// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_irq.h" #include #include #include "regs/xe_gt_regs.h" #include "regs/xe_regs.h" #include "xe_device.h" #include "xe_drv.h" #include "xe_gt.h" #include "xe_guc.h" #include "xe_hw_engine.h" #include "xe_mmio.h" /* * Interrupt registers for a unit are always consecutive and ordered * ISR, IMR, IIR, IER. */ #define IMR(offset) XE_REG(offset + 0x4) #define IIR(offset) XE_REG(offset + 0x8) #define IER(offset) XE_REG(offset + 0xc) static void assert_iir_is_zero(struct xe_gt *gt, struct xe_reg reg) { u32 val = xe_mmio_read32(gt, reg); if (val == 0) return; drm_WARN(>_to_xe(gt)->drm, 1, "Interrupt register 0x%x is not zero: 0x%08x\n", reg.reg, val); xe_mmio_write32(gt, reg, 0xffffffff); xe_mmio_read32(gt, reg); xe_mmio_write32(gt, reg, 0xffffffff); xe_mmio_read32(gt, reg); } /* * Unmask and enable the specified interrupts. Does not check current state, * so any bits not specified here will become masked and disabled. */ static void unmask_and_enable(struct xe_gt *gt, u32 irqregs, u32 bits) { /* * If we're just enabling an interrupt now, it shouldn't already * be raised in the IIR. */ assert_iir_is_zero(gt, IIR(irqregs)); xe_mmio_write32(gt, IER(irqregs), bits); xe_mmio_write32(gt, IMR(irqregs), ~bits); /* Posting read */ xe_mmio_read32(gt, IMR(irqregs)); } /* Mask and disable all interrupts. */ static void mask_and_disable(struct xe_gt *gt, u32 irqregs) { xe_mmio_write32(gt, IMR(irqregs), ~0); /* Posting read */ xe_mmio_read32(gt, IMR(irqregs)); xe_mmio_write32(gt, IER(irqregs), 0); /* IIR can theoretically queue up two events. Be paranoid. */ xe_mmio_write32(gt, IIR(irqregs), ~0); xe_mmio_read32(gt, IIR(irqregs)); xe_mmio_write32(gt, IIR(irqregs), ~0); xe_mmio_read32(gt, IIR(irqregs)); } static u32 xelp_intr_disable(struct xe_gt *gt) { xe_mmio_write32(gt, GFX_MSTR_IRQ, 0); /* * Now with master disabled, get a sample of level indications * for this interrupt. Indications will be cleared on related acks. * New indications can and will light up during processing, * and will generate new interrupt after enabling master. */ return xe_mmio_read32(gt, GFX_MSTR_IRQ); } static u32 gu_misc_irq_ack(struct xe_gt *gt, const u32 master_ctl) { u32 iir; if (!(master_ctl & GU_MISC_IRQ)) return 0; iir = xe_mmio_read32(gt, IIR(GU_MISC_IRQ_OFFSET)); if (likely(iir)) xe_mmio_write32(gt, IIR(GU_MISC_IRQ_OFFSET), iir); return iir; } static inline void xelp_intr_enable(struct xe_gt *gt, bool stall) { xe_mmio_write32(gt, GFX_MSTR_IRQ, MASTER_IRQ); if (stall) xe_mmio_read32(gt, GFX_MSTR_IRQ); } static void gt_irq_postinstall(struct xe_device *xe, struct xe_gt *gt) { u32 irqs, dmask, smask; u32 ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE); u32 bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY); if (xe_device_guc_submission_enabled(xe)) { irqs = GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT; } else { irqs = GT_RENDER_USER_INTERRUPT | GT_CS_MASTER_ERROR_INTERRUPT | GT_CONTEXT_SWITCH_INTERRUPT | GT_WAIT_SEMAPHORE_INTERRUPT; } dmask = irqs << 16 | irqs; smask = irqs << 16; /* Enable RCS, BCS, VCS and VECS class interrupts. */ xe_mmio_write32(gt, RENDER_COPY_INTR_ENABLE, dmask); xe_mmio_write32(gt, VCS_VECS_INTR_ENABLE, dmask); if (ccs_mask) xe_mmio_write32(gt, CCS_RSVD_INTR_ENABLE, smask); /* Unmask irqs on RCS, BCS, VCS and VECS engines. */ xe_mmio_write32(gt, RCS0_RSVD_INTR_MASK, ~smask); xe_mmio_write32(gt, BCS_RSVD_INTR_MASK, ~smask); if (bcs_mask & (BIT(1)|BIT(2))) xe_mmio_write32(gt, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask); if (bcs_mask & (BIT(3)|BIT(4))) xe_mmio_write32(gt, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask); if (bcs_mask & (BIT(5)|BIT(6))) xe_mmio_write32(gt, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask); if (bcs_mask & (BIT(7)|BIT(8))) xe_mmio_write32(gt, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask); xe_mmio_write32(gt, VCS0_VCS1_INTR_MASK, ~dmask); xe_mmio_write32(gt, VCS2_VCS3_INTR_MASK, ~dmask); xe_mmio_write32(gt, VECS0_VECS1_INTR_MASK, ~dmask); if (ccs_mask & (BIT(0)|BIT(1))) xe_mmio_write32(gt, CCS0_CCS1_INTR_MASK, ~dmask); if (ccs_mask & (BIT(2)|BIT(3))) xe_mmio_write32(gt, CCS2_CCS3_INTR_MASK, ~dmask); /* * RPS interrupts will get enabled/disabled on demand when RPS itself * is enabled/disabled. */ /* TODO: gt->pm_ier, gt->pm_imr */ xe_mmio_write32(gt, GPM_WGBOXPERF_INTR_ENABLE, 0); xe_mmio_write32(gt, GPM_WGBOXPERF_INTR_MASK, ~0); /* Same thing for GuC interrupts */ xe_mmio_write32(gt, GUC_SG_INTR_ENABLE, 0); xe_mmio_write32(gt, GUC_SG_INTR_MASK, ~0); } static void xelp_irq_postinstall(struct xe_device *xe, struct xe_gt *gt) { /* TODO: PCH */ gt_irq_postinstall(xe, gt); unmask_and_enable(gt, GU_MISC_IRQ_OFFSET, GU_MISC_GSE); xelp_intr_enable(gt, true); } static u32 gt_engine_identity(struct xe_device *xe, struct xe_gt *gt, const unsigned int bank, const unsigned int bit) { u32 timeout_ts; u32 ident; lockdep_assert_held(&xe->irq.lock); xe_mmio_write32(gt, IIR_REG_SELECTOR(bank), BIT(bit)); /* * NB: Specs do not specify how long to spin wait, * so we do ~100us as an educated guess. */ timeout_ts = (local_clock() >> 10) + 100; do { ident = xe_mmio_read32(gt, INTR_IDENTITY_REG(bank)); } while (!(ident & INTR_DATA_VALID) && !time_after32(local_clock() >> 10, timeout_ts)); if (unlikely(!(ident & INTR_DATA_VALID))) { drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n", bank, bit, ident); return 0; } xe_mmio_write32(gt, INTR_IDENTITY_REG(bank), INTR_DATA_VALID); return ident; } #define OTHER_MEDIA_GUC_INSTANCE 16 static void gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir) { if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt)) return xe_guc_irq_handler(>->uc.guc, iir); if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt)) return xe_guc_irq_handler(>->uc.guc, iir); if (instance != OTHER_GUC_INSTANCE && instance != OTHER_MEDIA_GUC_INSTANCE) { WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n", instance, iir); } } static void gt_irq_handler(struct xe_device *xe, struct xe_gt *gt, u32 master_ctl, long unsigned int *intr_dw, u32 *identity) { unsigned int bank, bit; u16 instance, intr_vec; enum xe_engine_class class; struct xe_hw_engine *hwe; spin_lock(&xe->irq.lock); for (bank = 0; bank < 2; bank++) { if (!(master_ctl & GT_DW_IRQ(bank))) continue; if (!xe_gt_is_media_type(gt)) { intr_dw[bank] = xe_mmio_read32(gt, GT_INTR_DW(bank)); for_each_set_bit(bit, intr_dw + bank, 32) identity[bit] = gt_engine_identity(xe, gt, bank, bit); xe_mmio_write32(gt, GT_INTR_DW(bank), intr_dw[bank]); } for_each_set_bit(bit, intr_dw + bank, 32) { class = INTR_ENGINE_CLASS(identity[bit]); instance = INTR_ENGINE_INSTANCE(identity[bit]); intr_vec = INTR_ENGINE_INTR(identity[bit]); if (class == XE_ENGINE_CLASS_OTHER) { gt_other_irq_handler(gt, instance, intr_vec); continue; } hwe = xe_gt_hw_engine(gt, class, instance, false); if (!hwe) continue; xe_hw_engine_handle_irq(hwe, intr_vec); } } spin_unlock(&xe->irq.lock); } /* * Top-level interrupt handler for Xe_LP platforms (which did not have * a "master tile" interrupt register. */ static irqreturn_t xelp_irq_handler(int irq, void *arg) { struct xe_device *xe = arg; struct xe_gt *gt = xe_device_get_gt(xe, 0); /* Only 1 GT here */ u32 master_ctl, gu_misc_iir; long unsigned int intr_dw[2]; u32 identity[32]; master_ctl = xelp_intr_disable(gt); if (!master_ctl) { xelp_intr_enable(gt, false); return IRQ_NONE; } gt_irq_handler(xe, gt, master_ctl, intr_dw, identity); gu_misc_iir = gu_misc_irq_ack(gt, master_ctl); xelp_intr_enable(gt, false); return IRQ_HANDLED; } static u32 dg1_intr_disable(struct xe_device *xe) { struct xe_gt *gt = xe_device_get_gt(xe, 0); u32 val; /* First disable interrupts */ xe_mmio_write32(gt, DG1_MSTR_TILE_INTR, 0); /* Get the indication levels and ack the master unit */ val = xe_mmio_read32(gt, DG1_MSTR_TILE_INTR); if (unlikely(!val)) return 0; xe_mmio_write32(gt, DG1_MSTR_TILE_INTR, val); return val; } static void dg1_intr_enable(struct xe_device *xe, bool stall) { struct xe_gt *gt = xe_device_get_gt(xe, 0); xe_mmio_write32(gt, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ); if (stall) xe_mmio_read32(gt, DG1_MSTR_TILE_INTR); } static void dg1_irq_postinstall(struct xe_device *xe, struct xe_gt *gt) { gt_irq_postinstall(xe, gt); unmask_and_enable(gt, GU_MISC_IRQ_OFFSET, GU_MISC_GSE); if (gt->info.id == XE_GT0) dg1_intr_enable(xe, true); } /* * Top-level interrupt handler for Xe_LP+ and beyond. These platforms have * a "master tile" interrupt register which must be consulted before the * "graphics master" interrupt register. */ static irqreturn_t dg1_irq_handler(int irq, void *arg) { struct xe_device *xe = arg; struct xe_gt *gt; u32 master_tile_ctl, master_ctl = 0, tile0_master_ctl = 0, gu_misc_iir; long unsigned int intr_dw[2]; u32 identity[32]; u8 id; /* TODO: This really shouldn't be copied+pasted */ master_tile_ctl = dg1_intr_disable(xe); if (!master_tile_ctl) { dg1_intr_enable(xe, false); return IRQ_NONE; } for_each_gt(gt, xe, id) { if ((master_tile_ctl & DG1_MSTR_TILE(gt->info.vram_id)) == 0) continue; if (!xe_gt_is_media_type(gt)) master_ctl = xe_mmio_read32(gt, GFX_MSTR_IRQ); /* * We might be in irq handler just when PCIe DPC is initiated * and all MMIO reads will be returned with all 1's. Ignore this * irq as device is inaccessible. */ if (master_ctl == REG_GENMASK(31, 0)) { dev_dbg(gt_to_xe(gt)->drm.dev, "Ignore this IRQ as device might be in DPC containment.\n"); return IRQ_HANDLED; } if (!xe_gt_is_media_type(gt)) xe_mmio_write32(gt, GFX_MSTR_IRQ, master_ctl); gt_irq_handler(xe, gt, master_ctl, intr_dw, identity); /* * Save primary tile's master interrupt register for display * processing below. */ if (id == 0) tile0_master_ctl = master_ctl; } /* Gunit GSE interrupts can trigger display backlight operations */ gu_misc_iir = gu_misc_irq_ack(gt, tile0_master_ctl); dg1_intr_enable(xe, false); return IRQ_HANDLED; } static void gt_irq_reset(struct xe_gt *gt) { u32 ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE); u32 bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY); /* Disable RCS, BCS, VCS and VECS class engines. */ xe_mmio_write32(gt, RENDER_COPY_INTR_ENABLE, 0); xe_mmio_write32(gt, VCS_VECS_INTR_ENABLE, 0); if (ccs_mask) xe_mmio_write32(gt, CCS_RSVD_INTR_ENABLE, 0); /* Restore masks irqs on RCS, BCS, VCS and VECS engines. */ xe_mmio_write32(gt, RCS0_RSVD_INTR_MASK, ~0); xe_mmio_write32(gt, BCS_RSVD_INTR_MASK, ~0); if (bcs_mask & (BIT(1)|BIT(2))) xe_mmio_write32(gt, XEHPC_BCS1_BCS2_INTR_MASK, ~0); if (bcs_mask & (BIT(3)|BIT(4))) xe_mmio_write32(gt, XEHPC_BCS3_BCS4_INTR_MASK, ~0); if (bcs_mask & (BIT(5)|BIT(6))) xe_mmio_write32(gt, XEHPC_BCS5_BCS6_INTR_MASK, ~0); if (bcs_mask & (BIT(7)|BIT(8))) xe_mmio_write32(gt, XEHPC_BCS7_BCS8_INTR_MASK, ~0); xe_mmio_write32(gt, VCS0_VCS1_INTR_MASK, ~0); xe_mmio_write32(gt, VCS2_VCS3_INTR_MASK, ~0); xe_mmio_write32(gt, VECS0_VECS1_INTR_MASK, ~0); if (ccs_mask & (BIT(0)|BIT(1))) xe_mmio_write32(gt, CCS0_CCS1_INTR_MASK, ~0); if (ccs_mask & (BIT(2)|BIT(3))) xe_mmio_write32(gt, CCS2_CCS3_INTR_MASK, ~0); xe_mmio_write32(gt, GPM_WGBOXPERF_INTR_ENABLE, 0); xe_mmio_write32(gt, GPM_WGBOXPERF_INTR_MASK, ~0); xe_mmio_write32(gt, GUC_SG_INTR_ENABLE, 0); xe_mmio_write32(gt, GUC_SG_INTR_MASK, ~0); } static void xelp_irq_reset(struct xe_gt *gt) { xelp_intr_disable(gt); gt_irq_reset(gt); mask_and_disable(gt, GU_MISC_IRQ_OFFSET); mask_and_disable(gt, PCU_IRQ_OFFSET); } static void dg1_irq_reset(struct xe_gt *gt) { if (gt->info.id == 0) dg1_intr_disable(gt_to_xe(gt)); gt_irq_reset(gt); mask_and_disable(gt, GU_MISC_IRQ_OFFSET); mask_and_disable(gt, PCU_IRQ_OFFSET); } static void xe_irq_reset(struct xe_device *xe) { struct xe_gt *gt; u8 id; for_each_gt(gt, xe, id) { if (GRAPHICS_VERx100(xe) >= 1210) dg1_irq_reset(gt); else xelp_irq_reset(gt); } } void xe_gt_irq_postinstall(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); if (GRAPHICS_VERx100(xe) >= 1210) dg1_irq_postinstall(xe, gt); else xelp_irq_postinstall(xe, gt); } static void xe_irq_postinstall(struct xe_device *xe) { struct xe_gt *gt; u8 id; for_each_gt(gt, xe, id) xe_gt_irq_postinstall(gt); } static irq_handler_t xe_irq_handler(struct xe_device *xe) { if (GRAPHICS_VERx100(xe) >= 1210) { return dg1_irq_handler; } else { return xelp_irq_handler; } } static void irq_uninstall(struct drm_device *drm, void *arg) { struct xe_device *xe = arg; struct pci_dev *pdev = to_pci_dev(xe->drm.dev); int irq = pdev->irq; if (!xe->irq.enabled) return; xe->irq.enabled = false; xe_irq_reset(xe); free_irq(irq, xe); if (pdev->msi_enabled) pci_disable_msi(pdev); } int xe_irq_install(struct xe_device *xe) { int irq = to_pci_dev(xe->drm.dev)->irq; irq_handler_t irq_handler; int err; irq_handler = xe_irq_handler(xe); if (!irq_handler) { drm_err(&xe->drm, "No supported interrupt handler"); return -EINVAL; } xe->irq.enabled = true; xe_irq_reset(xe); err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe); if (err < 0) { xe->irq.enabled = false; return err; } err = drmm_add_action_or_reset(&xe->drm, irq_uninstall, xe); if (err) return err; return err; } void xe_irq_shutdown(struct xe_device *xe) { irq_uninstall(&xe->drm, xe); } void xe_irq_suspend(struct xe_device *xe) { spin_lock_irq(&xe->irq.lock); xe->irq.enabled = false; xe_irq_reset(xe); spin_unlock_irq(&xe->irq.lock); } void xe_irq_resume(struct xe_device *xe) { spin_lock_irq(&xe->irq.lock); xe->irq.enabled = true; xe_irq_reset(xe); xe_irq_postinstall(xe); spin_unlock_irq(&xe->irq.lock); }