// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_device.h" #include #include #include #include #include #include #include #include #include "regs/xe_gt_regs.h" #include "regs/xe_regs.h" #include "xe_bo.h" #include "xe_debugfs.h" #include "xe_display.h" #include "xe_dma_buf.h" #include "xe_drm_client.h" #include "xe_drv.h" #include "xe_exec_queue.h" #include "xe_exec.h" #include "xe_ggtt.h" #include "xe_gt.h" #include "xe_gt_mcr.h" #include "xe_irq.h" #include "xe_mmio.h" #include "xe_module.h" #include "xe_pat.h" #include "xe_pcode.h" #include "xe_pm.h" #include "xe_query.h" #include "xe_tile.h" #include "xe_ttm_stolen_mgr.h" #include "xe_ttm_sys_mgr.h" #include "xe_vm.h" #include "xe_wait_user_fence.h" #include "xe_hwmon.h" #ifdef CONFIG_LOCKDEP struct lockdep_map xe_device_mem_access_lockdep_map = { .name = "xe_device_mem_access_lockdep_map" }; #endif static int xe_file_open(struct drm_device *dev, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_drm_client *client; struct xe_file *xef; int ret = -ENOMEM; xef = kzalloc(sizeof(*xef), GFP_KERNEL); if (!xef) return ret; client = xe_drm_client_alloc(); if (!client) { kfree(xef); return ret; } xef->drm = file; xef->client = client; xef->xe = xe; mutex_init(&xef->vm.lock); xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1); mutex_init(&xef->exec_queue.lock); xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1); spin_lock(&xe->clients.lock); xe->clients.count++; spin_unlock(&xe->clients.lock); file->driver_priv = xef; return 0; } static void device_kill_persistent_exec_queues(struct xe_device *xe, struct xe_file *xef); static void xe_file_close(struct drm_device *dev, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct xe_file *xef = file->driver_priv; struct xe_vm *vm; struct xe_exec_queue *q; unsigned long idx; mutex_lock(&xef->exec_queue.lock); xa_for_each(&xef->exec_queue.xa, idx, q) { xe_exec_queue_kill(q); xe_exec_queue_put(q); } mutex_unlock(&xef->exec_queue.lock); xa_destroy(&xef->exec_queue.xa); mutex_destroy(&xef->exec_queue.lock); device_kill_persistent_exec_queues(xe, xef); mutex_lock(&xef->vm.lock); xa_for_each(&xef->vm.xa, idx, vm) xe_vm_close_and_put(vm); mutex_unlock(&xef->vm.lock); xa_destroy(&xef->vm.xa); mutex_destroy(&xef->vm.lock); spin_lock(&xe->clients.lock); xe->clients.count--; spin_unlock(&xe->clients.lock); xe_drm_client_put(xef->client); kfree(xef); } static const struct drm_ioctl_desc xe_ioctls[] = { DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl, DRM_RENDER_ALLOW), DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl, DRM_RENDER_ALLOW), }; static const struct file_operations xe_driver_fops = { .owner = THIS_MODULE, .open = drm_open, .release = drm_release_noglobal, .unlocked_ioctl = drm_ioctl, .mmap = drm_gem_mmap, .poll = drm_poll, .read = drm_read, .compat_ioctl = drm_compat_ioctl, .llseek = noop_llseek, #ifdef CONFIG_PROC_FS .show_fdinfo = drm_show_fdinfo, #endif }; static void xe_driver_release(struct drm_device *dev) { struct xe_device *xe = to_xe_device(dev); pci_set_drvdata(to_pci_dev(xe->drm.dev), NULL); } static struct drm_driver driver = { /* Don't use MTRRs here; the Xserver or userspace app should * deal with them for Intel hardware. */ .driver_features = DRIVER_GEM | DRIVER_RENDER | DRIVER_SYNCOBJ | DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA, .open = xe_file_open, .postclose = xe_file_close, .gem_prime_import = xe_gem_prime_import, .dumb_create = xe_bo_dumb_create, .dumb_map_offset = drm_gem_ttm_dumb_map_offset, #ifdef CONFIG_PROC_FS .show_fdinfo = xe_drm_client_fdinfo, #endif .release = &xe_driver_release, .ioctls = xe_ioctls, .num_ioctls = ARRAY_SIZE(xe_ioctls), .fops = &xe_driver_fops, .name = DRIVER_NAME, .desc = DRIVER_DESC, .date = DRIVER_DATE, .major = DRIVER_MAJOR, .minor = DRIVER_MINOR, .patchlevel = DRIVER_PATCHLEVEL, }; static void xe_device_destroy(struct drm_device *dev, void *dummy) { struct xe_device *xe = to_xe_device(dev); if (xe->ordered_wq) destroy_workqueue(xe->ordered_wq); if (xe->unordered_wq) destroy_workqueue(xe->unordered_wq); ttm_device_fini(&xe->ttm); } struct xe_device *xe_device_create(struct pci_dev *pdev, const struct pci_device_id *ent) { struct xe_device *xe; int err; xe_display_driver_set_hooks(&driver); err = drm_aperture_remove_conflicting_pci_framebuffers(pdev, &driver); if (err) return ERR_PTR(err); xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm); if (IS_ERR(xe)) return xe; err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev, xe->drm.anon_inode->i_mapping, xe->drm.vma_offset_manager, false, false); if (WARN_ON(err)) goto err; err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL); if (err) goto err; xe->info.devid = pdev->device; xe->info.revid = pdev->revision; xe->info.force_execlist = xe_modparam.force_execlist; spin_lock_init(&xe->irq.lock); spin_lock_init(&xe->clients.lock); init_waitqueue_head(&xe->ufence_wq); drmm_mutex_init(&xe->drm, &xe->usm.lock); xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC); if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) { /* Trigger a large asid and an early asid wrap. */ u32 asid; BUILD_BUG_ON(XE_MAX_ASID < 2); err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL, XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1), &xe->usm.next_asid, GFP_KERNEL); drm_WARN_ON(&xe->drm, err); if (err >= 0) xa_erase(&xe->usm.asid_to_vm, asid); } drmm_mutex_init(&xe->drm, &xe->persistent_engines.lock); INIT_LIST_HEAD(&xe->persistent_engines.list); spin_lock_init(&xe->pinned.lock); INIT_LIST_HEAD(&xe->pinned.kernel_bo_present); INIT_LIST_HEAD(&xe->pinned.external_vram); INIT_LIST_HEAD(&xe->pinned.evicted); xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0); xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0); if (!xe->ordered_wq || !xe->unordered_wq) { drm_err(&xe->drm, "Failed to allocate xe workqueues\n"); err = -ENOMEM; goto err; } err = xe_display_create(xe); if (WARN_ON(err)) goto err; return xe; err: return ERR_PTR(err); } /* * The driver-initiated FLR is the highest level of reset that we can trigger * from within the driver. It is different from the PCI FLR in that it doesn't * fully reset the SGUnit and doesn't modify the PCI config space and therefore * it doesn't require a re-enumeration of the PCI BARs. However, the * driver-initiated FLR does still cause a reset of both GT and display and a * memory wipe of local and stolen memory, so recovery would require a full HW * re-init and saving/restoring (or re-populating) the wiped memory. Since we * perform the FLR as the very last action before releasing access to the HW * during the driver release flow, we don't attempt recovery at all, because * if/when a new instance of i915 is bound to the device it will do a full * re-init anyway. */ static void xe_driver_flr(struct xe_device *xe) { const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */ struct xe_gt *gt = xe_root_mmio_gt(xe); int ret; if (xe_mmio_read32(gt, GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS) { drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n"); return; } drm_dbg(&xe->drm, "Triggering Driver-FLR\n"); /* * Make sure any pending FLR requests have cleared by waiting for the * FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS * to make sure it's not still set from a prior attempt (it's a write to * clear bit). * Note that we should never be in a situation where a previous attempt * is still pending (unless the HW is totally dead), but better to be * safe in case something unexpected happens */ ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); if (ret) { drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret); return; } xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); /* Trigger the actual Driver-FLR */ xe_mmio_rmw32(gt, GU_CNTL, 0, DRIVERFLR); /* Wait for hardware teardown to complete */ ret = xe_mmio_wait32(gt, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false); if (ret) { drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret); return; } /* Wait for hardware/firmware re-init to complete */ ret = xe_mmio_wait32(gt, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS, flr_timeout, NULL, false); if (ret) { drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret); return; } /* Clear sticky completion status */ xe_mmio_write32(gt, GU_DEBUG, DRIVERFLR_STATUS); } static void xe_driver_flr_fini(struct drm_device *drm, void *arg) { struct xe_device *xe = arg; if (xe->needs_flr_on_fini) xe_driver_flr(xe); } static void xe_device_sanitize(struct drm_device *drm, void *arg) { struct xe_device *xe = arg; struct xe_gt *gt; u8 id; for_each_gt(gt, xe, id) xe_gt_sanitize(gt); } static int xe_set_dma_info(struct xe_device *xe) { unsigned int mask_size = xe->info.dma_mask_size; int err; dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev)); err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); if (err) goto mask_err; err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); if (err) goto mask_err; return 0; mask_err: drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); return err; } /* * Initialize MMIO resources that don't require any knowledge about tile count. */ int xe_device_probe_early(struct xe_device *xe) { int err; err = xe_mmio_init(xe); if (err) return err; err = xe_mmio_root_tile_init(xe); if (err) return err; return 0; } static int xe_device_set_has_flat_ccs(struct xe_device *xe) { u32 reg; int err; if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs) return 0; struct xe_gt *gt = xe_root_mmio_gt(xe); err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (err) return err; reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE); if (!xe->info.has_flat_ccs) drm_dbg(&xe->drm, "Flat CCS has been disabled in bios, May lead to performance impact"); return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); } int xe_device_probe(struct xe_device *xe) { struct xe_tile *tile; struct xe_gt *gt; int err; u8 id; xe_pat_init_early(xe); xe->info.mem_region_mask = 1; err = xe_display_init_nommio(xe); if (err) return err; err = xe_set_dma_info(xe); if (err) return err; xe_mmio_probe_tiles(xe); xe_ttm_sys_mgr_init(xe); for_each_gt(gt, xe, id) xe_force_wake_init_gt(gt, gt_to_fw(gt)); for_each_tile(tile, xe, id) { err = xe_ggtt_init_early(tile->mem.ggtt); if (err) return err; } err = drmm_add_action_or_reset(&xe->drm, xe_driver_flr_fini, xe); if (err) return err; for_each_gt(gt, xe, id) { err = xe_pcode_probe(gt); if (err) return err; } err = xe_display_init_noirq(xe); if (err) return err; err = xe_irq_install(xe); if (err) goto err; for_each_gt(gt, xe, id) { err = xe_gt_init_early(gt); if (err) goto err_irq_shutdown; } err = xe_device_set_has_flat_ccs(xe); if (err) goto err_irq_shutdown; err = xe_mmio_probe_vram(xe); if (err) goto err_irq_shutdown; for_each_tile(tile, xe, id) { err = xe_tile_init_noalloc(tile); if (err) goto err_irq_shutdown; } /* Allocate and map stolen after potential VRAM resize */ xe_ttm_stolen_mgr_init(xe); /* * Now that GT is initialized (TTM in particular), * we can try to init display, and inherit the initial fb. * This is the reason the first allocation needs to be done * inside display. */ err = xe_display_init_noaccel(xe); if (err) goto err_irq_shutdown; for_each_gt(gt, xe, id) { err = xe_gt_init(gt); if (err) goto err_irq_shutdown; } xe_heci_gsc_init(xe); err = xe_display_init(xe); if (err) goto err_irq_shutdown; err = drm_dev_register(&xe->drm, 0); if (err) goto err_fini_display; xe_display_register(xe); xe_debugfs_register(xe); xe_hwmon_register(xe); err = drmm_add_action_or_reset(&xe->drm, xe_device_sanitize, xe); if (err) return err; return 0; err_fini_display: xe_display_driver_remove(xe); err_irq_shutdown: xe_irq_shutdown(xe); err: xe_display_fini(xe); return err; } static void xe_device_remove_display(struct xe_device *xe) { xe_display_unregister(xe); drm_dev_unplug(&xe->drm); xe_display_driver_remove(xe); } void xe_device_remove(struct xe_device *xe) { xe_device_remove_display(xe); xe_display_fini(xe); xe_heci_gsc_fini(xe); xe_irq_shutdown(xe); } void xe_device_shutdown(struct xe_device *xe) { } void xe_device_add_persistent_exec_queues(struct xe_device *xe, struct xe_exec_queue *q) { mutex_lock(&xe->persistent_engines.lock); list_add_tail(&q->persistent.link, &xe->persistent_engines.list); mutex_unlock(&xe->persistent_engines.lock); } void xe_device_remove_persistent_exec_queues(struct xe_device *xe, struct xe_exec_queue *q) { mutex_lock(&xe->persistent_engines.lock); if (!list_empty(&q->persistent.link)) list_del(&q->persistent.link); mutex_unlock(&xe->persistent_engines.lock); } static void device_kill_persistent_exec_queues(struct xe_device *xe, struct xe_file *xef) { struct xe_exec_queue *q, *next; mutex_lock(&xe->persistent_engines.lock); list_for_each_entry_safe(q, next, &xe->persistent_engines.list, persistent.link) if (q->persistent.xef == xef) { xe_exec_queue_kill(q); list_del_init(&q->persistent.link); } mutex_unlock(&xe->persistent_engines.lock); } void xe_device_wmb(struct xe_device *xe) { struct xe_gt *gt = xe_root_mmio_gt(xe); wmb(); if (IS_DGFX(xe)) xe_mmio_write32(gt, SOFTWARE_FLAGS_SPR33, 0); } u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) { return xe_device_has_flat_ccs(xe) ? DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0; } bool xe_device_mem_access_ongoing(struct xe_device *xe) { if (xe_pm_read_callback_task(xe) != NULL) return true; return atomic_read(&xe->mem_access.ref); } void xe_device_assert_mem_access(struct xe_device *xe) { XE_WARN_ON(!xe_device_mem_access_ongoing(xe)); } bool xe_device_mem_access_get_if_ongoing(struct xe_device *xe) { bool active; if (xe_pm_read_callback_task(xe) == current) return true; active = xe_pm_runtime_get_if_active(xe); if (active) { int ref = atomic_inc_return(&xe->mem_access.ref); xe_assert(xe, ref != S32_MAX); } return active; } void xe_device_mem_access_get(struct xe_device *xe) { int ref; /* * This looks racy, but should be fine since the pm_callback_task only * transitions from NULL -> current (and back to NULL again), during the * runtime_resume() or runtime_suspend() callbacks, for which there can * only be a single one running for our device. We only need to prevent * recursively calling the runtime_get or runtime_put from those * callbacks, as well as preventing triggering any access_ongoing * asserts. */ if (xe_pm_read_callback_task(xe) == current) return; /* * Since the resume here is synchronous it can be quite easy to deadlock * if we are not careful. Also in practice it might be quite timing * sensitive to ever see the 0 -> 1 transition with the callers locks * held, so deadlocks might exist but are hard for lockdep to ever see. * With this in mind, help lockdep learn about the potentially scary * stuff that can happen inside the runtime_resume callback by acquiring * a dummy lock (it doesn't protect anything and gets compiled out on * non-debug builds). Lockdep then only needs to see the * mem_access_lockdep_map -> runtime_resume callback once, and then can * hopefully validate all the (callers_locks) -> mem_access_lockdep_map. * For example if the (callers_locks) are ever grabbed in the * runtime_resume callback, lockdep should give us a nice splat. */ lock_map_acquire(&xe_device_mem_access_lockdep_map); lock_map_release(&xe_device_mem_access_lockdep_map); xe_pm_runtime_get(xe); ref = atomic_inc_return(&xe->mem_access.ref); xe_assert(xe, ref != S32_MAX); } void xe_device_mem_access_put(struct xe_device *xe) { int ref; if (xe_pm_read_callback_task(xe) == current) return; ref = atomic_dec_return(&xe->mem_access.ref); xe_pm_runtime_put(xe); xe_assert(xe, ref >= 0); }