if (WARN(edp_have_panel_power(intel_dp), "eDP port %c panel power already on\n", port_name(dp_to_dig_port(intel_dp)->base.port))) return; wait_panel_power_cycle(intel_dp); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); pp = ironlake_get_pp_control(intel_dp); if (IS_GEN5(dev_priv)) { /* ILK workaround: disable reset around power sequence */ pp &= ~PANEL_POWER_RESET; I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); } pp |= PANEL_POWER_ON; if (!IS_GEN5(dev_priv)) pp |= PANEL_POWER_RESET; I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); wait_panel_on(intel_dp); intel_dp->last_power_on = jiffies; if (IS_GEN5(dev_priv)) { pp |= PANEL_POWER_RESET; /* restore panel reset bit */ I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); } } void intel_edp_panel_on(struct intel_dp *intel_dp) { if (!intel_dp_is_edp(intel_dp)) return; pps_lock(intel_dp); edp_panel_on(intel_dp); pps_unlock(intel_dp); } static void edp_panel_off(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); u32 pp; i915_reg_t pp_ctrl_reg; lockdep_assert_held(&dev_priv->pps_mutex); if (!intel_dp_is_edp(intel_dp)) return; DRM_DEBUG_KMS("Turn eDP port %c panel power off\n", port_name(dp_to_dig_port(intel_dp)->base.port)); WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n", port_name(dp_to_dig_port(intel_dp)->base.port)); pp = ironlake_get_pp_control(intel_dp); /* We need to switch off panel power _and_ force vdd, for otherwise some * panels get very unhappy and cease to work. */ pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD | EDP_BLC_ENABLE); pp_ctrl_reg = _pp_ctrl_reg(intel_dp); intel_dp->want_panel_vdd = false; I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); wait_panel_off(intel_dp); intel_dp->panel_power_off_time = ktime_get_boottime(); /* We got a reference when we enabled the VDD. */ intel_display_power_put(dev_priv, intel_dp->aux_power_domain); } void intel_edp_panel_off(struct intel_dp *intel_dp) { if (!intel_dp_is_edp(intel_dp)) return; pps_lock(intel_dp); edp_panel_off(intel_dp); pps_unlock(intel_dp); } /* Enable backlight in the panel power control. */ static void _intel_edp_backlight_on(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); u32 pp; i915_reg_t pp_ctrl_reg; /* * If we enable the backlight right away following a panel power * on, we may see slight flicker as the panel syncs with the eDP * link. So delay a bit to make sure the image is solid before * allowing it to appear. */ wait_backlight_on(intel_dp); pps_lock(intel_dp); pp = ironlake_get_pp_control(intel_dp); pp |= EDP_BLC_ENABLE; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); pps_unlock(intel_dp); } /* Enable backlight PWM and backlight PP control. */ void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder); if (!intel_dp_is_edp(intel_dp)) return; DRM_DEBUG_KMS("\n"); intel_panel_enable_backlight(crtc_state, conn_state); _intel_edp_backlight_on(intel_dp); } /* Disable backlight in the panel power control. */ static void _intel_edp_backlight_off(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); u32 pp; i915_reg_t pp_ctrl_reg; if (!intel_dp_is_edp(intel_dp)) return; pps_lock(intel_dp); pp = ironlake_get_pp_control(intel_dp); pp &= ~EDP_BLC_ENABLE; pp_ctrl_reg = _pp_ctrl_reg(intel_dp); I915_WRITE(pp_ctrl_reg, pp); POSTING_READ(pp_ctrl_reg); pps_unlock(intel_dp); intel_dp->last_backlight_off = jiffies; edp_wait_backlight_off(intel_dp); } /* Disable backlight PP control and backlight PWM. */ void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder); if (!intel_dp_is_edp(intel_dp)) return; DRM_DEBUG_KMS("\n"); _intel_edp_backlight_off(intel_dp); intel_panel_disable_backlight(old_conn_state); } /* * Hook for controlling the panel power control backlight through the bl_power * sysfs attribute. Take care to handle multiple calls. */ static void intel_edp_backlight_power(struct intel_connector *connector, bool enable) { struct intel_dp *intel_dp = intel_attached_dp(&connector->base); bool is_enabled; pps_lock(intel_dp); is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE; pps_unlock(intel_dp); if (is_enabled == enable) return; DRM_DEBUG_KMS("panel power control backlight %s\n", enable ? "enable" : "disable"); if (enable) _intel_edp_backlight_on(intel_dp); else _intel_edp_backlight_off(intel_dp); } static void assert_dp_port(struct intel_dp *intel_dp, bool state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev); bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN; I915_STATE_WARN(cur_state != state, "DP port %c state assertion failure (expected %s, current %s)\n", port_name(dig_port->base.port), onoff(state), onoff(cur_state)); } #define assert_dp_port_disabled(d) assert_dp_port((d), false) static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state) { bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE; I915_STATE_WARN(cur_state != state, "eDP PLL state assertion failure (expected %s, current %s)\n", onoff(state), onoff(cur_state)); } #define assert_edp_pll_enabled(d) assert_edp_pll((d), true) #define assert_edp_pll_disabled(d) assert_edp_pll((d), false) static void ironlake_edp_pll_on(struct intel_dp *intel_dp, const struct intel_crtc_state *pipe_config) { struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); assert_pipe_disabled(dev_priv, crtc->pipe); assert_dp_port_disabled(intel_dp); assert_edp_pll_disabled(dev_priv); DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n", pipe_config->port_clock); intel_dp->DP &= ~DP_PLL_FREQ_MASK; if (pipe_config->port_clock == 162000) intel_dp->DP |= DP_PLL_FREQ_162MHZ; else intel_dp->DP |= DP_PLL_FREQ_270MHZ; I915_WRITE(DP_A, intel_dp->DP); POSTING_READ(DP_A); udelay(500); /* * [DevILK] Work around required when enabling DP PLL * while a pipe is enabled going to FDI: * 1. Wait for the start of vertical blank on the enabled pipe going to FDI * 2. Program DP PLL enable */ if (IS_GEN5(dev_priv)) intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe); intel_dp->DP |= DP_PLL_ENABLE; I915_WRITE(DP_A, intel_dp->DP); POSTING_READ(DP_A); udelay(200); } static void ironlake_edp_pll_off(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); assert_pipe_disabled(dev_priv, crtc->pipe); assert_dp_port_disabled(intel_dp); assert_edp_pll_enabled(dev_priv); DRM_DEBUG_KMS("disabling eDP PLL\n"); intel_dp->DP &= ~DP_PLL_ENABLE; I915_WRITE(DP_A, intel_dp->DP); POSTING_READ(DP_A); udelay(200); } static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp) { /* * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus * be capable of signalling downstream hpd with a long pulse. * Whether or not that means D3 is safe to use is not clear, * but let's assume so until proven otherwise. * * FIXME should really check all downstream ports... */ return intel_dp->dpcd[DP_DPCD_REV] == 0x11 && intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD; } /* If the sink supports it, try to set the power state appropriately */ void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode) { int ret, i; /* Should have a valid DPCD by this point */ if (intel_dp->dpcd[DP_DPCD_REV] < 0x11) return; if (mode != DRM_MODE_DPMS_ON) { if (downstream_hpd_needs_d0(intel_dp)) return; ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D3); } else { struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); /* * When turning on, we need to retry for 1ms to give the sink * time to wake up. */ for (i = 0; i < 3; i++) { ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); if (ret == 1) break; msleep(1); } if (ret == 1 && lspcon->active) lspcon_wait_pcon_mode(lspcon); } if (ret != 1) DRM_DEBUG_KMS("failed to %s sink power state\n", mode == DRM_MODE_DPMS_ON ? "enable" : "disable"); } static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv, enum port port, enum pipe *pipe) { enum pipe p; for_each_pipe(dev_priv, p) { u32 val = I915_READ(TRANS_DP_CTL(p)); if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) { *pipe = p; return true; } } DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port)); /* must initialize pipe to something for the asserts */ *pipe = PIPE_A; return false; } bool intel_dp_port_enabled(struct drm_i915_private *dev_priv, i915_reg_t dp_reg, enum port port, enum pipe *pipe) { bool ret; u32 val; val = I915_READ(dp_reg); ret = val & DP_PORT_EN; /* asserts want to know the pipe even if the port is disabled */ if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB; else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) ret &= cpt_dp_port_selected(dev_priv, port, pipe); else if (IS_CHERRYVIEW(dev_priv)) *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV; else *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT; return ret; } static bool intel_dp_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); bool ret; if (!intel_display_power_get_if_enabled(dev_priv, encoder->power_domain)) return false; ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg, encoder->port, pipe); intel_display_power_put(dev_priv, encoder->power_domain); return ret; } static void intel_dp_get_config(struct intel_encoder *encoder, struct intel_crtc_state *pipe_config) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); u32 tmp, flags = 0; enum port port = encoder->port; struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); if (encoder->type == INTEL_OUTPUT_EDP) pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP); else pipe_config->output_types |= BIT(INTEL_OUTPUT_DP); tmp = I915_READ(intel_dp->output_reg); pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A; if (HAS_PCH_CPT(dev_priv) && port != PORT_A) { u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe)); if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } else { if (tmp & DP_SYNC_HS_HIGH) flags |= DRM_MODE_FLAG_PHSYNC; else flags |= DRM_MODE_FLAG_NHSYNC; if (tmp & DP_SYNC_VS_HIGH) flags |= DRM_MODE_FLAG_PVSYNC; else flags |= DRM_MODE_FLAG_NVSYNC; } pipe_config->base.adjusted_mode.flags |= flags; if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235) pipe_config->limited_color_range = true; pipe_config->lane_count = ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1; intel_dp_get_m_n(crtc, pipe_config); if (port == PORT_A) { if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ) pipe_config->port_clock = 162000; else pipe_config->port_clock = 270000; } pipe_config->base.adjusted_mode.crtc_clock = intel_dotclock_calculate(pipe_config->port_clock, &pipe_config->dp_m_n); if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp && pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) { /* * This is a big fat ugly hack. * * Some machines in UEFI boot mode provide us a VBT that has 18 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons * unknown we fail to light up. Yet the same BIOS boots up with * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as * max, not what it tells us to use. * * Note: This will still be broken if the eDP panel is not lit * up by the BIOS, and thus we can't get the mode at module * load. */ DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n", pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp); dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp; } } static void intel_disable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); intel_dp->link_trained = false; if (old_crtc_state->has_audio) intel_audio_codec_disable(encoder, old_crtc_state, old_conn_state); /* Make sure the panel is off before trying to change the mode. But also * ensure that we have vdd while we switch off the panel. */ intel_edp_panel_vdd_on(intel_dp); intel_edp_backlight_off(old_conn_state); intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF); intel_edp_panel_off(intel_dp); } static void g4x_disable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_dp(encoder, old_crtc_state, old_conn_state); } static void vlv_disable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_disable_dp(encoder, old_crtc_state, old_conn_state); } static void g4x_post_disable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = encoder->port; /* * Bspec does not list a specific disable sequence for g4x DP. * Follow the ilk+ sequence (disable pipe before the port) for * g4x DP as it does not suffer from underruns like the normal * g4x modeset sequence (disable pipe after the port). */ intel_dp_link_down(encoder, old_crtc_state); /* Only ilk+ has port A */ if (port == PORT_A) ironlake_edp_pll_off(intel_dp, old_crtc_state); } static void vlv_post_disable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { intel_dp_link_down(encoder, old_crtc_state); } static void chv_post_disable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); intel_dp_link_down(encoder, old_crtc_state); mutex_lock(&dev_priv->sb_lock); /* Assert data lane reset */ chv_data_lane_soft_reset(encoder, old_crtc_state, true); mutex_unlock(&dev_priv->sb_lock); } static void _intel_dp_set_link_train(struct intel_dp *intel_dp, uint32_t *DP, uint8_t dp_train_pat) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->base.port; uint8_t train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd); if (dp_train_pat & train_pat_mask) DRM_DEBUG_KMS("Using DP training pattern TPS%d\n", dp_train_pat & train_pat_mask); if (HAS_DDI(dev_priv)) { uint32_t temp = I915_READ(DP_TP_CTL(port)); if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE) temp |= DP_TP_CTL_SCRAMBLE_DISABLE; else temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE; temp &= ~DP_TP_CTL_LINK_TRAIN_MASK; switch (dp_train_pat & train_pat_mask) { case DP_TRAINING_PATTERN_DISABLE: temp |= DP_TP_CTL_LINK_TRAIN_NORMAL; break; case DP_TRAINING_PATTERN_1: temp |= DP_TP_CTL_LINK_TRAIN_PAT1; break; case DP_TRAINING_PATTERN_2: temp |= DP_TP_CTL_LINK_TRAIN_PAT2; break; case DP_TRAINING_PATTERN_3: temp |= DP_TP_CTL_LINK_TRAIN_PAT3; break; case DP_TRAINING_PATTERN_4: temp |= DP_TP_CTL_LINK_TRAIN_PAT4; break; } I915_WRITE(DP_TP_CTL(port), temp); } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { *DP &= ~DP_LINK_TRAIN_MASK_CPT; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: *DP |= DP_LINK_TRAIN_OFF_CPT; break; case DP_TRAINING_PATTERN_1: *DP |= DP_LINK_TRAIN_PAT_1_CPT; break; case DP_TRAINING_PATTERN_2: *DP |= DP_LINK_TRAIN_PAT_2_CPT; break; case DP_TRAINING_PATTERN_3: DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); *DP |= DP_LINK_TRAIN_PAT_2_CPT; break; } } else { *DP &= ~DP_LINK_TRAIN_MASK; switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) { case DP_TRAINING_PATTERN_DISABLE: *DP |= DP_LINK_TRAIN_OFF; break; case DP_TRAINING_PATTERN_1: *DP |= DP_LINK_TRAIN_PAT_1; break; case DP_TRAINING_PATTERN_2: *DP |= DP_LINK_TRAIN_PAT_2; break; case DP_TRAINING_PATTERN_3: DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n"); *DP |= DP_LINK_TRAIN_PAT_2; break; } } } static void intel_dp_enable_port(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); /* enable with pattern 1 (as per spec) */ intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1); /* * Magic for VLV/CHV. We _must_ first set up the register * without actually enabling the port, and then do another * write to enable the port. Otherwise link training will * fail when the power sequencer is freshly used for this port. */ intel_dp->DP |= DP_PORT_EN; if (old_crtc_state->has_audio) intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE; I915_WRITE(intel_dp->output_reg, intel_dp->DP); POSTING_READ(intel_dp->output_reg); } static void intel_enable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc); uint32_t dp_reg = I915_READ(intel_dp->output_reg); enum pipe pipe = crtc->pipe; if (WARN_ON(dp_reg & DP_PORT_EN)) return; pps_lock(intel_dp); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) vlv_init_panel_power_sequencer(encoder, pipe_config); intel_dp_enable_port(intel_dp, pipe_config); edp_panel_vdd_on(intel_dp); edp_panel_on(intel_dp); edp_panel_vdd_off(intel_dp, true); pps_unlock(intel_dp); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { unsigned int lane_mask = 0x0; if (IS_CHERRYVIEW(dev_priv)) lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count); vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp), lane_mask); } intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON); intel_dp_start_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); if (pipe_config->has_audio) { DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n", pipe_name(pipe)); intel_audio_codec_enable(encoder, pipe_config, conn_state); } } static void g4x_enable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_enable_dp(encoder, pipe_config, conn_state); intel_edp_backlight_on(pipe_config, conn_state); } static void vlv_enable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_edp_backlight_on(pipe_config, conn_state); } static void g4x_pre_enable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = encoder->port; intel_dp_prepare(encoder, pipe_config); /* Only ilk+ has port A */ if (port == PORT_A) ironlake_edp_pll_on(intel_dp, pipe_config); } static void vlv_detach_power_sequencer(struct intel_dp *intel_dp) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); enum pipe pipe = intel_dp->pps_pipe; i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe); WARN_ON(intel_dp->active_pipe != INVALID_PIPE); if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B)) return; edp_panel_vdd_off_sync(intel_dp); /* * VLV seems to get confused when multiple power sequencers * have the same port selected (even if only one has power/vdd * enabled). The failure manifests as vlv_wait_port_ready() failing * CHV on the other hand doesn't seem to mind having the same port * selected in multiple power sequencers, but let's clear the * port select always when logically disconnecting a power sequencer * from a port. */ DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n", pipe_name(pipe), port_name(intel_dig_port->base.port)); I915_WRITE(pp_on_reg, 0); POSTING_READ(pp_on_reg); intel_dp->pps_pipe = INVALID_PIPE; } static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv, enum pipe pipe) { struct intel_encoder *encoder; lockdep_assert_held(&dev_priv->pps_mutex); for_each_intel_dp(&dev_priv->drm, encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); enum port port = encoder->port; WARN(intel_dp->active_pipe == pipe, "stealing pipe %c power sequencer from active (e)DP port %c\n", pipe_name(pipe), port_name(port)); if (intel_dp->pps_pipe != pipe) continue; DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n", pipe_name(pipe), port_name(port)); /* make sure vdd is off before we steal it */ vlv_detach_power_sequencer(intel_dp); } } static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc); lockdep_assert_held(&dev_priv->pps_mutex); WARN_ON(intel_dp->active_pipe != INVALID_PIPE); if (intel_dp->pps_pipe != INVALID_PIPE && intel_dp->pps_pipe != crtc->pipe) { /* * If another power sequencer was being used on this * port previously make sure to turn off vdd there while * we still have control of it. */ vlv_detach_power_sequencer(intel_dp); } /* * We may be stealing the power * sequencer from another port. */ vlv_steal_power_sequencer(dev_priv, crtc->pipe); intel_dp->active_pipe = crtc->pipe; if (!intel_dp_is_edp(intel_dp)) return; /* now it's all ours */ intel_dp->pps_pipe = crtc->pipe; DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n", pipe_name(intel_dp->pps_pipe), port_name(encoder->port)); /* init power sequencer on this pipe and port */ intel_dp_init_panel_power_sequencer(intel_dp); intel_dp_init_panel_power_sequencer_registers(intel_dp, true); } static void vlv_pre_enable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { vlv_phy_pre_encoder_enable(encoder, pipe_config); intel_enable_dp(encoder, pipe_config, conn_state); } static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_dp_prepare(encoder, pipe_config); vlv_phy_pre_pll_enable(encoder, pipe_config); } static void chv_pre_enable_dp(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { chv_phy_pre_encoder_enable(encoder, pipe_config); intel_enable_dp(encoder, pipe_config, conn_state); /* Second common lane will stay alive on its own now */ chv_phy_release_cl2_override(encoder); } static void chv_dp_pre_pll_enable(struct intel_encoder *encoder, const struct intel_crtc_state *pipe_config, const struct drm_connector_state *conn_state) { intel_dp_prepare(encoder, pipe_config); chv_phy_pre_pll_enable(encoder, pipe_config); } static void chv_dp_post_pll_disable(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state, const struct drm_connector_state *old_conn_state) { chv_phy_post_pll_disable(encoder, old_crtc_state); } /* * Fetch AUX CH registers 0x202 - 0x207 which contain * link status information */ bool intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE]) { return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status, DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE; } /* These are source-specific values. */ uint8_t intel_dp_voltage_max(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; enum port port = encoder->port; if (HAS_DDI(dev_priv)) return intel_ddi_dp_voltage_max(encoder); else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) return DP_TRAIN_VOLTAGE_SWING_LEVEL_3; else return DP_TRAIN_VOLTAGE_SWING_LEVEL_2; } uint8_t intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; enum port port = encoder->port; if (HAS_DDI(dev_priv)) { return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing); } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_3; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } else { switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: return DP_TRAIN_PRE_EMPH_LEVEL_2; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: return DP_TRAIN_PRE_EMPH_LEVEL_1; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: default: return DP_TRAIN_PRE_EMPH_LEVEL_0; } } } static uint32_t vlv_signal_levels(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; unsigned long demph_reg_value, preemph_reg_value, uniqtranscale_reg_value; uint8_t train_set = intel_dp->train_set[0]; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: preemph_reg_value = 0x0004000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x552AB83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5548B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: demph_reg_value = 0x2B245555; uniqtranscale_reg_value = 0x5560B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: demph_reg_value = 0x2B405555; uniqtranscale_reg_value = 0x5598DA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_1: preemph_reg_value = 0x0002000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x5552B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B404848; uniqtranscale_reg_value = 0x5580B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: demph_reg_value = 0x2B404040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_2: preemph_reg_value = 0x0000000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x2B305555; uniqtranscale_reg_value = 0x5570B83A; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: demph_reg_value = 0x2B2B4040; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_3: preemph_reg_value = 0x0006000; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: demph_reg_value = 0x1B405555; uniqtranscale_reg_value = 0x55ADDA3A; break; default: return 0; } break; default: return 0; } vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value, uniqtranscale_reg_value, 0); return 0; } static uint32_t chv_signal_levels(struct intel_dp *intel_dp) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; u32 deemph_reg_value, margin_reg_value; bool uniq_trans_scale = false; uint8_t train_set = intel_dp->train_set[0]; switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 128; margin_reg_value = 52; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 128; margin_reg_value = 77; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: deemph_reg_value = 128; margin_reg_value = 102; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: deemph_reg_value = 128; margin_reg_value = 154; uniq_trans_scale = true; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_1: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 85; margin_reg_value = 78; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 85; margin_reg_value = 116; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: deemph_reg_value = 85; margin_reg_value = 154; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_2: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 64; margin_reg_value = 104; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: deemph_reg_value = 64; margin_reg_value = 154; break; default: return 0; } break; case DP_TRAIN_PRE_EMPH_LEVEL_3: switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: deemph_reg_value = 43; margin_reg_value = 154; break; default: return 0; } break; default: return 0; } chv_set_phy_signal_level(encoder, deemph_reg_value, margin_reg_value, uniq_trans_scale); return 0; } static uint32_t g4x_signal_levels(uint8_t train_set) { uint32_t signal_levels = 0; switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0: default: signal_levels |= DP_VOLTAGE_0_4; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1: signal_levels |= DP_VOLTAGE_0_6; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2: signal_levels |= DP_VOLTAGE_0_8; break; case DP_TRAIN_VOLTAGE_SWING_LEVEL_3: signal_levels |= DP_VOLTAGE_1_2; break; } switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) { case DP_TRAIN_PRE_EMPH_LEVEL_0: default: signal_levels |= DP_PRE_EMPHASIS_0; break; case DP_TRAIN_PRE_EMPH_LEVEL_1: signal_levels |= DP_PRE_EMPHASIS_3_5; break; case DP_TRAIN_PRE_EMPH_LEVEL_2: signal_levels |= DP_PRE_EMPHASIS_6; break; case DP_TRAIN_PRE_EMPH_LEVEL_3: signal_levels |= DP_PRE_EMPHASIS_9_5; break; } return signal_levels; } /* SNB CPU eDP voltage swing and pre-emphasis control */ static uint32_t snb_cpu_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2: return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B; } } /* IVB CPU eDP voltage swing and pre-emphasis control */ static uint32_t ivb_cpu_edp_signal_levels(uint8_t train_set) { int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK | DP_TRAIN_PRE_EMPHASIS_MASK); switch (signal_levels) { case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_400MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_400MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2: return EDP_LINK_TRAIN_400MV_6DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_600MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_600MV_3_5DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0: return EDP_LINK_TRAIN_800MV_0DB_IVB; case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1: return EDP_LINK_TRAIN_800MV_3_5DB_IVB; default: DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:" "0x%x\n", signal_levels); return EDP_LINK_TRAIN_500MV_0DB_IVB; } } void intel_dp_set_signal_levels(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->base.port; uint32_t signal_levels, mask = 0; uint8_t train_set = intel_dp->train_set[0]; if (IS_GEN9_LP(dev_priv) || IS_CANNONLAKE(dev_priv)) { signal_levels = bxt_signal_levels(intel_dp); } else if (HAS_DDI(dev_priv)) { signal_levels = ddi_signal_levels(intel_dp); mask = DDI_BUF_EMP_MASK; } else if (IS_CHERRYVIEW(dev_priv)) { signal_levels = chv_signal_levels(intel_dp); } else if (IS_VALLEYVIEW(dev_priv)) { signal_levels = vlv_signal_levels(intel_dp); } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) { signal_levels = ivb_cpu_edp_signal_levels(train_set); mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB; } else if (IS_GEN6(dev_priv) && port == PORT_A) { signal_levels = snb_cpu_edp_signal_levels(train_set); mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB; } else { signal_levels = g4x_signal_levels(train_set); mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK; } if (mask) DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels); DRM_DEBUG_KMS("Using vswing level %d\n", train_set & DP_TRAIN_VOLTAGE_SWING_MASK); DRM_DEBUG_KMS("Using pre-emphasis level %d\n", (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >> DP_TRAIN_PRE_EMPHASIS_SHIFT); intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels; I915_WRITE(intel_dp->output_reg, intel_dp->DP); POSTING_READ(intel_dp->output_reg); } void intel_dp_program_link_training_pattern(struct intel_dp *intel_dp, uint8_t dp_train_pat) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev); _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat); I915_WRITE(intel_dp->output_reg, intel_dp->DP); POSTING_READ(intel_dp->output_reg); } void intel_dp_set_idle_link_train(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); enum port port = intel_dig_port->base.port; uint32_t val; if (!HAS_DDI(dev_priv)) return; val = I915_READ(DP_TP_CTL(port)); val &= ~DP_TP_CTL_LINK_TRAIN_MASK; val |= DP_TP_CTL_LINK_TRAIN_IDLE; I915_WRITE(DP_TP_CTL(port), val); /* * On PORT_A we can have only eDP in SST mode. There the only reason * we need to set idle transmission mode is to work around a HW issue * where we enable the pipe while not in idle link-training mode. * In this case there is requirement to wait for a minimum number of * idle patterns to be sent. */ if (port == PORT_A) return; if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port), DP_TP_STATUS_IDLE_DONE, DP_TP_STATUS_IDLE_DONE, 1)) DRM_ERROR("Timed out waiting for DP idle patterns\n"); } static void intel_dp_link_down(struct intel_encoder *encoder, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc); enum port port = encoder->port; uint32_t DP = intel_dp->DP; if (WARN_ON(HAS_DDI(dev_priv))) return; if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)) return; DRM_DEBUG_KMS("\n"); if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) || (HAS_PCH_CPT(dev_priv) && port != PORT_A)) { DP &= ~DP_LINK_TRAIN_MASK_CPT; DP |= DP_LINK_TRAIN_PAT_IDLE_CPT; } else { DP &= ~DP_LINK_TRAIN_MASK; DP |= DP_LINK_TRAIN_PAT_IDLE; } I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE); I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); /* * HW workaround for IBX, we need to move the port * to transcoder A after disabling it to allow the * matching HDMI port to be enabled on transcoder A. */ if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) { /* * We get CPU/PCH FIFO underruns on the other pipe when * doing the workaround. Sweep them under the rug. */ intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false); /* always enable with pattern 1 (as per spec) */ DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK); DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) | DP_LINK_TRAIN_PAT_1; I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); DP &= ~DP_PORT_EN; I915_WRITE(intel_dp->output_reg, DP); POSTING_READ(intel_dp->output_reg); intel_wait_for_vblank_if_active(dev_priv, PIPE_A); intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true); intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true); } msleep(intel_dp->panel_power_down_delay); intel_dp->DP = DP; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { pps_lock(intel_dp); intel_dp->active_pipe = INVALID_PIPE; pps_unlock(intel_dp); } } bool intel_dp_read_dpcd(struct intel_dp *intel_dp) { if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd, sizeof(intel_dp->dpcd)) < 0) return false; /* aux transfer failed */ DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd); return intel_dp->dpcd[DP_DPCD_REV] != 0; } static bool intel_edp_init_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); /* this function is meant to be called only once */ WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0); if (!intel_dp_read_dpcd(intel_dp)) return false; drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd)); if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_NO_AUX_HANDSHAKE_LINK_TRAINING; /* * Read the eDP display control registers. * * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it * set, but require eDP 1.4+ detection (e.g. for supported link rates * method). The display control registers should read zero if they're * not supported anyway. */ if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV, intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) == sizeof(intel_dp->edp_dpcd)) DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd), intel_dp->edp_dpcd); /* * This has to be called after intel_dp->edp_dpcd is filled, PSR checks * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1] */ intel_psr_init_dpcd(intel_dp); /* Read the eDP 1.4+ supported link rates. */ if (intel_dp->edp_dpcd[0] >= DP_EDP_14) { __le16 sink_rates[DP_MAX_SUPPORTED_RATES]; int i; drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES, sink_rates, sizeof(sink_rates)); for (i = 0; i < ARRAY_SIZE(sink_rates); i++) { int val = le16_to_cpu(sink_rates[i]); if (val == 0) break; /* Value read multiplied by 200kHz gives the per-lane * link rate in kHz. The source rates are, however, * stored in terms of LS_Clk kHz. The full conversion * back to symbols is * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte) */ intel_dp->sink_rates[i] = (val * 200) / 10; } intel_dp->num_sink_rates = i; } /* * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available, * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise. */ if (intel_dp->num_sink_rates) intel_dp->use_rate_select = true; else intel_dp_set_sink_rates(intel_dp); intel_dp_set_common_rates(intel_dp); return true; } static bool intel_dp_get_dpcd(struct intel_dp *intel_dp) { u8 sink_count; if (!intel_dp_read_dpcd(intel_dp)) return false; /* Don't clobber cached eDP rates. */ if (!intel_dp_is_edp(intel_dp)) { intel_dp_set_sink_rates(intel_dp); intel_dp_set_common_rates(intel_dp); } if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &sink_count) <= 0) return false; /* * Sink count can change between short pulse hpd hence * a member variable in intel_dp will track any changes * between short pulse interrupts. */ intel_dp->sink_count = DP_GET_SINK_COUNT(sink_count); /* * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that * a dongle is present but no display. Unless we require to know * if a dongle is present or not, we don't need to update * downstream port information. So, an early return here saves * time from performing other operations which are not required. */ if (!intel_dp_is_edp(intel_dp) && !intel_dp->sink_count) return false; if (!drm_dp_is_branch(intel_dp->dpcd)) return true; /* native DP sink */ if (intel_dp->dpcd[DP_DPCD_REV] == 0x10) return true; /* no per-port downstream info */ if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0, intel_dp->downstream_ports, DP_MAX_DOWNSTREAM_PORTS) < 0) return false; /* downstream port status fetch failed */ return true; } static bool intel_dp_can_mst(struct intel_dp *intel_dp) { u8 mstm_cap; if (!i915_modparams.enable_dp_mst) return false; if (!intel_dp->can_mst) return false; if (intel_dp->dpcd[DP_DPCD_REV] < 0x12) return false; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1) return false; return mstm_cap & DP_MST_CAP; } static void intel_dp_configure_mst(struct intel_dp *intel_dp) { if (!i915_modparams.enable_dp_mst) return; if (!intel_dp->can_mst) return; intel_dp->is_mst = intel_dp_can_mst(intel_dp); if (intel_dp->is_mst) DRM_DEBUG_KMS("Sink is MST capable\n"); else DRM_DEBUG_KMS("Sink is not MST capable\n"); drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); } static bool intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector) { return drm_dp_dpcd_readb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, sink_irq_vector) == 1; } static bool intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector) { return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI, sink_irq_vector, DP_DPRX_ESI_LEN) == DP_DPRX_ESI_LEN; } static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp) { int status = 0; int test_link_rate; uint8_t test_lane_count, test_link_bw; /* (DP CTS 1.2) * 4.3.1.11 */ /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */ status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT, &test_lane_count); if (status <= 0) { DRM_DEBUG_KMS("Lane count read failed\n"); return DP_TEST_NAK; } test_lane_count &= DP_MAX_LANE_COUNT_MASK; status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE, &test_link_bw); if (status <= 0) { DRM_DEBUG_KMS("Link Rate read failed\n"); return DP_TEST_NAK; } test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw); /* Validate the requested link rate and lane count */ if (!intel_dp_link_params_valid(intel_dp, test_link_rate, test_lane_count)) return DP_TEST_NAK; intel_dp->compliance.test_lane_count = test_lane_count; intel_dp->compliance.test_link_rate = test_link_rate; return DP_TEST_ACK; } static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp) { uint8_t test_pattern; uint8_t test_misc; __be16 h_width, v_height; int status = 0; /* Read the TEST_PATTERN (DP CTS 3.1.5) */ status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN, &test_pattern); if (status <= 0) { DRM_DEBUG_KMS("Test pattern read failed\n"); return DP_TEST_NAK; } if (test_pattern != DP_COLOR_RAMP) return DP_TEST_NAK; status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI, &h_width, 2); if (status <= 0) { DRM_DEBUG_KMS("H Width read failed\n"); return DP_TEST_NAK; } status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI, &v_height, 2); if (status <= 0) { DRM_DEBUG_KMS("V Height read failed\n"); return DP_TEST_NAK; } status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0, &test_misc); if (status <= 0) { DRM_DEBUG_KMS("TEST MISC read failed\n"); return DP_TEST_NAK; } if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB) return DP_TEST_NAK; if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA) return DP_TEST_NAK; switch (test_misc & DP_TEST_BIT_DEPTH_MASK) { case DP_TEST_BIT_DEPTH_6: intel_dp->compliance.test_data.bpc = 6; break; case DP_TEST_BIT_DEPTH_8: intel_dp->compliance.test_data.bpc = 8; break; default: return DP_TEST_NAK; } intel_dp->compliance.test_data.video_pattern = test_pattern; intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width); intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height); /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = 1; return DP_TEST_ACK; } static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp) { uint8_t test_result = DP_TEST_ACK; struct intel_connector *intel_connector = intel_dp->attached_connector; struct drm_connector *connector = &intel_connector->base; if (intel_connector->detect_edid == NULL || connector->edid_corrupt || intel_dp->aux.i2c_defer_count > 6) { /* Check EDID read for NACKs, DEFERs and corruption * (DP CTS 1.2 Core r1.1) * 4.2.2.4 : Failed EDID read, I2C_NAK * 4.2.2.5 : Failed EDID read, I2C_DEFER * 4.2.2.6 : EDID corruption detected * Use failsafe mode for all cases */ if (intel_dp->aux.i2c_nack_count > 0 || intel_dp->aux.i2c_defer_count > 0) DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n", intel_dp->aux.i2c_nack_count, intel_dp->aux.i2c_defer_count); intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE; } else { struct edid *block = intel_connector->detect_edid; /* We have to write the checksum * of the last block read */ block += intel_connector->detect_edid->extensions; if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM, block->checksum) <= 0) DRM_DEBUG_KMS("Failed to write EDID checksum\n"); test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE; intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED; } /* Set test active flag here so userspace doesn't interrupt things */ intel_dp->compliance.test_active = 1; return test_result; } static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp) { uint8_t test_result = DP_TEST_NAK; return test_result; } static void intel_dp_handle_test_request(struct intel_dp *intel_dp) { uint8_t response = DP_TEST_NAK; uint8_t request = 0; int status; status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request); if (status <= 0) { DRM_DEBUG_KMS("Could not read test request from sink\n"); goto update_status; } switch (request) { case DP_TEST_LINK_TRAINING: DRM_DEBUG_KMS("LINK_TRAINING test requested\n"); response = intel_dp_autotest_link_training(intel_dp); break; case DP_TEST_LINK_VIDEO_PATTERN: DRM_DEBUG_KMS("TEST_PATTERN test requested\n"); response = intel_dp_autotest_video_pattern(intel_dp); break; case DP_TEST_LINK_EDID_READ: DRM_DEBUG_KMS("EDID test requested\n"); response = intel_dp_autotest_edid(intel_dp); break; case DP_TEST_LINK_PHY_TEST_PATTERN: DRM_DEBUG_KMS("PHY_PATTERN test requested\n"); response = intel_dp_autotest_phy_pattern(intel_dp); break; default: DRM_DEBUG_KMS("Invalid test request '%02x'\n", request); break; } if (response & DP_TEST_ACK) intel_dp->compliance.test_type = request; update_status: status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response); if (status <= 0) DRM_DEBUG_KMS("Could not write test response to sink\n"); } static int intel_dp_check_mst_status(struct intel_dp *intel_dp) { bool bret; if (intel_dp->is_mst) { u8 esi[DP_DPRX_ESI_LEN] = { 0 }; int ret = 0; int retry; bool handled; bret = intel_dp_get_sink_irq_esi(intel_dp, esi); go_again: if (bret == true) { /* check link status - esi[10] = 0x200c */ if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) { DRM_DEBUG_KMS("channel EQ not ok, retraining\n"); intel_dp_start_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); } DRM_DEBUG_KMS("got esi %3ph\n", esi); ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled); if (handled) { for (retry = 0; retry < 3; retry++) { int wret; wret = drm_dp_dpcd_write(&intel_dp->aux, DP_SINK_COUNT_ESI+1, &esi[1], 3); if (wret == 3) { break; } } bret = intel_dp_get_sink_irq_esi(intel_dp, esi); if (bret == true) { DRM_DEBUG_KMS("got esi2 %3ph\n", esi); goto go_again; } } else ret = 0; return ret; } else { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); DRM_DEBUG_KMS("failed to get ESI - device may have failed\n"); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); /* send a hotplug event */ drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev); } } return -EINVAL; } static bool intel_dp_needs_link_retrain(struct intel_dp *intel_dp) { u8 link_status[DP_LINK_STATUS_SIZE]; if (!intel_dp->link_trained) return false; if (!intel_dp_get_link_status(intel_dp, link_status)) return false; /* * Validate the cached values of intel_dp->link_rate and * intel_dp->lane_count before attempting to retrain. */ if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate, intel_dp->lane_count)) return false; /* Retrain if Channel EQ or CR not ok */ return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count); } int intel_dp_retrain_link(struct intel_encoder *encoder, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base); struct intel_connector *connector = intel_dp->attached_connector; struct drm_connector_state *conn_state; struct intel_crtc_state *crtc_state; struct intel_crtc *crtc; int ret; /* FIXME handle the MST connectors as well */ if (!connector || connector->base.status != connector_status_connected) return 0; ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, ctx); if (ret) return ret; conn_state = connector->base.state; crtc = to_intel_crtc(conn_state->crtc); if (!crtc) return 0; ret = drm_modeset_lock(&crtc->base.mutex, ctx); if (ret) return ret; crtc_state = to_intel_crtc_state(crtc->base.state); WARN_ON(!intel_crtc_has_dp_encoder(crtc_state)); if (!crtc_state->base.active) return 0; if (conn_state->commit && !try_wait_for_completion(&conn_state->commit->hw_done)) return 0; if (!intel_dp_needs_link_retrain(intel_dp)) return 0; /* Suppress underruns caused by re-training */ intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false); if (crtc->config->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, intel_crtc_pch_transcoder(crtc), false); intel_dp_start_link_train(intel_dp); intel_dp_stop_link_train(intel_dp); /* Keep underrun reporting disabled until things are stable */ intel_wait_for_vblank(dev_priv, crtc->pipe); intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true); if (crtc->config->has_pch_encoder) intel_set_pch_fifo_underrun_reporting(dev_priv, intel_crtc_pch_transcoder(crtc), true); return 0; } /* * If display is now connected check links status, * there has been known issues of link loss triggering * long pulse. * * Some sinks (eg. ASUS PB287Q) seem to perform some * weird HPD ping pong during modesets. So we can apparently * end up with HPD going low during a modeset, and then * going back up soon after. And once that happens we must * retrain the link to get a picture. That's in case no * userspace component reacted to intermittent HPD dip. */ static bool intel_dp_hotplug(struct intel_encoder *encoder, struct intel_connector *connector) { struct drm_modeset_acquire_ctx ctx; bool changed; int ret; changed = intel_encoder_hotplug(encoder, connector); drm_modeset_acquire_init(&ctx, 0); for (;;) { ret = intel_dp_retrain_link(encoder, &ctx); if (ret == -EDEADLK) { drm_modeset_backoff(&ctx); continue; } break; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); WARN(ret, "Acquiring modeset locks failed with %i\n", ret); return changed; } /* * According to DP spec * 5.1.2: * 1. Read DPCD * 2. Configure link according to Receiver Capabilities * 3. Use Link Training from 2.5.3.3 and 3.5.1.3 * 4. Check link status on receipt of hot-plug interrupt * * intel_dp_short_pulse - handles short pulse interrupts * when full detection is not required. * Returns %true if short pulse is handled and full detection * is NOT required and %false otherwise. */ static bool intel_dp_short_pulse(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); u8 sink_irq_vector = 0; u8 old_sink_count = intel_dp->sink_count; bool ret; /* * Clearing compliance test variables to allow capturing * of values for next automated test request. */ memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); /* * Now read the DPCD to see if it's actually running * If the current value of sink count doesn't match with * the value that was stored earlier or dpcd read failed * we need to do full detection */ ret = intel_dp_get_dpcd(intel_dp); if ((old_sink_count != intel_dp->sink_count) || !ret) { /* No need to proceed if we are going to do full detect */ return false; } /* Try to read the source of the interrupt */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) && sink_irq_vector != 0) { /* Clear interrupt source */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, sink_irq_vector); if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) intel_dp_handle_test_request(intel_dp); if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); } /* Handle CEC interrupts, if any */ drm_dp_cec_irq(&intel_dp->aux); /* defer to the hotplug work for link retraining if needed */ if (intel_dp_needs_link_retrain(intel_dp)) return false; intel_psr_short_pulse(intel_dp); if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) { DRM_DEBUG_KMS("Link Training Compliance Test requested\n"); /* Send a Hotplug Uevent to userspace to start modeset */ drm_kms_helper_hotplug_event(&dev_priv->drm); } return true; } /* XXX this is probably wrong for multiple downstream ports */ static enum drm_connector_status intel_dp_detect_dpcd(struct intel_dp *intel_dp) { struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); uint8_t *dpcd = intel_dp->dpcd; uint8_t type; if (lspcon->active) lspcon_resume(lspcon); if (!intel_dp_get_dpcd(intel_dp)) return connector_status_disconnected; if (intel_dp_is_edp(intel_dp)) return connector_status_connected; /* if there's no downstream port, we're done */ if (!drm_dp_is_branch(dpcd)) return connector_status_connected; /* If we're HPD-aware, SINK_COUNT changes dynamically */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) { return intel_dp->sink_count ? connector_status_connected : connector_status_disconnected; } if (intel_dp_can_mst(intel_dp)) return connector_status_connected; /* If no HPD, poke DDC gently */ if (drm_probe_ddc(&intel_dp->aux.ddc)) return connector_status_connected; /* Well we tried, say unknown for unreliable port types */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) { type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK; if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID) return connector_status_unknown; } else { type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK; if (type == DP_DWN_STRM_PORT_TYPE_ANALOG || type == DP_DWN_STRM_PORT_TYPE_OTHER) return connector_status_unknown; } /* Anything else is out of spec, warn and ignore */ DRM_DEBUG_KMS("Broken DP branch device, ignoring\n"); return connector_status_disconnected; } static enum drm_connector_status edp_detect(struct intel_dp *intel_dp) { return connector_status_connected; } static bool ibx_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_B: bit = SDE_PORTB_HOTPLUG; break; case HPD_PORT_C: bit = SDE_PORTC_HOTPLUG; break; case HPD_PORT_D: bit = SDE_PORTD_HOTPLUG; break; default: MISSING_CASE(encoder->hpd_pin); return false; } return I915_READ(SDEISR) & bit; } static bool cpt_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_B: bit = SDE_PORTB_HOTPLUG_CPT; break; case HPD_PORT_C: bit = SDE_PORTC_HOTPLUG_CPT; break; case HPD_PORT_D: bit = SDE_PORTD_HOTPLUG_CPT; break; default: MISSING_CASE(encoder->hpd_pin); return false; } return I915_READ(SDEISR) & bit; } static bool spt_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_A: bit = SDE_PORTA_HOTPLUG_SPT; break; case HPD_PORT_E: bit = SDE_PORTE_HOTPLUG_SPT; break; default: return cpt_digital_port_connected(encoder); } return I915_READ(SDEISR) & bit; } static bool g4x_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_G4X; break; case HPD_PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_G4X; break; case HPD_PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_G4X; break; default: MISSING_CASE(encoder->hpd_pin); return false; } return I915_READ(PORT_HOTPLUG_STAT) & bit; } static bool gm45_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_B: bit = PORTB_HOTPLUG_LIVE_STATUS_GM45; break; case HPD_PORT_C: bit = PORTC_HOTPLUG_LIVE_STATUS_GM45; break; case HPD_PORT_D: bit = PORTD_HOTPLUG_LIVE_STATUS_GM45; break; default: MISSING_CASE(encoder->hpd_pin); return false; } return I915_READ(PORT_HOTPLUG_STAT) & bit; } static bool ilk_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (encoder->hpd_pin == HPD_PORT_A) return I915_READ(DEISR) & DE_DP_A_HOTPLUG; else return ibx_digital_port_connected(encoder); } static bool snb_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (encoder->hpd_pin == HPD_PORT_A) return I915_READ(DEISR) & DE_DP_A_HOTPLUG; else return cpt_digital_port_connected(encoder); } static bool ivb_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (encoder->hpd_pin == HPD_PORT_A) return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB; else return cpt_digital_port_connected(encoder); } static bool bdw_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (encoder->hpd_pin == HPD_PORT_A) return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG; else return cpt_digital_port_connected(encoder); } static bool bxt_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); u32 bit; switch (encoder->hpd_pin) { case HPD_PORT_A: bit = BXT_DE_PORT_HP_DDIA; break; case HPD_PORT_B: bit = BXT_DE_PORT_HP_DDIB; break; case HPD_PORT_C: bit = BXT_DE_PORT_HP_DDIC; break; default: MISSING_CASE(encoder->hpd_pin); return false; } return I915_READ(GEN8_DE_PORT_ISR) & bit; } /* * intel_digital_port_connected - is the specified port connected? * @encoder: intel_encoder * * Return %true if port is connected, %false otherwise. */ bool intel_digital_port_connected(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); if (HAS_GMCH_DISPLAY(dev_priv)) { if (IS_GM45(dev_priv)) return gm45_digital_port_connected(encoder); else return g4x_digital_port_connected(encoder); } if (IS_GEN5(dev_priv)) return ilk_digital_port_connected(encoder); else if (IS_GEN6(dev_priv)) return snb_digital_port_connected(encoder); else if (IS_GEN7(dev_priv)) return ivb_digital_port_connected(encoder); else if (IS_GEN8(dev_priv)) return bdw_digital_port_connected(encoder); else if (IS_GEN9_LP(dev_priv)) return bxt_digital_port_connected(encoder); else return spt_digital_port_connected(encoder); } static struct edid * intel_dp_get_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; /* use cached edid if we have one */ if (intel_connector->edid) { /* invalid edid */ if (IS_ERR(intel_connector->edid)) return NULL; return drm_edid_duplicate(intel_connector->edid); } else return drm_get_edid(&intel_connector->base, &intel_dp->aux.ddc); } static void intel_dp_set_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; struct edid *edid; intel_dp_unset_edid(intel_dp); edid = intel_dp_get_edid(intel_dp); intel_connector->detect_edid = edid; intel_dp->has_audio = drm_detect_monitor_audio(edid); drm_dp_cec_set_edid(&intel_dp->aux, edid); } static void intel_dp_unset_edid(struct intel_dp *intel_dp) { struct intel_connector *intel_connector = intel_dp->attached_connector; drm_dp_cec_unset_edid(&intel_dp->aux); kfree(intel_connector->detect_edid); intel_connector->detect_edid = NULL; intel_dp->has_audio = false; } static int intel_dp_long_pulse(struct intel_connector *connector, struct drm_modeset_acquire_ctx *ctx) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct intel_dp *intel_dp = intel_attached_dp(&connector->base); enum drm_connector_status status; u8 sink_irq_vector = 0; WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex)); intel_display_power_get(dev_priv, intel_dp->aux_power_domain); /* Can't disconnect eDP */ if (intel_dp_is_edp(intel_dp)) status = edp_detect(intel_dp); else if (intel_digital_port_connected(&dp_to_dig_port(intel_dp)->base)) status = intel_dp_detect_dpcd(intel_dp); else status = connector_status_disconnected; if (status == connector_status_disconnected) { memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance)); if (intel_dp->is_mst) { DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); } goto out; } if (intel_dp->reset_link_params) { /* Initial max link lane count */ intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp); /* Initial max link rate */ intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp); intel_dp->reset_link_params = false; } intel_dp_print_rates(intel_dp); drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc, drm_dp_is_branch(intel_dp->dpcd)); intel_dp_configure_mst(intel_dp); if (intel_dp->is_mst) { /* * If we are in MST mode then this connector * won't appear connected or have anything * with EDID on it */ status = connector_status_disconnected; goto out; } else { /* * If display is now connected check links status, * there has been known issues of link loss triggering * long pulse. * * Some sinks (eg. ASUS PB287Q) seem to perform some * weird HPD ping pong during modesets. So we can apparently * end up with HPD going low during a modeset, and then * going back up soon after. And once that happens we must * retrain the link to get a picture. That's in case no * userspace component reacted to intermittent HPD dip. */ struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; intel_dp_retrain_link(encoder, ctx); } /* * Some external monitors do not signal loss of link synchronization * with an IRQ_HPD, so force a link status check. */ if (!intel_dp_is_edp(intel_dp)) { struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; intel_dp_retrain_link(encoder, ctx); } /* * Clearing NACK and defer counts to get their exact values * while reading EDID which are required by Compliance tests * 4.2.2.4 and 4.2.2.5 */ intel_dp->aux.i2c_nack_count = 0; intel_dp->aux.i2c_defer_count = 0; intel_dp_set_edid(intel_dp); if (intel_dp_is_edp(intel_dp) || connector->detect_edid) status = connector_status_connected; intel_dp->detect_done = true; /* Try to read the source of the interrupt */ if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 && intel_dp_get_sink_irq(intel_dp, &sink_irq_vector) && sink_irq_vector != 0) { /* Clear interrupt source */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, sink_irq_vector); if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST) intel_dp_handle_test_request(intel_dp); if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ)) DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n"); } out: if (status != connector_status_connected && !intel_dp->is_mst) intel_dp_unset_edid(intel_dp); intel_display_power_put(dev_priv, intel_dp->aux_power_domain); return status; } static int intel_dp_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct intel_dp *intel_dp = intel_attached_dp(connector); int status = connector->status; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* If full detect is not performed yet, do a full detect */ if (!intel_dp->detect_done) { struct drm_crtc *crtc; int ret; crtc = connector->state->crtc; if (crtc) { ret = drm_modeset_lock(&crtc->mutex, ctx); if (ret) return ret; } status = intel_dp_long_pulse(intel_dp->attached_connector, ctx); } intel_dp->detect_done = false; return status; } static void intel_dp_force(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base; struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev); DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); intel_dp_unset_edid(intel_dp); if (connector->status != connector_status_connected) return; intel_display_power_get(dev_priv, intel_dp->aux_power_domain); intel_dp_set_edid(intel_dp); intel_display_power_put(dev_priv, intel_dp->aux_power_domain); } static int intel_dp_get_modes(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct edid *edid; edid = intel_connector->detect_edid; if (edid) { int ret = intel_connector_update_modes(connector, edid); if (ret) return ret; } /* if eDP has no EDID, fall back to fixed mode */ if (intel_dp_is_edp(intel_attached_dp(connector)) && intel_connector->panel.fixed_mode) { struct drm_display_mode *mode; mode = drm_mode_duplicate(connector->dev, intel_connector->panel.fixed_mode); if (mode) { drm_mode_probed_add(connector, mode); return 1; } } return 0; } static int intel_dp_connector_register(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(connector); struct drm_device *dev = connector->dev; int ret; ret = intel_connector_register(connector); if (ret) return ret; i915_debugfs_connector_add(connector); DRM_DEBUG_KMS("registering %s bus for %s\n", intel_dp->aux.name, connector->kdev->kobj.name); intel_dp->aux.dev = connector->kdev; ret = drm_dp_aux_register(&intel_dp->aux); if (!ret) drm_dp_cec_register_connector(&intel_dp->aux, connector->name, dev->dev); return ret; } static void intel_dp_connector_unregister(struct drm_connector *connector) { struct intel_dp *intel_dp = intel_attached_dp(connector); drm_dp_cec_unregister_connector(&intel_dp->aux); drm_dp_aux_unregister(&intel_dp->aux); intel_connector_unregister(connector); } static void intel_dp_connector_destroy(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); kfree(intel_connector->detect_edid); if (!IS_ERR_OR_NULL(intel_connector->edid)) kfree(intel_connector->edid); /* * Can't call intel_dp_is_edp() since the encoder may have been * destroyed already. */ if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) intel_panel_fini(&intel_connector->panel); drm_connector_cleanup(connector); kfree(connector); } void intel_dp_encoder_destroy(struct drm_encoder *encoder) { struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder); struct intel_dp *intel_dp = &intel_dig_port->dp; intel_dp_mst_encoder_cleanup(intel_dig_port); if (intel_dp_is_edp(intel_dp)) { cancel_delayed_work_sync(&intel_dp->panel_vdd_work); /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ pps_lock(intel_dp); edp_panel_vdd_off_sync(intel_dp); pps_unlock(intel_dp); if (intel_dp->edp_notifier.notifier_call) { unregister_reboot_notifier(&intel_dp->edp_notifier); intel_dp->edp_notifier.notifier_call = NULL; } } intel_dp_aux_fini(intel_dp); drm_encoder_cleanup(encoder); kfree(intel_dig_port); } void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder) { struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base); if (!intel_dp_is_edp(intel_dp)) return; /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ cancel_delayed_work_sync(&intel_dp->panel_vdd_work); pps_lock(intel_dp); edp_panel_vdd_off_sync(intel_dp); pps_unlock(intel_dp); } static int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port, u8 *an) { struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base); static const struct drm_dp_aux_msg msg = { .request = DP_AUX_NATIVE_WRITE, .address = DP_AUX_HDCP_AKSV, .size = DRM_HDCP_KSV_LEN, }; uint8_t txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0; ssize_t dpcd_ret; int ret; /* Output An first, that's easy */ dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN, an, DRM_HDCP_AN_LEN); if (dpcd_ret != DRM_HDCP_AN_LEN) { DRM_ERROR("Failed to write An over DP/AUX (%zd)\n", dpcd_ret); return dpcd_ret >= 0 ? -EIO : dpcd_ret; } /* * Since Aksv is Oh-So-Secret, we can't access it in software. So in * order to get it on the wire, we need to create the AUX header as if * we were writing the data, and then tickle the hardware to output the * data once the header is sent out. */ intel_dp_aux_header(txbuf, &msg); ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size, rxbuf, sizeof(rxbuf), DP_AUX_CH_CTL_AUX_AKSV_SELECT); if (ret < 0) { DRM_ERROR("Write Aksv over DP/AUX failed (%d)\n", ret); return ret; } else if (ret == 0) { DRM_ERROR("Aksv write over DP/AUX was empty\n"); return -EIO; } reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK; return reply == DP_AUX_NATIVE_REPLY_ACK ? 0 : -EIO; } static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port, u8 *bksv) { ssize_t ret; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv, DRM_HDCP_KSV_LEN); if (ret != DRM_HDCP_KSV_LEN) { DRM_ERROR("Read Bksv from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port, u8 *bstatus) { ssize_t ret; /* * For some reason the HDMI and DP HDCP specs call this register * definition by different names. In the HDMI spec, it's called BSTATUS, * but in DP it's called BINFO. */ ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO, bstatus, DRM_HDCP_BSTATUS_LEN); if (ret != DRM_HDCP_BSTATUS_LEN) { DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port, u8 *bcaps) { ssize_t ret; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS, bcaps, 1); if (ret != 1) { DRM_ERROR("Read bcaps from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port, bool *repeater_present) { ssize_t ret; u8 bcaps; ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); if (ret) return ret; *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT; return 0; } static int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port, u8 *ri_prime) { ssize_t ret; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME, ri_prime, DRM_HDCP_RI_LEN); if (ret != DRM_HDCP_RI_LEN) { DRM_ERROR("Read Ri' from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port, bool *ksv_ready) { ssize_t ret; u8 bstatus; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, &bstatus, 1); if (ret != 1) { DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret); return ret >= 0 ? -EIO : ret; } *ksv_ready = bstatus & DP_BSTATUS_READY; return 0; } static int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port, int num_downstream, u8 *ksv_fifo) { ssize_t ret; int i; /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */ for (i = 0; i < num_downstream; i += 3) { size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_KSV_FIFO, ksv_fifo + i * DRM_HDCP_KSV_LEN, len); if (ret != len) { DRM_ERROR("Read ksv[%d] from DP/AUX failed (%zd)\n", i, ret); return ret >= 0 ? -EIO : ret; } } return 0; } static int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port, int i, u32 *part) { ssize_t ret; if (i >= DRM_HDCP_V_PRIME_NUM_PARTS) return -EINVAL; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_V_PRIME(i), part, DRM_HDCP_V_PRIME_PART_LEN); if (ret != DRM_HDCP_V_PRIME_PART_LEN) { DRM_ERROR("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret); return ret >= 0 ? -EIO : ret; } return 0; } static int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port, bool enable) { /* Not used for single stream DisplayPort setups */ return 0; } static bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port) { ssize_t ret; u8 bstatus; ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS, &bstatus, 1); if (ret != 1) { DRM_ERROR("Read bstatus from DP/AUX failed (%zd)\n", ret); return false; } return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ)); } static int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port, bool *hdcp_capable) { ssize_t ret; u8 bcaps; ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps); if (ret) return ret; *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE; return 0; } static const struct intel_hdcp_shim intel_dp_hdcp_shim = { .write_an_aksv = intel_dp_hdcp_write_an_aksv, .read_bksv = intel_dp_hdcp_read_bksv, .read_bstatus = intel_dp_hdcp_read_bstatus, .repeater_present = intel_dp_hdcp_repeater_present, .read_ri_prime = intel_dp_hdcp_read_ri_prime, .read_ksv_ready = intel_dp_hdcp_read_ksv_ready, .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo, .read_v_prime_part = intel_dp_hdcp_read_v_prime_part, .toggle_signalling = intel_dp_hdcp_toggle_signalling, .check_link = intel_dp_hdcp_check_link, .hdcp_capable = intel_dp_hdcp_capable, }; static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); lockdep_assert_held(&dev_priv->pps_mutex); if (!edp_have_panel_vdd(intel_dp)) return; /* * The VDD bit needs a power domain reference, so if the bit is * already enabled when we boot or resume, grab this reference and * schedule a vdd off, so we don't hold on to the reference * indefinitely. */ DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n"); intel_display_power_get(dev_priv, intel_dp->aux_power_domain); edp_panel_vdd_schedule_off(intel_dp); } static enum pipe vlv_active_pipe(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base; enum pipe pipe; if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg, encoder->port, &pipe)) return pipe; return INVALID_PIPE; } void intel_dp_encoder_reset(struct drm_encoder *encoder) { struct drm_i915_private *dev_priv = to_i915(encoder->dev); struct intel_dp *intel_dp = enc_to_intel_dp(encoder); struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp); if (!HAS_DDI(dev_priv)) intel_dp->DP = I915_READ(intel_dp->output_reg); if (lspcon->active) lspcon_resume(lspcon); intel_dp->reset_link_params = true; pps_lock(intel_dp); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) intel_dp->active_pipe = vlv_active_pipe(intel_dp); if (intel_dp_is_edp(intel_dp)) { /* Reinit the power sequencer, in case BIOS did something with it. */ intel_dp_pps_init(intel_dp); intel_edp_panel_vdd_sanitize(intel_dp); } pps_unlock(intel_dp); } static const struct drm_connector_funcs intel_dp_connector_funcs = { .force = intel_dp_force, .fill_modes = drm_helper_probe_single_connector_modes, .atomic_get_property = intel_digital_connector_atomic_get_property, .atomic_set_property = intel_digital_connector_atomic_set_property, .late_register = intel_dp_connector_register, .early_unregister = intel_dp_connector_unregister, .destroy = intel_dp_connector_destroy, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .atomic_duplicate_state = intel_digital_connector_duplicate_state, }; static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = { .detect_ctx = intel_dp_detect, .get_modes = intel_dp_get_modes, .mode_valid = intel_dp_mode_valid, .atomic_check = intel_digital_connector_atomic_check, }; static const struct drm_encoder_funcs intel_dp_enc_funcs = { .reset = intel_dp_encoder_reset, .destroy = intel_dp_encoder_destroy, }; enum irqreturn intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd) { struct intel_dp *intel_dp = &intel_dig_port->dp; struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); enum irqreturn ret = IRQ_NONE; if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) { /* * vdd off can generate a long pulse on eDP which * would require vdd on to handle it, and thus we * would end up in an endless cycle of * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..." */ DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n", port_name(intel_dig_port->base.port)); return IRQ_HANDLED; } DRM_DEBUG_KMS("got hpd irq on port %c - %s\n", port_name(intel_dig_port->base.port), long_hpd ? "long" : "short"); if (long_hpd) { intel_dp->reset_link_params = true; intel_dp->detect_done = false; return IRQ_NONE; } intel_display_power_get(dev_priv, intel_dp->aux_power_domain); if (intel_dp->is_mst) { if (intel_dp_check_mst_status(intel_dp) == -EINVAL) { /* * If we were in MST mode, and device is not * there, get out of MST mode */ DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state); intel_dp->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst); intel_dp->detect_done = false; goto put_power; } } if (!intel_dp->is_mst) { bool handled; handled = intel_dp_short_pulse(intel_dp); /* Short pulse can signify loss of hdcp authentication */ intel_hdcp_check_link(intel_dp->attached_connector); if (!handled) { intel_dp->detect_done = false; goto put_power; } } ret = IRQ_HANDLED; put_power: intel_display_power_put(dev_priv, intel_dp->aux_power_domain); return ret; } /* check the VBT to see whether the eDP is on another port */ bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port) { /* * eDP not supported on g4x. so bail out early just * for a bit extra safety in case the VBT is bonkers. */ if (INTEL_GEN(dev_priv) < 5) return false; if (INTEL_GEN(dev_priv) < 9 && port == PORT_A) return true; return intel_bios_is_port_edp(dev_priv, port); } static void intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector) { struct drm_i915_private *dev_priv = to_i915(connector->dev); enum port port = dp_to_dig_port(intel_dp)->base.port; if (!IS_G4X(dev_priv) && port != PORT_A) intel_attach_force_audio_property(connector); intel_attach_broadcast_rgb_property(connector); if (intel_dp_is_edp(intel_dp)) { u32 allowed_scalers; allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN); if (!HAS_GMCH_DISPLAY(dev_priv)) allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER); drm_connector_attach_scaling_mode_property(connector, allowed_scalers); connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT; } } static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp) { intel_dp->panel_power_off_time = ktime_get_boottime(); intel_dp->last_power_on = jiffies; intel_dp->last_backlight_off = jiffies; } static void intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0; struct pps_registers regs; intel_pps_get_registers(intel_dp, ®s); /* Workaround: Need to write PP_CONTROL with the unlock key as * the very first thing. */ pp_ctl = ironlake_get_pp_control(intel_dp); pp_on = I915_READ(regs.pp_on); pp_off = I915_READ(regs.pp_off); if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) && !HAS_PCH_ICP(dev_priv)) { I915_WRITE(regs.pp_ctrl, pp_ctl); pp_div = I915_READ(regs.pp_div); } /* Pull timing values out of registers */ seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >> PANEL_POWER_UP_DELAY_SHIFT; seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >> PANEL_LIGHT_ON_DELAY_SHIFT; seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >> PANEL_LIGHT_OFF_DELAY_SHIFT; seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >> PANEL_POWER_DOWN_DELAY_SHIFT; if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) || HAS_PCH_ICP(dev_priv)) { seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >> BXT_POWER_CYCLE_DELAY_SHIFT) * 1000; } else { seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >> PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000; } } static void intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq) { DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n", state_name, seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12); } static void intel_pps_verify_state(struct intel_dp *intel_dp) { struct edp_power_seq hw; struct edp_power_seq *sw = &intel_dp->pps_delays; intel_pps_readout_hw_state(intel_dp, &hw); if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 || hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) { DRM_ERROR("PPS state mismatch\n"); intel_pps_dump_state("sw", sw); intel_pps_dump_state("hw", &hw); } } static void intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); struct edp_power_seq cur, vbt, spec, *final = &intel_dp->pps_delays; lockdep_assert_held(&dev_priv->pps_mutex); /* already initialized? */ if (final->t11_t12 != 0) return; intel_pps_readout_hw_state(intel_dp, &cur); intel_pps_dump_state("cur", &cur); vbt = dev_priv->vbt.edp.pps; /* On Toshiba Satellite P50-C-18C system the VBT T12 delay * of 500ms appears to be too short. Ocassionally the panel * just fails to power back on. Increasing the delay to 800ms * seems sufficient to avoid this problem. */ if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) { vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10); DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n", vbt.t11_t12); } /* T11_T12 delay is special and actually in units of 100ms, but zero * based in the hw (so we need to add 100 ms). But the sw vbt * table multiplies it with 1000 to make it in units of 100usec, * too. */ vbt.t11_t12 += 100 * 10; /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of * our hw here, which are all in 100usec. */ spec.t1_t3 = 210 * 10; spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */ spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */ spec.t10 = 500 * 10; /* This one is special and actually in units of 100ms, but zero * based in the hw (so we need to add 100 ms). But the sw vbt * table multiplies it with 1000 to make it in units of 100usec, * too. */ spec.t11_t12 = (510 + 100) * 10; intel_pps_dump_state("vbt", &vbt); /* Use the max of the register settings and vbt. If both are * unset, fall back to the spec limits. */ #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \ spec.field : \ max(cur.field, vbt.field)) assign_final(t1_t3); assign_final(t8); assign_final(t9); assign_final(t10); assign_final(t11_t12); #undef assign_final #define get_delay(field) (DIV_ROUND_UP(final->field, 10)) intel_dp->panel_power_up_delay = get_delay(t1_t3); intel_dp->backlight_on_delay = get_delay(t8); intel_dp->backlight_off_delay = get_delay(t9); intel_dp->panel_power_down_delay = get_delay(t10); intel_dp->panel_power_cycle_delay = get_delay(t11_t12); #undef get_delay DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n", intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay, intel_dp->panel_power_cycle_delay); DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n", intel_dp->backlight_on_delay, intel_dp->backlight_off_delay); /* * We override the HW backlight delays to 1 because we do manual waits * on them. For T8, even BSpec recommends doing it. For T9, if we * don't do this, we'll end up waiting for the backlight off delay * twice: once when we do the manual sleep, and once when we disable * the panel and wait for the PP_STATUS bit to become zero. */ final->t8 = 1; final->t9 = 1; /* * HW has only a 100msec granularity for t11_t12 so round it up * accordingly. */ final->t11_t12 = roundup(final->t11_t12, 100 * 10); } static void intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp, bool force_disable_vdd) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); u32 pp_on, pp_off, pp_div, port_sel = 0; int div = dev_priv->rawclk_freq / 1000; struct pps_registers regs; enum port port = dp_to_dig_port(intel_dp)->base.port; const struct edp_power_seq *seq = &intel_dp->pps_delays; lockdep_assert_held(&dev_priv->pps_mutex); intel_pps_get_registers(intel_dp, ®s); /* * On some VLV machines the BIOS can leave the VDD * enabled even on power sequencers which aren't * hooked up to any port. This would mess up the * power domain tracking the first time we pick * one of these power sequencers for use since * edp_panel_vdd_on() would notice that the VDD was * already on and therefore wouldn't grab the power * domain reference. Disable VDD first to avoid this. * This also avoids spuriously turning the VDD on as * soon as the new power sequencer gets initialized. */ if (force_disable_vdd) { u32 pp = ironlake_get_pp_control(intel_dp); WARN(pp & PANEL_POWER_ON, "Panel power already on\n"); if (pp & EDP_FORCE_VDD) DRM_DEBUG_KMS("VDD already on, disabling first\n"); pp &= ~EDP_FORCE_VDD; I915_WRITE(regs.pp_ctrl, pp); } pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) | (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT); pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) | (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT); /* Compute the divisor for the pp clock, simply match the Bspec * formula. */ if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) || HAS_PCH_ICP(dev_priv)) { pp_div = I915_READ(regs.pp_ctrl); pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK; pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000) << BXT_POWER_CYCLE_DELAY_SHIFT); } else { pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT; pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000) << PANEL_POWER_CYCLE_DELAY_SHIFT); } /* Haswell doesn't have any port selection bits for the panel * power sequencer any more. */ if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { port_sel = PANEL_PORT_SELECT_VLV(port); } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) { switch (port) { case PORT_A: port_sel = PANEL_PORT_SELECT_DPA; break; case PORT_C: port_sel = PANEL_PORT_SELECT_DPC; break; case PORT_D: port_sel = PANEL_PORT_SELECT_DPD; break; default: MISSING_CASE(port); break; } } pp_on |= port_sel; I915_WRITE(regs.pp_on, pp_on); I915_WRITE(regs.pp_off, pp_off); if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) || HAS_PCH_ICP(dev_priv)) I915_WRITE(regs.pp_ctrl, pp_div); else I915_WRITE(regs.pp_div, pp_div); DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n", I915_READ(regs.pp_on), I915_READ(regs.pp_off), (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) || HAS_PCH_ICP(dev_priv)) ? (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) : I915_READ(regs.pp_div)); } static void intel_dp_pps_init(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { vlv_initial_power_sequencer_setup(intel_dp); } else { intel_dp_init_panel_power_sequencer(intel_dp); intel_dp_init_panel_power_sequencer_registers(intel_dp, false); } } /** * intel_dp_set_drrs_state - program registers for RR switch to take effect * @dev_priv: i915 device * @crtc_state: a pointer to the active intel_crtc_state * @refresh_rate: RR to be programmed * * This function gets called when refresh rate (RR) has to be changed from * one frequency to another. Switches can be between high and low RR * supported by the panel or to any other RR based on media playback (in * this case, RR value needs to be passed from user space). * * The caller of this function needs to take a lock on dev_priv->drrs. */ static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state, int refresh_rate) { struct intel_encoder *encoder; struct intel_digital_port *dig_port = NULL; struct intel_dp *intel_dp = dev_priv->drrs.dp; struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc); enum drrs_refresh_rate_type index = DRRS_HIGH_RR; if (refresh_rate <= 0) { DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n"); return; } if (intel_dp == NULL) { DRM_DEBUG_KMS("DRRS not supported.\n"); return; } dig_port = dp_to_dig_port(intel_dp); encoder = &dig_port->base; if (!intel_crtc) { DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n"); return; } if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) { DRM_DEBUG_KMS("Only Seamless DRRS supported.\n"); return; } if (intel_dp->attached_connector->panel.downclock_mode->vrefresh == refresh_rate) index = DRRS_LOW_RR; if (index == dev_priv->drrs.refresh_rate_type) { DRM_DEBUG_KMS( "DRRS requested for previously set RR...ignoring\n"); return; } if (!crtc_state->base.active) { DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n"); return; } if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) { switch (index) { case DRRS_HIGH_RR: intel_dp_set_m_n(intel_crtc, M1_N1); break; case DRRS_LOW_RR: intel_dp_set_m_n(intel_crtc, M2_N2); break; case DRRS_MAX_RR: default: DRM_ERROR("Unsupported refreshrate type\n"); } } else if (INTEL_GEN(dev_priv) > 6) { i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder); u32 val; val = I915_READ(reg); if (index > DRRS_HIGH_RR) { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV; else val |= PIPECONF_EDP_RR_MODE_SWITCH; } else { if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV; else val &= ~PIPECONF_EDP_RR_MODE_SWITCH; } I915_WRITE(reg, val); } dev_priv->drrs.refresh_rate_type = index; DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate); } /** * intel_edp_drrs_enable - init drrs struct if supported * @intel_dp: DP struct * @crtc_state: A pointer to the active crtc state. * * Initializes frontbuffer_bits and drrs.dp */ void intel_edp_drrs_enable(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); if (!crtc_state->has_drrs) { DRM_DEBUG_KMS("Panel doesn't support DRRS\n"); return; } if (dev_priv->psr.enabled) { DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n"); return; } mutex_lock(&dev_priv->drrs.mutex); if (WARN_ON(dev_priv->drrs.dp)) { DRM_ERROR("DRRS already enabled\n"); goto unlock; } dev_priv->drrs.busy_frontbuffer_bits = 0; dev_priv->drrs.dp = intel_dp; unlock: mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_disable - Disable DRRS * @intel_dp: DP struct * @old_crtc_state: Pointer to old crtc_state. * */ void intel_edp_drrs_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp)); if (!old_crtc_state->has_drrs) return; mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv, old_crtc_state, intel_dp->attached_connector->panel.fixed_mode->vrefresh); dev_priv->drrs.dp = NULL; mutex_unlock(&dev_priv->drrs.mutex); cancel_delayed_work_sync(&dev_priv->drrs.work); } static void intel_edp_drrs_downclock_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), drrs.work.work); struct intel_dp *intel_dp; mutex_lock(&dev_priv->drrs.mutex); intel_dp = dev_priv->drrs.dp; if (!intel_dp) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. */ if (dev_priv->drrs.busy_frontbuffer_bits) goto unlock; if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) { struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc; intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, intel_dp->attached_connector->panel.downclock_mode->vrefresh); } unlock: mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_invalidate - Disable Idleness DRRS * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called everytime rendering on the given planes start. * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR). * * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. */ void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits) { struct drm_crtc *crtc; enum pipe pipe; if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) return; cancel_delayed_work(&dev_priv->drrs.work); mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits; /* invalidate means busy screen hence upclock */ if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); mutex_unlock(&dev_priv->drrs.mutex); } /** * intel_edp_drrs_flush - Restart Idleness DRRS * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * * This function gets called every time rendering on the given planes has * completed or flip on a crtc is completed. So DRRS should be upclocked * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again, * if no other planes are dirty. * * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits. */ void intel_edp_drrs_flush(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits) { struct drm_crtc *crtc; enum pipe pipe; if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED) return; cancel_delayed_work(&dev_priv->drrs.work); mutex_lock(&dev_priv->drrs.mutex); if (!dev_priv->drrs.dp) { mutex_unlock(&dev_priv->drrs.mutex); return; } crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc; pipe = to_intel_crtc(crtc)->pipe; frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe); dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits; /* flush means busy screen hence upclock */ if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config, dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh); /* * flush also means no more activity hence schedule downclock, if all * other fbs are quiescent too */ if (!dev_priv->drrs.busy_frontbuffer_bits) schedule_delayed_work(&dev_priv->drrs.work, msecs_to_jiffies(1000)); mutex_unlock(&dev_priv->drrs.mutex); } /** * DOC: Display Refresh Rate Switching (DRRS) * * Display Refresh Rate Switching (DRRS) is a power conservation feature * which enables swtching between low and high refresh rates, * dynamically, based on the usage scenario. This feature is applicable * for internal panels. * * Indication that the panel supports DRRS is given by the panel EDID, which * would list multiple refresh rates for one resolution. * * DRRS is of 2 types - static and seamless. * Static DRRS involves changing refresh rate (RR) by doing a full modeset * (may appear as a blink on screen) and is used in dock-undock scenario. * Seamless DRRS involves changing RR without any visual effect to the user * and can be used during normal system usage. This is done by programming * certain registers. * * Support for static/seamless DRRS may be indicated in the VBT based on * inputs from the panel spec. * * DRRS saves power by switching to low RR based on usage scenarios. * * The implementation is based on frontbuffer tracking implementation. When * there is a disturbance on the screen triggered by user activity or a periodic * system activity, DRRS is disabled (RR is changed to high RR). When there is * no movement on screen, after a timeout of 1 second, a switch to low RR is * made. * * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate() * and intel_edp_drrs_flush() are called. * * DRRS can be further extended to support other internal panels and also * the scenario of video playback wherein RR is set based on the rate * requested by userspace. */ /** * intel_dp_drrs_init - Init basic DRRS work and mutex. * @connector: eDP connector * @fixed_mode: preferred mode of panel * * This function is called only once at driver load to initialize basic * DRRS stuff. * * Returns: * Downclock mode if panel supports it, else return NULL. * DRRS support is determined by the presence of downclock mode (apart * from VBT setting). */ static struct drm_display_mode * intel_dp_drrs_init(struct intel_connector *connector, struct drm_display_mode *fixed_mode) { struct drm_i915_private *dev_priv = to_i915(connector->base.dev); struct drm_display_mode *downclock_mode = NULL; INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work); mutex_init(&dev_priv->drrs.mutex); if (INTEL_GEN(dev_priv) <= 6) { DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n"); return NULL; } if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) { DRM_DEBUG_KMS("VBT doesn't support DRRS\n"); return NULL; } downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode, &connector->base); if (!downclock_mode) { DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n"); return NULL; } dev_priv->drrs.type = dev_priv->vbt.drrs_type; dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR; DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n"); return downclock_mode; } static bool intel_edp_init_connector(struct intel_dp *intel_dp, struct intel_connector *intel_connector) { struct drm_device *dev = intel_dp_to_dev(intel_dp); struct drm_i915_private *dev_priv = to_i915(dev); struct drm_connector *connector = &intel_connector->base; struct drm_display_mode *fixed_mode = NULL; struct drm_display_mode *downclock_mode = NULL; bool has_dpcd; struct drm_display_mode *scan; struct edid *edid; enum pipe pipe = INVALID_PIPE; if (!intel_dp_is_edp(intel_dp)) return true; /* * On IBX/CPT we may get here with LVDS already registered. Since the * driver uses the only internal power sequencer available for both * eDP and LVDS bail out early in this case to prevent interfering * with an already powered-on LVDS power sequencer. */ if (intel_get_lvds_encoder(&dev_priv->drm)) { WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))); DRM_INFO("LVDS was detected, not registering eDP\n"); return false; } pps_lock(intel_dp); intel_dp_init_panel_power_timestamps(intel_dp); intel_dp_pps_init(intel_dp); intel_edp_panel_vdd_sanitize(intel_dp); pps_unlock(intel_dp); /* Cache DPCD and EDID for edp. */ has_dpcd = intel_edp_init_dpcd(intel_dp); if (!has_dpcd) { /* if this fails, presume the device is a ghost */ DRM_INFO("failed to retrieve link info, disabling eDP\n"); goto out_vdd_off; } mutex_lock(&dev->mode_config.mutex); edid = drm_get_edid(connector, &intel_dp->aux.ddc); if (edid) { if (drm_add_edid_modes(connector, edid)) { drm_connector_update_edid_property(connector, edid); } else { kfree(edid); edid = ERR_PTR(-EINVAL); } } else { edid = ERR_PTR(-ENOENT); } intel_connector->edid = edid; /* prefer fixed mode from EDID if available */ list_for_each_entry(scan, &connector->probed_modes, head) { if ((scan->type & DRM_MODE_TYPE_PREFERRED)) { fixed_mode = drm_mode_duplicate(dev, scan); downclock_mode = intel_dp_drrs_init( intel_connector, fixed_mode); break; } } /* fallback to VBT if available for eDP */ if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) { fixed_mode = drm_mode_duplicate(dev, dev_priv->vbt.lfp_lvds_vbt_mode); if (fixed_mode) { fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; connector->display_info.width_mm = fixed_mode->width_mm; connector->display_info.height_mm = fixed_mode->height_mm; } } mutex_unlock(&dev->mode_config.mutex); if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { intel_dp->edp_notifier.notifier_call = edp_notify_handler; register_reboot_notifier(&intel_dp->edp_notifier); /* * Figure out the current pipe for the initial backlight setup. * If the current pipe isn't valid, try the PPS pipe, and if that * fails just assume pipe A. */ pipe = vlv_active_pipe(intel_dp); if (pipe != PIPE_A && pipe != PIPE_B) pipe = intel_dp->pps_pipe; if (pipe != PIPE_A && pipe != PIPE_B) pipe = PIPE_A; DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n", pipe_name(pipe)); } intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode); intel_connector->panel.backlight.power = intel_edp_backlight_power; intel_panel_setup_backlight(connector, pipe); return true; out_vdd_off: cancel_delayed_work_sync(&intel_dp->panel_vdd_work); /* * vdd might still be enabled do to the delayed vdd off. * Make sure vdd is actually turned off here. */ pps_lock(intel_dp); edp_panel_vdd_off_sync(intel_dp); pps_unlock(intel_dp); return false; } static void intel_dp_modeset_retry_work_fn(struct work_struct *work) { struct intel_connector *intel_connector; struct drm_connector *connector; intel_connector = container_of(work, typeof(*intel_connector), modeset_retry_work); connector = &intel_connector->base; DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id, connector->name); /* Grab the locks before changing connector property*/ mutex_lock(&connector->dev->mode_config.mutex); /* Set connector link status to BAD and send a Uevent to notify * userspace to do a modeset. */ drm_connector_set_link_status_property(connector, DRM_MODE_LINK_STATUS_BAD); mutex_unlock(&connector->dev->mode_config.mutex); /* Send Hotplug uevent so userspace can reprobe */ drm_kms_helper_hotplug_event(connector->dev); } bool intel_dp_init_connector(struct intel_digital_port *intel_dig_port, struct intel_connector *intel_connector) { struct drm_connector *connector = &intel_connector->base; struct intel_dp *intel_dp = &intel_dig_port->dp; struct intel_encoder *intel_encoder = &intel_dig_port->base; struct drm_device *dev = intel_encoder->base.dev; struct drm_i915_private *dev_priv = to_i915(dev); enum port port = intel_encoder->port; int type; /* Initialize the work for modeset in case of link train failure */ INIT_WORK(&intel_connector->modeset_retry_work, intel_dp_modeset_retry_work_fn); if (WARN(intel_dig_port->max_lanes < 1, "Not enough lanes (%d) for DP on port %c\n", intel_dig_port->max_lanes, port_name(port))) return false; intel_dp_set_source_rates(intel_dp); intel_dp->reset_link_params = true; intel_dp->pps_pipe = INVALID_PIPE; intel_dp->active_pipe = INVALID_PIPE; /* intel_dp vfuncs */ if (HAS_DDI(dev_priv)) intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain; /* Preserve the current hw state. */ intel_dp->DP = I915_READ(intel_dp->output_reg); intel_dp->attached_connector = intel_connector; if (intel_dp_is_port_edp(dev_priv, port)) type = DRM_MODE_CONNECTOR_eDP; else type = DRM_MODE_CONNECTOR_DisplayPort; if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) intel_dp->active_pipe = vlv_active_pipe(intel_dp); /* * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but * for DP the encoder type can be set by the caller to * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it. */ if (type == DRM_MODE_CONNECTOR_eDP) intel_encoder->type = INTEL_OUTPUT_EDP; /* eDP only on port B and/or C on vlv/chv */ if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) && intel_dp_is_edp(intel_dp) && port != PORT_B && port != PORT_C)) return false; DRM_DEBUG_KMS("Adding %s connector on port %c\n", type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP", port_name(port)); drm_connector_init(dev, connector, &intel_dp_connector_funcs, type); drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs); if (!HAS_GMCH_DISPLAY(dev_priv)) connector->interlace_allowed = true; connector->doublescan_allowed = 0; intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port); intel_dp_aux_init(intel_dp); INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work); intel_connector_attach_encoder(intel_connector, intel_encoder); if (HAS_DDI(dev_priv)) intel_connector->get_hw_state = intel_ddi_connector_get_hw_state; else intel_connector->get_hw_state = intel_connector_get_hw_state; /* init MST on ports that can support it */ intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id); if (!intel_edp_init_connector(intel_dp, intel_connector)) { intel_dp_aux_fini(intel_dp); intel_dp_mst_encoder_cleanup(intel_dig_port); goto fail; } intel_dp_add_properties(intel_dp, connector); if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) { int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim); if (ret) DRM_DEBUG_KMS("HDCP init failed, skipping.\n"); } /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written * 0xd. Failure to do so will result in spurious interrupts being * generated on the port when a cable is not attached. */ if (IS_G45(dev_priv)) { u32 temp = I915_READ(PEG_BAND_GAP_DATA); I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd); } return true; fail: drm_connector_cleanup(connector); return false; } bool intel_dp_init(struct drm_i915_private *dev_priv, i915_reg_t output_reg, enum port port) { struct intel_digital_port *intel_dig_port; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; struct intel_connector *intel_connector; intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL); if (!intel_dig_port) return false; intel_connector = intel_connector_alloc(); if (!intel_connector) goto err_connector_alloc; intel_encoder = &intel_dig_port->base; encoder = &intel_encoder->base; if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base, &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS, "DP %c", port_name(port))) goto err_encoder_init; intel_encoder->hotplug = intel_dp_hotplug; intel_encoder->compute_config = intel_dp_compute_config; intel_encoder->get_hw_state = intel_dp_get_hw_state; intel_encoder->get_config = intel_dp_get_config; intel_encoder->suspend = intel_dp_encoder_suspend; if (IS_CHERRYVIEW(dev_priv)) { intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable; intel_encoder->pre_enable = chv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; intel_encoder->disable = vlv_disable_dp; intel_encoder->post_disable = chv_post_disable_dp; intel_encoder->post_pll_disable = chv_dp_post_pll_disable; } else if (IS_VALLEYVIEW(dev_priv)) { intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable; intel_encoder->pre_enable = vlv_pre_enable_dp; intel_encoder->enable = vlv_enable_dp; intel_encoder->disable = vlv_disable_dp; intel_encoder->post_disable = vlv_post_disable_dp; } else { intel_encoder->pre_enable = g4x_pre_enable_dp; intel_encoder->enable = g4x_enable_dp; intel_encoder->disable = g4x_disable_dp; intel_encoder->post_disable = g4x_post_disable_dp; } intel_dig_port->dp.output_reg = output_reg; intel_dig_port->max_lanes = 4; intel_encoder->type = INTEL_OUTPUT_DP; intel_encoder->power_domain = intel_port_to_power_domain(port); if (IS_CHERRYVIEW(dev_priv)) { if (port == PORT_D) intel_encoder->crtc_mask = 1 << 2; else intel_encoder->crtc_mask = (1 << 0) | (1 << 1); } else { intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2); } intel_encoder->cloneable = 0; intel_encoder->port = port; intel_dig_port->hpd_pulse = intel_dp_hpd_pulse; if (port != PORT_A) intel_infoframe_init(intel_dig_port); if (!intel_dp_init_connector(intel_dig_port, intel_connector)) goto err_init_connector; return true; err_init_connector: drm_encoder_cleanup(encoder); err_encoder_init: kfree(intel_connector); err_connector_alloc: kfree(intel_dig_port); return false; } void intel_dp_mst_suspend(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_dp *intel_dp; if (encoder->type != INTEL_OUTPUT_DDI) continue; intel_dp = enc_to_intel_dp(&encoder->base); if (!intel_dp->can_mst) continue; if (intel_dp->is_mst) drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr); } } void intel_dp_mst_resume(struct drm_i915_private *dev_priv) { struct intel_encoder *encoder; for_each_intel_encoder(&dev_priv->drm, encoder) { struct intel_dp *intel_dp; int ret; if (encoder->type != INTEL_OUTPUT_DDI) continue; intel_dp = enc_to_intel_dp(&encoder->base); if (!intel_dp->can_mst) continue; ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr); if (ret) intel_dp_check_mst_status(intel_dp); } }