/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "disp.h" #include "atom.h" #include "core.h" #include "head.h" #include "wndw.h" #include "handles.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nouveau_drv.h" #include "nouveau_dma.h" #include "nouveau_gem.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_fence.h" #include "nv50_display.h" /****************************************************************************** * EVO channel *****************************************************************************/ static int nv50_chan_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, struct nv50_chan *chan) { struct nvif_sclass *sclass; int ret, i, n; chan->device = device; ret = n = nvif_object_sclass_get(disp, &sclass); if (ret < 0) return ret; while (oclass[0]) { for (i = 0; i < n; i++) { if (sclass[i].oclass == oclass[0]) { ret = nvif_object_ctor(disp, "kmsChan", 0, oclass[0], data, size, &chan->user); if (ret == 0) nvif_object_map(&chan->user, NULL, 0); nvif_object_sclass_put(&sclass); return ret; } } oclass++; } nvif_object_sclass_put(&sclass); return -ENOSYS; } static void nv50_chan_destroy(struct nv50_chan *chan) { nvif_object_dtor(&chan->user); } /****************************************************************************** * DMA EVO channel *****************************************************************************/ void nv50_dmac_destroy(struct nv50_dmac *dmac) { nvif_object_dtor(&dmac->vram); nvif_object_dtor(&dmac->sync); nv50_chan_destroy(&dmac->base); nvif_mem_dtor(&dmac->_push.mem); } static void nv50_dmac_kick(struct nvif_push *push) { struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; if (dmac->put != dmac->cur) { /* Push buffer fetches are not coherent with BAR1, we need to ensure * writes have been flushed right through to VRAM before writing PUT. */ if (dmac->push->mem.type & NVIF_MEM_VRAM) { struct nvif_device *device = dmac->base.device; nvif_wr32(&device->object, 0x070000, 0x00000001); nvif_msec(device, 2000, if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002)) break; ); } NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur); dmac->put = dmac->cur; } push->bgn = push->cur; } static int nv50_dmac_free(struct nv50_dmac *dmac) { u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */ return get - dmac->cur - 5; return dmac->max - dmac->cur; } static int nv50_dmac_wind(struct nv50_dmac *dmac) { /* Wait for GET to depart from the beginning of the push buffer to * prevent writing PUT == GET, which would be ignored by HW. */ u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR); if (get == 0) { /* Corner-case, HW idle, but non-committed work pending. */ if (dmac->put == 0) nv50_dmac_kick(dmac->push); if (nvif_msec(dmac->base.device, 2000, if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0)) break; ) < 0) return -ETIMEDOUT; } PUSH_RSVD(dmac->push, PUSH_JUMP(dmac->push, 0)); dmac->cur = 0; return 0; } static int nv50_dmac_wait(struct nvif_push *push, u32 size) { struct nv50_dmac *dmac = container_of(push, typeof(*dmac), _push); int free; if (WARN_ON(size > dmac->max)) return -EINVAL; dmac->cur = push->cur - (u32 __iomem *)dmac->_push.mem.object.map.ptr; if (dmac->cur + size >= dmac->max) { int ret = nv50_dmac_wind(dmac); if (ret) return ret; push->cur = dmac->_push.mem.object.map.ptr; push->cur = push->cur + dmac->cur; nv50_dmac_kick(push); } if (nvif_msec(dmac->base.device, 2000, if ((free = nv50_dmac_free(dmac)) >= size) break; ) < 0) { WARN_ON(1); return -ETIMEDOUT; } push->bgn = dmac->_push.mem.object.map.ptr; push->bgn = push->bgn + dmac->cur; push->cur = push->bgn; push->end = push->cur + free; return 0; } MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)"); static int nv50_dmac_vram_pushbuf = -1; module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400); int nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp, const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf, struct nv50_dmac *dmac) { struct nouveau_cli *cli = (void *)device->object.client; struct nvif_disp_chan_v0 *args = data; u8 type = NVIF_MEM_COHERENT; int ret; mutex_init(&dmac->lock); /* Pascal added support for 47-bit physical addresses, but some * parts of EVO still only accept 40-bit PAs. * * To avoid issues on systems with large amounts of RAM, and on * systems where an IOMMU maps pages at a high address, we need * to allocate push buffers in VRAM instead. * * This appears to match NVIDIA's behaviour on Pascal. */ if ((nv50_dmac_vram_pushbuf > 0) || (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL)) type |= NVIF_MEM_VRAM; ret = nvif_mem_ctor_map(&cli->mmu, "kmsChanPush", type, 0x1000, &dmac->_push.mem); if (ret) return ret; dmac->ptr = dmac->_push.mem.object.map.ptr; dmac->_push.wait = nv50_dmac_wait; dmac->_push.kick = nv50_dmac_kick; dmac->push = &dmac->_push; dmac->push->bgn = dmac->_push.mem.object.map.ptr; dmac->push->cur = dmac->push->bgn; dmac->push->end = dmac->push->bgn; dmac->max = 0x1000/4 - 1; /* EVO channels are affected by a HW bug where the last 12 DWORDs * of the push buffer aren't able to be used safely. */ if (disp->oclass < GV100_DISP) dmac->max -= 12; args->pushbuf = nvif_handle(&dmac->_push.mem.object); ret = nv50_chan_create(device, disp, oclass, head, data, size, &dmac->base); if (ret) return ret; if (syncbuf < 0) return 0; ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = syncbuf + 0x0000, .limit = syncbuf + 0x0fff, }, sizeof(struct nv_dma_v0), &dmac->sync); if (ret) return ret; ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM, NV_DMA_IN_MEMORY, &(struct nv_dma_v0) { .target = NV_DMA_V0_TARGET_VRAM, .access = NV_DMA_V0_ACCESS_RDWR, .start = 0, .limit = device->info.ram_user - 1, }, sizeof(struct nv_dma_v0), &dmac->vram); if (ret) return ret; return ret; } /****************************************************************************** * Output path helpers *****************************************************************************/ static void nv50_outp_dump_caps(struct nouveau_drm *drm, struct nouveau_encoder *outp) { NV_DEBUG(drm, "%s caps: dp_interlace=%d\n", outp->base.base.name, outp->caps.dp_interlace); } static int nv50_outp_atomic_check_view(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state, struct drm_display_mode *native_mode) { struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode; struct drm_display_mode *mode = &crtc_state->mode; struct drm_connector *connector = conn_state->connector; struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state); struct nouveau_drm *drm = nouveau_drm(encoder->dev); NV_ATOMIC(drm, "%s atomic_check\n", encoder->name); asyc->scaler.full = false; if (!native_mode) return 0; if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) { switch (connector->connector_type) { case DRM_MODE_CONNECTOR_LVDS: case DRM_MODE_CONNECTOR_eDP: /* Don't force scaler for EDID modes with * same size as the native one (e.g. different * refresh rate) */ if (mode->hdisplay == native_mode->hdisplay && mode->vdisplay == native_mode->vdisplay && mode->type & DRM_MODE_TYPE_DRIVER) break; mode = native_mode; asyc->scaler.full = true; break; default: break; } } else { mode = native_mode; } if (!drm_mode_equal(adjusted_mode, mode)) { drm_mode_copy(adjusted_mode, mode); crtc_state->mode_changed = true; } return 0; } static void nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state) { struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_display_mode *mode = &asyh->state.adjusted_mode; unsigned int max_rate, mode_rate; switch (nv_encoder->dcb->type) { case DCB_OUTPUT_DP: max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw; /* we don't support more than 10 anyway */ asyh->or.bpc = min_t(u8, asyh->or.bpc, 10); /* reduce the bpc until it works out */ while (asyh->or.bpc > 6) { mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8); if (mode_rate <= max_rate) break; asyh->or.bpc -= 2; } break; default: break; } } static int nv50_outp_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_connector *connector = conn_state->connector; struct nouveau_connector *nv_connector = nouveau_connector(connector); struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); int ret; ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, nv_connector->native_mode); if (ret) return ret; if (crtc_state->mode_changed || crtc_state->connectors_changed) asyh->or.bpc = connector->display_info.bpc; /* We might have to reduce the bpc */ nv50_outp_atomic_fix_depth(encoder, crtc_state); return 0; } struct nouveau_connector * nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) { struct drm_connector *connector; struct drm_connector_state *connector_state; struct drm_encoder *encoder = to_drm_encoder(outp); int i; for_each_new_connector_in_state(state, connector, connector_state, i) { if (connector_state->best_encoder == encoder) return nouveau_connector(connector); } return NULL; } struct nouveau_connector * nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp) { struct drm_connector *connector; struct drm_connector_state *connector_state; struct drm_encoder *encoder = to_drm_encoder(outp); int i; for_each_old_connector_in_state(state, connector, connector_state, i) { if (connector_state->best_encoder == encoder) return nouveau_connector(connector); } return NULL; } static struct nouveau_crtc * nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp) { struct drm_crtc *crtc; struct drm_crtc_state *crtc_state; const u32 mask = drm_encoder_mask(&outp->base.base); int i; for_each_new_crtc_in_state(state, crtc, crtc_state, i) { if (crtc_state->encoder_mask & mask) return nouveau_crtc(crtc); } return NULL; } /****************************************************************************** * DAC *****************************************************************************/ static void nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_core *core = nv50_disp(encoder->dev)->core; const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE); core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); nv_encoder->crtc = NULL; } static void nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); struct nv50_head_atom *asyh = nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); struct nv50_core *core = nv50_disp(encoder->dev)->core; u32 ctrl = 0; switch (nv_crtc->index) { case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break; case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break; case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break; case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break; default: WARN_ON(1); break; } ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT); if (!nvif_outp_acquired(&nv_encoder->outp)) nvif_outp_acquire_dac(&nv_encoder->outp); core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); asyh->or.depth = 0; nv_encoder->crtc = &nv_crtc->base; } static enum drm_connector_status nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); u32 loadval; int ret; loadval = nouveau_drm(encoder->dev)->vbios.dactestval; if (loadval == 0) loadval = 340; ret = nvif_outp_load_detect(&nv_encoder->outp, loadval); if (ret <= 0) return connector_status_disconnected; return connector_status_connected; } static const struct drm_encoder_helper_funcs nv50_dac_help = { .atomic_check = nv50_outp_atomic_check, .atomic_enable = nv50_dac_atomic_enable, .atomic_disable = nv50_dac_atomic_disable, .detect = nv50_dac_detect }; static void nv50_dac_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nvif_outp_dtor(&nv_encoder->outp); drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_funcs nv50_dac_func = { .destroy = nv50_dac_destroy, }; static int nv50_dac_create(struct nouveau_encoder *nv_encoder) { struct drm_connector *connector = &nv_encoder->conn->base; struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus; struct drm_encoder *encoder; struct dcb_output *dcbe = nv_encoder->dcb; int type = DRM_MODE_ENCODER_DAC; bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); if (bus) nv_encoder->i2c = &bus->i2c; encoder = to_drm_encoder(nv_encoder); drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type, "dac-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_dac_help); drm_connector_attach_encoder(connector, encoder); return 0; } /* * audio component binding for ELD notification */ static void nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port, int dev_id) { if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify) acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr, port, dev_id); } static int nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id, bool *enabled, unsigned char *buf, int max_bytes) { struct drm_device *drm_dev = dev_get_drvdata(kdev); struct nouveau_drm *drm = nouveau_drm(drm_dev); struct drm_encoder *encoder; struct nouveau_encoder *nv_encoder; struct nouveau_crtc *nv_crtc; int ret = 0; *enabled = false; mutex_lock(&drm->audio.lock); drm_for_each_encoder(encoder, drm->dev) { struct nouveau_connector *nv_connector = NULL; if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) continue; /* TODO */ nv_encoder = nouveau_encoder(encoder); nv_connector = nv_encoder->conn; nv_crtc = nouveau_crtc(nv_encoder->crtc); if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id) continue; *enabled = nv_encoder->audio.enabled; if (*enabled) { ret = drm_eld_size(nv_connector->base.eld); memcpy(buf, nv_connector->base.eld, min(max_bytes, ret)); } break; } mutex_unlock(&drm->audio.lock); return ret; } static const struct drm_audio_component_ops nv50_audio_component_ops = { .get_eld = nv50_audio_component_get_eld, }; static int nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev, void *data) { struct drm_device *drm_dev = dev_get_drvdata(kdev); struct nouveau_drm *drm = nouveau_drm(drm_dev); struct drm_audio_component *acomp = data; if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS))) return -ENOMEM; drm_modeset_lock_all(drm_dev); acomp->ops = &nv50_audio_component_ops; acomp->dev = kdev; drm->audio.component = acomp; drm_modeset_unlock_all(drm_dev); return 0; } static void nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev, void *data) { struct drm_device *drm_dev = dev_get_drvdata(kdev); struct nouveau_drm *drm = nouveau_drm(drm_dev); struct drm_audio_component *acomp = data; drm_modeset_lock_all(drm_dev); drm->audio.component = NULL; acomp->ops = NULL; acomp->dev = NULL; drm_modeset_unlock_all(drm_dev); } static const struct component_ops nv50_audio_component_bind_ops = { .bind = nv50_audio_component_bind, .unbind = nv50_audio_component_unbind, }; static void nv50_audio_component_init(struct nouveau_drm *drm) { if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops)) return; drm->audio.component_registered = true; mutex_init(&drm->audio.lock); } static void nv50_audio_component_fini(struct nouveau_drm *drm) { if (!drm->audio.component_registered) return; component_del(drm->dev->dev, &nv50_audio_component_bind_ops); drm->audio.component_registered = false; mutex_destroy(&drm->audio.lock); } /****************************************************************************** * Audio *****************************************************************************/ static bool nv50_audio_supported(struct drm_encoder *encoder) { struct nv50_disp *disp = nv50_disp(encoder->dev); if (disp->disp->object.oclass <= GT200_DISP || disp->disp->object.oclass == GT206_DISP) return false; if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: break; default: return false; } } return true; } static void nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nvif_outp *outp = &nv_encoder->outp; if (!nv50_audio_supported(encoder)) return; mutex_lock(&drm->audio.lock); if (nv_encoder->audio.enabled) { nv_encoder->audio.enabled = false; nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0); } mutex_unlock(&drm->audio.lock); nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); } static void nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, struct nouveau_connector *nv_connector, struct drm_atomic_state *state, struct drm_display_mode *mode) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nvif_outp *outp = &nv_encoder->outp; if (!nv50_audio_supported(encoder) || !drm_detect_monitor_audio(nv_connector->edid)) return; mutex_lock(&drm->audio.lock); nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld, drm_eld_size(nv_connector->base.eld)); nv_encoder->audio.enabled = true; mutex_unlock(&drm->audio.lock); nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index); } /****************************************************************************** * HDMI *****************************************************************************/ static void nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc, struct nouveau_connector *nv_connector, struct drm_atomic_state *state, struct drm_display_mode *mode, bool hda) { struct nouveau_drm *drm = nouveau_drm(encoder->dev); struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi; union hdmi_infoframe infoframe = { 0 }; const u8 rekey = 56; /* binary driver, and tegra, constant */ u32 max_ac_packet; struct { struct nvif_outp_infoframe_v0 infoframe; u8 data[17]; } args = { 0 }; int ret, size; max_ac_packet = mode->htotal - mode->hdisplay; max_ac_packet -= rekey; max_ac_packet -= 18; /* constant from tegra */ max_ac_packet /= 32; if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) { const bool high_tmds_clock_ratio = mode->clock > 340000; u8 scdc; ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc); if (ret < 0) { NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret); return; } scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE); if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates) scdc |= SCDC_SCRAMBLING_ENABLE; if (high_tmds_clock_ratio) scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40; ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc); if (ret < 0) NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n", scdc, ret); } ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey, mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported, hdmi->scdc.scrambling.low_rates); if (ret) return; /* AVI InfoFrame. */ args.infoframe.version = 0; args.infoframe.head = nv_crtc->index; if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) { drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode, HDMI_QUANTIZATION_RANGE_FULL); size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); } else { size = 0; } nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, &args.infoframe, size); /* Vendor InfoFrame. */ memset(&args.data, 0, sizeof(args.data)); if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi, &nv_connector->base, mode)) size = hdmi_infoframe_pack(&infoframe, args.data, ARRAY_SIZE(args.data)); else size = 0; nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, &args.infoframe, size); nv_encoder->hdmi.enabled = true; } /****************************************************************************** * MST *****************************************************************************/ #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr) #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector) #define nv50_msto(p) container_of((p), struct nv50_msto, encoder) struct nv50_mstc { struct nv50_mstm *mstm; struct drm_dp_mst_port *port; struct drm_connector connector; struct drm_display_mode *native; struct edid *edid; }; struct nv50_msto { struct drm_encoder encoder; /* head is statically assigned on msto creation */ struct nv50_head *head; struct nv50_mstc *mstc; bool disabled; bool enabled; u32 display_id; }; struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder) { struct nv50_msto *msto; if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) return nouveau_encoder(encoder); msto = nv50_msto(encoder); if (!msto->mstc) return NULL; return msto->mstc->mstm->outp; } static void nv50_msto_cleanup(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *new_mst_state, struct drm_dp_mst_topology_mgr *mgr, struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct drm_dp_mst_atomic_payload *new_payload = drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port); struct drm_dp_mst_topology_state *old_mst_state = drm_atomic_get_old_mst_topology_state(state, mgr); const struct drm_dp_mst_atomic_payload *old_payload = drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name); if (msto->disabled) { if (msto->head->func->display_id) { nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id); msto->display_id = 0; } msto->mstc = NULL; msto->disabled = false; drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload); } else if (msto->enabled) { drm_dp_add_payload_part2(mgr, state, new_payload); msto->enabled = false; } } static void nv50_msto_prepare(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *mst_state, struct drm_dp_mst_topology_mgr *mgr, struct nv50_msto *msto) { struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; struct drm_dp_mst_atomic_payload *payload; int ret = 0; NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name); payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port); if (msto->disabled) { drm_dp_remove_payload_part1(mgr, mst_state, payload); nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); ret = 1; } else { if (msto->enabled) ret = drm_dp_add_payload_part1(mgr, mst_state, payload); } if (ret == 0) { nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, payload->vc_start_slot, payload->time_slots, payload->pbn, payload->time_slots * mst_state->pbn_div); } else { nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0); } } static int nv50_msto_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct drm_atomic_state *state = crtc_state->state; struct drm_connector *connector = conn_state->connector; struct drm_dp_mst_topology_state *mst_state; struct nv50_mstc *mstc = nv50_mstc(connector); struct nv50_mstm *mstm = mstc->mstm; struct nv50_head_atom *asyh = nv50_head_atom(crtc_state); int slots; int ret; ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state, mstc->native); if (ret) return ret; if (!drm_atomic_crtc_needs_modeset(crtc_state)) return 0; /* * When restoring duplicated states, we need to make sure that the bw * remains the same and avoid recalculating it, as the connector's bpc * may have changed after the state was duplicated */ if (!state->duplicated) { const int clock = crtc_state->adjusted_mode.clock; asyh->or.bpc = connector->display_info.bpc; asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3, false); } mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr); if (IS_ERR(mst_state)) return PTR_ERR(mst_state); if (!mst_state->pbn_div) { struct nouveau_encoder *outp = mstc->mstm->outp; mst_state->pbn_div = drm_dp_get_vc_payload_bw(&mstm->mgr, outp->dp.link_bw, outp->dp.link_nr); } slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn); if (slots < 0) return slots; asyh->dp.tu = slots; return 0; } static u8 nv50_dp_bpc_to_depth(unsigned int bpc) { switch (bpc) { case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; case 10: default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; } } static void nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_head *head = msto->head; struct nv50_head_atom *asyh = nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base)); struct nv50_mstc *mstc = NULL; struct nv50_mstm *mstm = NULL; struct drm_connector *connector; struct drm_connector_list_iter conn_iter; u8 proto; drm_connector_list_iter_begin(encoder->dev, &conn_iter); drm_for_each_connector_iter(connector, &conn_iter) { if (connector->state->best_encoder == &msto->encoder) { mstc = nv50_mstc(connector); mstm = mstc->mstm; break; } } drm_connector_list_iter_end(&conn_iter); if (WARN_ON(!mstc)) return; if (!mstm->links++) { nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */); nouveau_dp_train(mstm->outp, true, 0, 0); } if (head->func->display_id) { if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id))) head->func->display_id(head, msto->display_id); } if (mstm->outp->outp.or.link & 1) proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A; else proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B; mstm->outp->update(mstm->outp, head->base.index, asyh, proto, nv50_dp_bpc_to_depth(asyh->or.bpc)); msto->mstc = mstc; msto->enabled = true; mstm->modified = true; } static void nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; struct nv50_mstm *mstm = mstc->mstm; if (msto->head->func->display_id) msto->head->func->display_id(msto->head, 0); mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0); mstm->modified = true; if (!--mstm->links) mstm->disabled = true; msto->disabled = true; } static const struct drm_encoder_helper_funcs nv50_msto_help = { .atomic_disable = nv50_msto_atomic_disable, .atomic_enable = nv50_msto_atomic_enable, .atomic_check = nv50_msto_atomic_check, }; static void nv50_msto_destroy(struct drm_encoder *encoder) { struct nv50_msto *msto = nv50_msto(encoder); drm_encoder_cleanup(&msto->encoder); kfree(msto); } static const struct drm_encoder_funcs nv50_msto = { .destroy = nv50_msto_destroy, }; static struct nv50_msto * nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id) { struct nv50_msto *msto; int ret; msto = kzalloc(sizeof(*msto), GFP_KERNEL); if (!msto) return ERR_PTR(-ENOMEM); ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto, DRM_MODE_ENCODER_DPMST, "mst-%d", id); if (ret) { kfree(msto); return ERR_PTR(ret); } drm_encoder_helper_add(&msto->encoder, &nv50_msto_help); msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base); msto->head = head; return msto; } static struct drm_encoder * nv50_mstc_atomic_best_encoder(struct drm_connector *connector, struct drm_atomic_state *state) { struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state, connector); struct nv50_mstc *mstc = nv50_mstc(connector); struct drm_crtc *crtc = connector_state->crtc; if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc))) return NULL; return &nv50_head(crtc)->msto->encoder; } static enum drm_mode_status nv50_mstc_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct nv50_mstc *mstc = nv50_mstc(connector); struct nouveau_encoder *outp = mstc->mstm->outp; /* TODO: calculate the PBN from the dotclock and validate against the * MSTB's max possible PBN */ return nv50_dp_mode_valid(outp, mode, NULL); } static int nv50_mstc_get_modes(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); int ret = 0; mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port); drm_connector_update_edid_property(&mstc->connector, mstc->edid); if (mstc->edid) ret = drm_add_edid_modes(&mstc->connector, mstc->edid); /* * XXX: Since we don't use HDR in userspace quite yet, limit the bpc * to 8 to save bandwidth on the topology. In the future, we'll want * to properly fix this by dynamically selecting the highest possible * bpc that would fit in the topology */ if (connector->display_info.bpc) connector->display_info.bpc = clamp(connector->display_info.bpc, 6U, 8U); else connector->display_info.bpc = 8; if (mstc->native) drm_mode_destroy(mstc->connector.dev, mstc->native); mstc->native = nouveau_conn_native_mode(&mstc->connector); return ret; } static int nv50_mstc_atomic_check(struct drm_connector *connector, struct drm_atomic_state *state) { struct nv50_mstc *mstc = nv50_mstc(connector); struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr; return drm_dp_atomic_release_time_slots(state, mgr, mstc->port); } static int nv50_mstc_detect(struct drm_connector *connector, struct drm_modeset_acquire_ctx *ctx, bool force) { struct nv50_mstc *mstc = nv50_mstc(connector); int ret; if (drm_connector_is_unregistered(connector)) return connector_status_disconnected; ret = pm_runtime_get_sync(connector->dev->dev); if (ret < 0 && ret != -EACCES) { pm_runtime_put_autosuspend(connector->dev->dev); return connector_status_disconnected; } ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr, mstc->port); if (ret != connector_status_connected) goto out; out: pm_runtime_mark_last_busy(connector->dev->dev); pm_runtime_put_autosuspend(connector->dev->dev); return ret; } static const struct drm_connector_helper_funcs nv50_mstc_help = { .get_modes = nv50_mstc_get_modes, .mode_valid = nv50_mstc_mode_valid, .atomic_best_encoder = nv50_mstc_atomic_best_encoder, .atomic_check = nv50_mstc_atomic_check, .detect_ctx = nv50_mstc_detect, }; static void nv50_mstc_destroy(struct drm_connector *connector) { struct nv50_mstc *mstc = nv50_mstc(connector); drm_connector_cleanup(&mstc->connector); drm_dp_mst_put_port_malloc(mstc->port); kfree(mstc); } static const struct drm_connector_funcs nv50_mstc = { .reset = nouveau_conn_reset, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = nv50_mstc_destroy, .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state, .atomic_destroy_state = nouveau_conn_atomic_destroy_state, .atomic_set_property = nouveau_conn_atomic_set_property, .atomic_get_property = nouveau_conn_atomic_get_property, }; static int nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port, const char *path, struct nv50_mstc **pmstc) { struct drm_device *dev = mstm->outp->base.base.dev; struct drm_crtc *crtc; struct nv50_mstc *mstc; int ret; if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL))) return -ENOMEM; mstc->mstm = mstm; mstc->port = port; ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc, DRM_MODE_CONNECTOR_DisplayPort); if (ret) { kfree(*pmstc); *pmstc = NULL; return ret; } drm_connector_helper_add(&mstc->connector, &nv50_mstc_help); mstc->connector.funcs->reset(&mstc->connector); nouveau_conn_attach_properties(&mstc->connector); drm_for_each_crtc(crtc, dev) { if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc))) continue; drm_connector_attach_encoder(&mstc->connector, &nv50_head(crtc)->msto->encoder); } drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0); drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0); drm_connector_set_path_property(&mstc->connector, path); drm_dp_mst_get_port_malloc(port); return 0; } static void nv50_mstm_cleanup(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *mst_state, struct nv50_mstm *mstm) { struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); struct drm_encoder *encoder; NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name); drm_dp_check_act_status(&mstm->mgr); drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm) nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto); } } if (mstm->disabled) { nouveau_dp_power_down(mstm->outp); nvif_outp_release(&mstm->outp->outp); mstm->disabled = false; } mstm->modified = false; } static void nv50_mstm_prepare(struct drm_atomic_state *state, struct drm_dp_mst_topology_state *mst_state, struct nv50_mstm *mstm) { struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev); struct drm_encoder *encoder; NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name); /* Disable payloads first */ drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm && msto->disabled) nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); } } /* Add payloads for new heads, while also updating the start slots of any unmodified (but * active) heads that may have had their VC slots shifted left after the previous step */ drm_for_each_encoder(encoder, mstm->outp->base.base.dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) { struct nv50_msto *msto = nv50_msto(encoder); struct nv50_mstc *mstc = msto->mstc; if (mstc && mstc->mstm == mstm && !msto->disabled) nv50_msto_prepare(state, mst_state, &mstm->mgr, msto); } } } static struct drm_connector * nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr, struct drm_dp_mst_port *port, const char *path) { struct nv50_mstm *mstm = nv50_mstm(mgr); struct nv50_mstc *mstc; int ret; ret = nv50_mstc_new(mstm, port, path, &mstc); if (ret) return NULL; return &mstc->connector; } static const struct drm_dp_mst_topology_cbs nv50_mstm = { .add_connector = nv50_mstm_add_connector, }; bool nv50_mstm_service(struct nouveau_drm *drm, struct nouveau_connector *nv_connector, struct nv50_mstm *mstm) { struct drm_dp_aux *aux = &nv_connector->aux; bool handled = true, ret = true; int rc; u8 esi[8] = {}; while (handled) { u8 ack[8] = {}; rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8); if (rc != 8) { ret = false; break; } drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled); if (!handled) break; rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]); if (rc != 1) { ret = false; break; } drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr); } if (!ret) NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n", nv_connector->base.name, rc); return ret; } void nv50_mstm_remove(struct nv50_mstm *mstm) { mstm->is_mst = false; drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false); } int nv50_mstm_detect(struct nouveau_encoder *outp) { struct nv50_mstm *mstm = outp->dp.mstm; struct drm_dp_aux *aux; int ret; if (!mstm || !mstm->can_mst) return 0; aux = mstm->mgr.aux; /* Clear any leftover MST state we didn't set ourselves by first * disabling MST if it was already enabled */ ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0); if (ret < 0) return ret; /* And start enabling */ ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true); if (ret) return ret; mstm->is_mst = true; return 1; } static void nv50_mstm_fini(struct nouveau_encoder *outp) { struct nv50_mstm *mstm = outp->dp.mstm; if (!mstm) return; /* Don't change the MST state of this connector until we've finished * resuming, since we can't safely grab hpd_irq_lock in our resume * path to protect mstm->is_mst without potentially deadlocking */ mutex_lock(&outp->dp.hpd_irq_lock); mstm->suspended = true; mutex_unlock(&outp->dp.hpd_irq_lock); if (mstm->is_mst) drm_dp_mst_topology_mgr_suspend(&mstm->mgr); } static void nv50_mstm_init(struct nouveau_encoder *outp, bool runtime) { struct nv50_mstm *mstm = outp->dp.mstm; int ret = 0; if (!mstm) return; if (mstm->is_mst) { ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime); if (ret == -1) nv50_mstm_remove(mstm); } mutex_lock(&outp->dp.hpd_irq_lock); mstm->suspended = false; mutex_unlock(&outp->dp.hpd_irq_lock); if (ret == -1) drm_kms_helper_hotplug_event(mstm->mgr.dev); } static void nv50_mstm_del(struct nv50_mstm **pmstm) { struct nv50_mstm *mstm = *pmstm; if (mstm) { drm_dp_mst_topology_mgr_destroy(&mstm->mgr); kfree(*pmstm); *pmstm = NULL; } } static int nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max, int conn_base_id, struct nv50_mstm **pmstm) { const int max_payloads = hweight8(outp->dcb->heads); struct drm_device *dev = outp->base.base.dev; struct nv50_mstm *mstm; int ret; if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL))) return -ENOMEM; mstm->outp = outp; mstm->mgr.cbs = &nv50_mstm; ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max, max_payloads, conn_base_id); if (ret) return ret; return 0; } /****************************************************************************** * SOR *****************************************************************************/ static void nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head, struct nv50_head_atom *asyh, u8 proto, u8 depth) { struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev); struct nv50_core *core = disp->core; if (!asyh) { nv_encoder->ctrl &= ~BIT(head); if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE)) nv_encoder->ctrl = 0; } else { nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto); nv_encoder->ctrl |= BIT(head); asyh->or.depth = depth; } core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh); } /* TODO: Should we extend this to PWM-only backlights? * As well, should we add a DRM helper for waiting for the backlight to acknowledge * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a * fixed time delay from the vbios… */ static void nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_head *head = nv50_head(nv_encoder->crtc); #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder); struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev); struct nouveau_backlight *backlight = nv_connector->backlight; struct drm_dp_aux *aux = &nv_connector->aux; int ret; if (backlight && backlight->uses_dpcd) { ret = drm_edp_backlight_disable(aux, &backlight->edp_info); if (ret < 0) NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n", nv_connector->base.base.id, nv_connector->base.name, ret); } #endif if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) { nvif_outp_hdmi(&nv_encoder->outp, head->base.index, false, 0, 0, 0, false, false, false); nv_encoder->hdmi.enabled = false; } if (nv_encoder->dcb->type == DCB_OUTPUT_DP) nouveau_dp_power_down(nv_encoder); if (head->func->display_id) head->func->display_id(head, 0); nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0); nv50_audio_disable(encoder, &head->base); nv_encoder->crtc = NULL; } // common/inc/displayport/displayport.h #define DP_CONFIG_WATERMARK_ADJUST 2 #define DP_CONFIG_WATERMARK_LIMIT 20 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22 static bool nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp, struct nv50_head *head, struct nv50_head_atom *asyh) { bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP; u64 minRate = outp->dp.link_bw * 1000; unsigned tuSize = 64; unsigned waterMark; unsigned hBlankSym; unsigned vBlankSym; unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST; unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT; // depth is multiplied by 16 in case of DSC enable s32 hblank_symbols; // number of link clocks per line. int vblank_symbols = 0; bool bEnableDsc = false; unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke; unsigned rasterWidth = asyh->mode.h.active; unsigned depth = asyh->or.bpc * 3; unsigned DSC_FACTOR = bEnableDsc ? 16 : 1; u64 pixelClockHz = asyh->mode.clock * 1000; u64 PrecisionFactor = 100000, ratioF, watermarkF; u32 numLanesPerLink = outp->dp.link_nr; u32 numSymbolsPerLine; u32 BlankingBits; u32 surfaceWidthPerLink; u32 PixelSteeringBits; u64 NumBlankingLinkClocks; u32 MinHBlank; if (outp->outp.info.dp.increased_wm) { watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST; watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT; } if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR)) { return false; } // // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with // 0 active symbols. This may cause HW hang. Bug 200379426 // if ((bEnableDsc) && ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64))) { return false; } // // Perform the SST calculation. // For auto mode the watermark calculation does not need to track accumulated error the // formulas for manual mode will not work. So below calculation was extracted from the DTB. // ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR); ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr); if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below return false; watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor); waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor))); // // Bounds check the watermark // numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR); if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine)) return false; // // Clamp the low side // if (waterMark < watermarkMinimum) waterMark = watermarkMinimum; //Bits to send BS/BE/Extra symbols due to pixel padding //Also accounts for enhanced framing. BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0); //VBID/MVID/MAUD sent 4 times all the time BlankingBits += 3*8*4; surfaceWidthPerLink = surfaceWidth; //Extra bits sent due to pixel steering u32 remain; div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain); PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0; BlankingBits += PixelSteeringBits; NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink)); MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor)); MinHBlank += 12; if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth)) return false; // Bug 702290 - Active Width should be greater than 60 if (WARN_ON(surfaceWidth <= 60)) return false; hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz)); //reduce HBlank Symbols to account for secondary data packet hblank_symbols -= 1; //Stuffer latency to send BS hblank_symbols -= 3; //SPKT latency to send data to stuffer hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3; hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols; // Refer to dev_disp.ref for more information. // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1; // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39 if (surfaceWidth < 40) { vblank_symbols = 0; } else { vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1; vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12; } vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols; return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym); } static void nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); struct nv50_head_atom *asyh = nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); struct drm_display_mode *mode = &asyh->state.adjusted_mode; struct nv50_disp *disp = nv50_disp(encoder->dev); struct nv50_head *head = nv50_head(&nv_crtc->base); struct nvif_outp *outp = &nv_encoder->outp; struct drm_device *dev = encoder->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nouveau_connector *nv_connector; #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT struct nouveau_backlight *backlight; #endif struct nvbios *bios = &drm->vbios; bool lvds_dual = false, lvds_8bpc = false, hda = false; u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM; u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; nv_connector = nv50_outp_get_new_connector(state, nv_encoder); nv_encoder->crtc = &nv_crtc->base; if ((disp->disp->object.oclass == GT214_DISP || disp->disp->object.oclass >= GF110_DISP) && nv_encoder->dcb->type != DCB_OUTPUT_LVDS && drm_detect_monitor_audio(nv_connector->edid)) hda = true; if (!nvif_outp_acquired(outp)) nvif_outp_acquire_sor(outp, hda); switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: if (disp->disp->object.oclass != NV50_DISP && drm_detect_hdmi_monitor(nv_connector->edid)) nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda); if (nv_encoder->outp.or.link & 1) { proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A; /* Only enable dual-link if: * - Need to (i.e. rate > 165MHz) * - DCB says we can * - Not an HDMI monitor, since there's no dual-link * on HDMI. */ if (mode->clock >= 165000 && nv_encoder->dcb->duallink_possible && !drm_detect_hdmi_monitor(nv_connector->edid)) proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS; } else { proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B; } break; case DCB_OUTPUT_LVDS: proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM; if (bios->fp_no_ddc) { lvds_dual = bios->fp.dual_link; lvds_8bpc = bios->fp.if_is_24bit; } else { if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) { if (((u8 *)nv_connector->edid)[121] == 2) lvds_dual = true; } else if (mode->clock >= bios->fp.duallink_transition_clk) { lvds_dual = true; } if (lvds_dual) { if (bios->fp.strapless_is_24bit & 2) lvds_8bpc = true; } else { if (bios->fp.strapless_is_24bit & 1) lvds_8bpc = true; } if (asyh->or.bpc == 8) lvds_8bpc = true; } nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc); break; case DCB_OUTPUT_DP: nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc); nv50_sor_dp_watermark_sst(nv_encoder, head, asyh); depth = nv50_dp_bpc_to_depth(asyh->or.bpc); if (nv_encoder->outp.or.link & 1) proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A; else proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B; #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT backlight = nv_connector->backlight; if (backlight && backlight->uses_dpcd) drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info, (u16)backlight->dev->props.brightness); #endif break; default: BUG(); break; } if (head->func->display_id) head->func->display_id(head, BIT(nv_encoder->outp.id)); nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth); } static const struct drm_encoder_helper_funcs nv50_sor_help = { .atomic_check = nv50_outp_atomic_check, .atomic_enable = nv50_sor_atomic_enable, .atomic_disable = nv50_sor_atomic_disable, }; static void nv50_sor_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nv50_mstm_del(&nv_encoder->dp.mstm); drm_encoder_cleanup(encoder); if (nv_encoder->dcb->type == DCB_OUTPUT_DP) mutex_destroy(&nv_encoder->dp.hpd_irq_lock); nvif_outp_dtor(&nv_encoder->outp); kfree(encoder); } static const struct drm_encoder_funcs nv50_sor_func = { .destroy = nv50_sor_destroy, }; static int nv50_sor_create(struct nouveau_encoder *nv_encoder) { struct drm_connector *connector = &nv_encoder->conn->base; struct nouveau_connector *nv_connector = nouveau_connector(connector); struct nouveau_drm *drm = nouveau_drm(connector->dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct drm_encoder *encoder; struct dcb_output *dcbe = nv_encoder->dcb; struct nv50_disp *disp = nv50_disp(connector->dev); int type, ret; switch (dcbe->type) { case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break; case DCB_OUTPUT_TMDS: case DCB_OUTPUT_DP: default: type = DRM_MODE_ENCODER_TMDS; break; } nv_encoder->update = nv50_sor_update; encoder = to_drm_encoder(nv_encoder); drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type, "sor-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_sor_help); drm_connector_attach_encoder(connector, encoder); disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); nv50_outp_dump_caps(drm, nv_encoder); if (dcbe->type == DCB_OUTPUT_DP) { mutex_init(&nv_encoder->dp.hpd_irq_lock); if (disp->disp->object.oclass < GF110_DISP) { /* HW has no support for address-only * transactions, so we're required to * use custom I2C-over-AUX code. */ struct nvkm_i2c_aux *aux; aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index); if (!aux) return -EINVAL; nv_encoder->i2c = &aux->i2c; } else { nv_encoder->i2c = &nv_connector->aux.ddc; } if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) { ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16, nv_connector->base.base.id, &nv_encoder->dp.mstm); if (ret) return ret; } } else if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) { struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index); if (bus) nv_encoder->i2c = &bus->i2c; } return 0; } /****************************************************************************** * PIOR *****************************************************************************/ static int nv50_pior_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state); if (ret) return ret; crtc_state->adjusted_mode.clock *= 2; return 0; } static void nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nv50_core *core = nv50_disp(encoder->dev)->core; const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE); core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL); nv_encoder->crtc = NULL; } static void nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder); struct nv50_head_atom *asyh = nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base)); struct nv50_core *core = nv50_disp(encoder->dev)->core; u32 ctrl = 0; switch (nv_crtc->index) { case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break; case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break; default: WARN_ON(1); break; } switch (asyh->or.bpc) { case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break; case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break; case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break; default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break; } if (!nvif_outp_acquired(&nv_encoder->outp)) nvif_outp_acquire_pior(&nv_encoder->outp); switch (nv_encoder->dcb->type) { case DCB_OUTPUT_TMDS: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); break; case DCB_OUTPUT_DP: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC); nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6); break; default: BUG(); break; } core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh); nv_encoder->crtc = &nv_crtc->base; } static const struct drm_encoder_helper_funcs nv50_pior_help = { .atomic_check = nv50_pior_atomic_check, .atomic_enable = nv50_pior_atomic_enable, .atomic_disable = nv50_pior_atomic_disable, }; static void nv50_pior_destroy(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nvif_outp_dtor(&nv_encoder->outp); drm_encoder_cleanup(encoder); mutex_destroy(&nv_encoder->dp.hpd_irq_lock); kfree(encoder); } static const struct drm_encoder_funcs nv50_pior_func = { .destroy = nv50_pior_destroy, }; static int nv50_pior_create(struct nouveau_encoder *nv_encoder) { struct drm_connector *connector = &nv_encoder->conn->base; struct drm_device *dev = connector->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus = NULL; struct nvkm_i2c_aux *aux = NULL; struct i2c_adapter *ddc; struct drm_encoder *encoder; struct dcb_output *dcbe = nv_encoder->dcb; int type; switch (dcbe->type) { case DCB_OUTPUT_TMDS: bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc); ddc = bus ? &bus->i2c : NULL; type = DRM_MODE_ENCODER_TMDS; break; case DCB_OUTPUT_DP: aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux); ddc = aux ? &aux->i2c : NULL; type = DRM_MODE_ENCODER_TMDS; break; default: return -ENODEV; } nv_encoder->i2c = ddc; mutex_init(&nv_encoder->dp.hpd_irq_lock); encoder = to_drm_encoder(nv_encoder); drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type, "pior-%04x-%04x", dcbe->hasht, dcbe->hashm); drm_encoder_helper_add(encoder, &nv50_pior_help); drm_connector_attach_encoder(connector, encoder); disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1); nv50_outp_dump_caps(drm, nv_encoder); return 0; } /****************************************************************************** * Atomic *****************************************************************************/ static void nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock) { struct drm_dp_mst_topology_mgr *mgr; struct drm_dp_mst_topology_state *mst_state; struct nouveau_drm *drm = nouveau_drm(state->dev); struct nv50_disp *disp = nv50_disp(drm->dev); struct nv50_atom *atom = nv50_atom(state); struct nv50_core *core = disp->core; struct nv50_outp_atom *outp; struct nv50_mstm *mstm; int i; NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]); for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { mstm = nv50_mstm(mgr); if (mstm->modified) nv50_mstm_prepare(state, mst_state, mstm); } core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY); core->func->update(core, interlock, true); if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY, disp->core->chan.base.device)) NV_ERROR(drm, "core notifier timeout\n"); for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) { mstm = nv50_mstm(mgr); if (mstm->modified) nv50_mstm_cleanup(state, mst_state, mstm); } list_for_each_entry(outp, &atom->outp, head) { if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder); if (outp->enabled) { nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc), nv_encoder->conn, NULL, NULL); outp->enabled = outp->disabled = false; } else { if (outp->disabled) { nvif_outp_release(&nv_encoder->outp); outp->disabled = false; } } } } } static void nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock) { struct drm_plane_state *new_plane_state; struct drm_plane *plane; int i; for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw *wndw = nv50_wndw(plane); if (interlock[wndw->interlock.type] & wndw->interlock.data) { if (wndw->func->update) wndw->func->update(wndw, interlock); } } } static void nv50_disp_atomic_commit_tail(struct drm_atomic_state *state) { struct drm_device *dev = state->dev; struct drm_crtc_state *new_crtc_state, *old_crtc_state; struct drm_crtc *crtc; struct drm_plane_state *new_plane_state; struct drm_plane *plane; struct nouveau_drm *drm = nouveau_drm(dev); struct nv50_disp *disp = nv50_disp(dev); struct nv50_atom *atom = nv50_atom(state); struct nv50_core *core = disp->core; struct nv50_outp_atom *outp, *outt; u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {}; int i; bool flushed = false; NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable); nv50_crc_atomic_stop_reporting(state); drm_atomic_helper_wait_for_fences(dev, state, false); drm_atomic_helper_wait_for_dependencies(state); drm_dp_mst_atomic_wait_for_dependencies(state); drm_atomic_helper_update_legacy_modeset_state(dev, state); drm_atomic_helper_calc_timestamping_constants(state); if (atom->lock_core) mutex_lock(&disp->mutex); /* Disable head(s). */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name, asyh->clr.mask, asyh->set.mask); if (old_crtc_state->active && !new_crtc_state->active) { pm_runtime_put_noidle(dev->dev); drm_crtc_vblank_off(crtc); } if (asyh->clr.mask) { nv50_head_flush_clr(head, asyh, atom->flush_disable); interlock[NV50_DISP_INTERLOCK_CORE] |= 1; } } /* Disable plane(s). */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name, asyw->clr.mask, asyw->set.mask); if (!asyw->clr.mask) continue; nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw); } /* Disable output path(s). */ list_for_each_entry(outp, &atom->outp, head) { const struct drm_encoder_helper_funcs *help; struct drm_encoder *encoder; encoder = outp->encoder; help = encoder->helper_private; NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name, outp->clr.mask, outp->set.mask); if (outp->clr.mask) { help->atomic_disable(encoder, state); outp->disabled = true; interlock[NV50_DISP_INTERLOCK_CORE] |= 1; } } /* Flush disable. */ if (interlock[NV50_DISP_INTERLOCK_CORE]) { if (atom->flush_disable) { nv50_disp_atomic_commit_wndw(state, interlock); nv50_disp_atomic_commit_core(state, interlock); memset(interlock, 0x00, sizeof(interlock)); flushed = true; } } if (flushed) nv50_crc_atomic_release_notifier_contexts(state); nv50_crc_atomic_init_notifier_contexts(state); /* Update output path(s). */ list_for_each_entry(outp, &atom->outp, head) { const struct drm_encoder_helper_funcs *help; struct drm_encoder *encoder; encoder = outp->encoder; help = encoder->helper_private; NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name, outp->set.mask, outp->clr.mask); if (outp->set.mask) { help->atomic_enable(encoder, state); outp->enabled = true; interlock[NV50_DISP_INTERLOCK_CORE] = 1; } } /* Update head(s). */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, asyh->set.mask, asyh->clr.mask); if (asyh->set.mask) { nv50_head_flush_set(head, asyh); interlock[NV50_DISP_INTERLOCK_CORE] = 1; } if (new_crtc_state->active) { if (!old_crtc_state->active) { drm_crtc_vblank_on(crtc); pm_runtime_get_noresume(dev->dev); } if (new_crtc_state->event) drm_crtc_vblank_get(crtc); } } /* Update window->head assignment. * * This has to happen in an update that's not interlocked with * any window channels to avoid hitting HW error checks. * *TODO: Proper handling of window ownership (Turing apparently * supports non-fixed mappings). */ if (core->assign_windows) { core->func->wndw.owner(core); nv50_disp_atomic_commit_core(state, interlock); core->assign_windows = false; interlock[NV50_DISP_INTERLOCK_CORE] = 0; } /* Finish updating head(s)... * * NVD is rather picky about both where window assignments can change, * *and* about certain core and window channel states matching. * * The EFI GOP driver on newer GPUs configures window channels with a * different output format to what we do, and the core channel update * in the assign_windows case above would result in a state mismatch. * * Delay some of the head update until after that point to workaround * the issue. This only affects the initial modeset. * * TODO: handle this better when adding flexible window mapping */ for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) { struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state); struct nv50_head *head = nv50_head(crtc); NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name, asyh->set.mask, asyh->clr.mask); if (asyh->set.mask) { nv50_head_flush_set_wndw(head, asyh); interlock[NV50_DISP_INTERLOCK_CORE] = 1; } } /* Update plane(s). */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name, asyw->set.mask, asyw->clr.mask); if ( !asyw->set.mask && (!asyw->clr.mask || atom->flush_disable)) continue; nv50_wndw_flush_set(wndw, interlock, asyw); } /* Flush update. */ nv50_disp_atomic_commit_wndw(state, interlock); if (interlock[NV50_DISP_INTERLOCK_CORE]) { if (interlock[NV50_DISP_INTERLOCK_BASE] || interlock[NV50_DISP_INTERLOCK_OVLY] || interlock[NV50_DISP_INTERLOCK_WNDW] || !atom->state.legacy_cursor_update) nv50_disp_atomic_commit_core(state, interlock); else disp->core->func->update(disp->core, interlock, false); } if (atom->lock_core) mutex_unlock(&disp->mutex); list_for_each_entry_safe(outp, outt, &atom->outp, head) { list_del(&outp->head); kfree(outp); } /* Wait for HW to signal completion. */ for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); int ret = nv50_wndw_wait_armed(wndw, asyw); if (ret) NV_ERROR(drm, "%s: timeout\n", plane->name); } for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->event) { unsigned long flags; /* Get correct count/ts if racing with vblank irq */ if (new_crtc_state->active) drm_crtc_accurate_vblank_count(crtc); spin_lock_irqsave(&crtc->dev->event_lock, flags); drm_crtc_send_vblank_event(crtc, new_crtc_state->event); spin_unlock_irqrestore(&crtc->dev->event_lock, flags); new_crtc_state->event = NULL; if (new_crtc_state->active) drm_crtc_vblank_put(crtc); } } nv50_crc_atomic_start_reporting(state); if (!flushed) nv50_crc_atomic_release_notifier_contexts(state); drm_atomic_helper_commit_hw_done(state); drm_atomic_helper_cleanup_planes(dev, state); drm_atomic_helper_commit_cleanup_done(state); drm_atomic_state_put(state); /* Drop the RPM ref we got from nv50_disp_atomic_commit() */ pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); } static void nv50_disp_atomic_commit_work(struct work_struct *work) { struct drm_atomic_state *state = container_of(work, typeof(*state), commit_work); nv50_disp_atomic_commit_tail(state); } static int nv50_disp_atomic_commit(struct drm_device *dev, struct drm_atomic_state *state, bool nonblock) { struct drm_plane_state *new_plane_state; struct drm_plane *plane; int ret, i; ret = pm_runtime_get_sync(dev->dev); if (ret < 0 && ret != -EACCES) { pm_runtime_put_autosuspend(dev->dev); return ret; } ret = drm_atomic_helper_setup_commit(state, nonblock); if (ret) goto done; INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work); ret = drm_atomic_helper_prepare_planes(dev, state); if (ret) goto done; if (!nonblock) { ret = drm_atomic_helper_wait_for_fences(dev, state, true); if (ret) goto err_cleanup; } ret = drm_atomic_helper_swap_state(state, true); if (ret) goto err_cleanup; for_each_new_plane_in_state(state, plane, new_plane_state, i) { struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state); struct nv50_wndw *wndw = nv50_wndw(plane); if (asyw->set.image) nv50_wndw_ntfy_enable(wndw, asyw); } drm_atomic_state_get(state); /* * Grab another RPM ref for the commit tail, which will release the * ref when it's finished */ pm_runtime_get_noresume(dev->dev); if (nonblock) queue_work(system_unbound_wq, &state->commit_work); else nv50_disp_atomic_commit_tail(state); err_cleanup: if (ret) drm_atomic_helper_cleanup_planes(dev, state); done: pm_runtime_put_autosuspend(dev->dev); return ret; } static struct nv50_outp_atom * nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder) { struct nv50_outp_atom *outp; list_for_each_entry(outp, &atom->outp, head) { if (outp->encoder == encoder) return outp; } outp = kzalloc(sizeof(*outp), GFP_KERNEL); if (!outp) return ERR_PTR(-ENOMEM); list_add(&outp->head, &atom->outp); outp->encoder = encoder; return outp; } static int nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom, struct drm_connector_state *old_connector_state) { struct drm_encoder *encoder = old_connector_state->best_encoder; struct drm_crtc_state *old_crtc_state, *new_crtc_state; struct drm_crtc *crtc; struct nv50_outp_atom *outp; if (!(crtc = old_connector_state->crtc)) return 0; old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc); new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { outp = nv50_disp_outp_atomic_add(atom, encoder); if (IS_ERR(outp)) return PTR_ERR(outp); if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST || nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP) atom->flush_disable = true; outp->clr.ctrl = true; atom->lock_core = true; } return 0; } static int nv50_disp_outp_atomic_check_set(struct nv50_atom *atom, struct drm_connector_state *connector_state) { struct drm_encoder *encoder = connector_state->best_encoder; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; struct nv50_outp_atom *outp; if (!(crtc = connector_state->crtc)) return 0; new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc); if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) { outp = nv50_disp_outp_atomic_add(atom, encoder); if (IS_ERR(outp)) return PTR_ERR(outp); outp->set.ctrl = true; atom->lock_core = true; } return 0; } static int nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); struct nv50_core *core = nv50_disp(dev)->core; struct drm_connector_state *old_connector_state, *new_connector_state; struct drm_connector *connector; struct drm_crtc_state *new_crtc_state; struct drm_crtc *crtc; struct nv50_head *head; struct nv50_head_atom *asyh; int ret, i; if (core->assign_windows && core->func->head->static_wndw_map) { drm_for_each_crtc(crtc, dev) { new_crtc_state = drm_atomic_get_crtc_state(state, crtc); if (IS_ERR(new_crtc_state)) return PTR_ERR(new_crtc_state); head = nv50_head(crtc); asyh = nv50_head_atom(new_crtc_state); core->func->head->static_wndw_map(head, asyh); } } /* We need to handle colour management on a per-plane basis. */ for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) { if (new_crtc_state->color_mgmt_changed) { ret = drm_atomic_add_affected_planes(state, crtc); if (ret) return ret; } } ret = drm_atomic_helper_check(dev, state); if (ret) return ret; for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) { ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state); if (ret) return ret; ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state); if (ret) return ret; } ret = drm_dp_mst_atomic_check(state); if (ret) return ret; nv50_crc_atomic_check_outp(atom); return 0; } static void nv50_disp_atomic_state_clear(struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); struct nv50_outp_atom *outp, *outt; list_for_each_entry_safe(outp, outt, &atom->outp, head) { list_del(&outp->head); kfree(outp); } drm_atomic_state_default_clear(state); } static void nv50_disp_atomic_state_free(struct drm_atomic_state *state) { struct nv50_atom *atom = nv50_atom(state); drm_atomic_state_default_release(&atom->state); kfree(atom); } static struct drm_atomic_state * nv50_disp_atomic_state_alloc(struct drm_device *dev) { struct nv50_atom *atom; if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) || drm_atomic_state_init(dev, &atom->state) < 0) { kfree(atom); return NULL; } INIT_LIST_HEAD(&atom->outp); return &atom->state; } static const struct drm_mode_config_funcs nv50_disp_func = { .fb_create = nouveau_user_framebuffer_create, .output_poll_changed = drm_fb_helper_output_poll_changed, .atomic_check = nv50_disp_atomic_check, .atomic_commit = nv50_disp_atomic_commit, .atomic_state_alloc = nv50_disp_atomic_state_alloc, .atomic_state_clear = nv50_disp_atomic_state_clear, .atomic_state_free = nv50_disp_atomic_state_free, }; static const struct drm_mode_config_helper_funcs nv50_disp_helper_func = { .atomic_commit_setup = drm_dp_mst_atomic_setup_commit, }; /****************************************************************************** * Init *****************************************************************************/ static void nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend) { struct nouveau_drm *drm = nouveau_drm(dev); struct drm_encoder *encoder; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) nv50_mstm_fini(nouveau_encoder(encoder)); } if (!runtime) cancel_work_sync(&drm->hpd_work); } static inline void nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp, struct nouveau_encoder *outp) { struct drm_crtc *crtc; struct drm_connector_list_iter conn_iter; struct drm_connector *conn; struct nv50_head_atom *armh; const u32 encoder_mask = drm_encoder_mask(&outp->base.base); bool found_conn = false, found_head = false; u8 proto; int head_idx; int ret; switch (outp->dcb->type) { case DCB_OUTPUT_TMDS: ret = nvif_outp_inherit_tmds(&outp->outp, &proto); break; case DCB_OUTPUT_DP: ret = nvif_outp_inherit_dp(&outp->outp, &proto); break; case DCB_OUTPUT_LVDS: ret = nvif_outp_inherit_lvds(&outp->outp, &proto); break; case DCB_OUTPUT_ANALOG: ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto); break; default: drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n", outp->base.base.name); drm_WARN_ON(dev, true); return; } if (ret < 0) return; head_idx = ret; drm_for_each_crtc(crtc, dev) { if (crtc->index != head_idx) continue; armh = nv50_head_atom(crtc->state); found_head = true; break; } if (drm_WARN_ON(dev, !found_head)) return; /* Figure out which connector is being used by this encoder */ drm_connector_list_iter_begin(dev, &conn_iter); nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) { if (nouveau_connector(conn)->index == outp->dcb->connector) { found_conn = true; break; } } drm_connector_list_iter_end(&conn_iter); if (drm_WARN_ON(dev, !found_conn)) return; armh->state.encoder_mask = encoder_mask; armh->state.connector_mask = drm_connector_mask(conn); armh->state.active = true; armh->state.enable = true; pm_runtime_get_noresume(dev->dev); outp->crtc = crtc; outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index); drm_connector_get(conn); conn->state->crtc = crtc; conn->state->best_encoder = &outp->base.base; } /* Read back the currently programmed display state */ static void nv50_display_read_hw_state(struct nouveau_drm *drm) { struct drm_device *dev = drm->dev; struct drm_encoder *encoder; struct drm_modeset_acquire_ctx ctx; struct nv50_disp *disp = nv50_disp(dev); int ret; DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret); drm_for_each_encoder(encoder, dev) { if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) continue; nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder)); } DRM_MODESET_LOCK_ALL_END(dev, ctx, ret); } static int nv50_display_init(struct drm_device *dev, bool resume, bool runtime) { struct nv50_core *core = nv50_disp(dev)->core; struct drm_encoder *encoder; if (resume || runtime) core->func->init(core); list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); nv50_mstm_init(nv_encoder, runtime); } } if (!resume) nv50_display_read_hw_state(nouveau_drm(dev)); return 0; } static void nv50_display_destroy(struct drm_device *dev) { struct nv50_disp *disp = nv50_disp(dev); nv50_audio_component_fini(nouveau_drm(dev)); nvif_object_unmap(&disp->caps); nvif_object_dtor(&disp->caps); nv50_core_del(&disp->core); nouveau_bo_unmap(disp->sync); if (disp->sync) nouveau_bo_unpin(disp->sync); nouveau_bo_ref(NULL, &disp->sync); nouveau_display(dev)->priv = NULL; kfree(disp); } int nv50_display_create(struct drm_device *dev) { struct nouveau_drm *drm = nouveau_drm(dev); struct drm_connector *connector, *tmp; struct nv50_disp *disp; int ret, i; bool has_mst = false; disp = kzalloc(sizeof(*disp), GFP_KERNEL); if (!disp) return -ENOMEM; mutex_init(&disp->mutex); nouveau_display(dev)->priv = disp; nouveau_display(dev)->dtor = nv50_display_destroy; nouveau_display(dev)->init = nv50_display_init; nouveau_display(dev)->fini = nv50_display_fini; disp->disp = &nouveau_display(dev)->disp; dev->mode_config.funcs = &nv50_disp_func; dev->mode_config.helper_private = &nv50_disp_helper_func; dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true; dev->mode_config.normalize_zpos = true; /* small shared memory area we use for notifiers and semaphores */ ret = nouveau_bo_new(&drm->client, 4096, 0x1000, NOUVEAU_GEM_DOMAIN_VRAM, 0, 0x0000, NULL, NULL, &disp->sync); if (!ret) { ret = nouveau_bo_pin(disp->sync, NOUVEAU_GEM_DOMAIN_VRAM, true); if (!ret) { ret = nouveau_bo_map(disp->sync); if (ret) nouveau_bo_unpin(disp->sync); } if (ret) nouveau_bo_ref(NULL, &disp->sync); } if (ret) goto out; /* allocate master evo channel */ ret = nv50_core_new(drm, &disp->core); if (ret) goto out; disp->core->func->init(disp->core); if (disp->core->func->caps_init) { ret = disp->core->func->caps_init(drm, disp); if (ret) goto out; } /* Assign the correct format modifiers */ if (disp->disp->object.oclass >= TU102_DISP) nouveau_display(dev)->format_modifiers = wndwc57e_modifiers; else if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI) nouveau_display(dev)->format_modifiers = disp90xx_modifiers; else nouveau_display(dev)->format_modifiers = disp50xx_modifiers; /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to * small page allocations in prepare_fb(). When this is implemented, we should also force * large pages (128K) for ovly fbs in order to fix Kepler ovlys. * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using * large pages. */ if (disp->disp->object.oclass >= GM107_DISP) { dev->mode_config.cursor_width = 256; dev->mode_config.cursor_height = 256; } else if (disp->disp->object.oclass >= GK104_DISP) { dev->mode_config.cursor_width = 128; dev->mode_config.cursor_height = 128; } else { dev->mode_config.cursor_width = 64; dev->mode_config.cursor_height = 64; } /* create encoder/connector objects based on VBIOS DCB table */ for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) { struct nouveau_encoder *outp; outp = kzalloc(sizeof(*outp), GFP_KERNEL); if (!outp) break; ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp); if (ret) { kfree(outp); continue; } connector = nouveau_connector_create(dev, outp->outp.info.conn); if (IS_ERR(connector)) { nvif_outp_dtor(&outp->outp); kfree(outp); continue; } outp->base.base.possible_crtcs = outp->outp.info.heads; outp->base.base.possible_clones = 0; outp->conn = nouveau_connector(connector); outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL); if (!outp->dcb) break; switch (outp->outp.info.proto) { case NVIF_OUTP_RGB_CRT: outp->dcb->type = DCB_OUTPUT_ANALOG; outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max; break; case NVIF_OUTP_TMDS: outp->dcb->type = DCB_OUTPUT_TMDS; outp->dcb->duallink_possible = outp->outp.info.tmds.dual; break; case NVIF_OUTP_LVDS: outp->dcb->type = DCB_OUTPUT_LVDS; outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid; break; case NVIF_OUTP_DP: outp->dcb->type = DCB_OUTPUT_DP; outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr; outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw; if (outp->outp.info.dp.mst) has_mst = true; break; default: WARN_ON(1); continue; } outp->dcb->heads = outp->outp.info.heads; outp->dcb->connector = outp->outp.info.conn; outp->dcb->i2c_index = outp->outp.info.ddc; switch (outp->outp.info.type) { case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break; case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break; case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break; default: WARN_ON(1); continue; } if (ret) { NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n", i, outp->outp.info.type, outp->outp.info.proto, ret); } } /* cull any connectors we created that don't have an encoder */ list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (connector->possible_encoders) continue; NV_WARN(drm, "%s has no encoders, removing\n", connector->name); connector->funcs->destroy(connector); } /* create crtc objects to represent the hw heads */ for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) { struct nv50_head *head; head = nv50_head_create(dev, i); if (IS_ERR(head)) { ret = PTR_ERR(head); goto out; } if (has_mst) { head->msto = nv50_msto_new(dev, head, i); if (IS_ERR(head->msto)) { ret = PTR_ERR(head->msto); head->msto = NULL; goto out; } /* * FIXME: This is a hack to workaround the following * issues: * * https://gitlab.gnome.org/GNOME/mutter/issues/759 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277 * * Once these issues are closed, this should be * removed */ head->msto->encoder.possible_crtcs = disp->disp->head_mask; } } /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */ dev->vblank_disable_immediate = true; nv50_audio_component_init(drm); out: if (ret) nv50_display_destroy(dev); return ret; } /****************************************************************************** * Format modifiers *****************************************************************************/ /**************************************************************** * Log2(block height) ----------------------------+ * * Page Kind ----------------------------------+ | * * Gob Height/Page Kind Generation ------+ | | * * Sector layout -------+ | | | * * Compression ------+ | | | | */ const u64 disp50xx_modifiers[] = { /* | | | | | */ DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5), DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID }; /**************************************************************** * Log2(block height) ----------------------------+ * * Page Kind ----------------------------------+ | * * Gob Height/Page Kind Generation ------+ | | * * Sector layout -------+ | | | * * Compression ------+ | | | | */ const u64 disp90xx_modifiers[] = { /* | | | | | */ DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4), DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5), DRM_FORMAT_MOD_LINEAR, DRM_FORMAT_MOD_INVALID };