// SPDX-License-Identifier: MIT /* * Copyright © 2021 Intel Corporation */ #include "xe_mmio.h" #include #include #include "xe_device.h" #include "xe_gt.h" #include "xe_gt_mcr.h" #include "xe_macros.h" #include "xe_module.h" #include "i915_reg.h" #include "gt/intel_engine_regs.h" #include "gt/intel_gt_regs.h" #define XEHP_MTCFG_ADDR _MMIO(0x101800) #define TILE_COUNT REG_GENMASK(15, 8) #define GEN12_LMEM_BAR 2 static int xe_set_dma_info(struct xe_device *xe) { unsigned int mask_size = xe->info.dma_mask_size; int err; /* * We don't have a max segment size, so set it to the max so sg's * debugging layer doesn't complain */ dma_set_max_seg_size(xe->drm.dev, UINT_MAX); err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); if (err) goto mask_err; err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size)); if (err) goto mask_err; return 0; mask_err: drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err); return err; } #ifdef CONFIG_64BIT static int _resize_bar(struct xe_device *xe, int resno, resource_size_t size) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); int bar_size = pci_rebar_bytes_to_size(size); int ret; if (pci_resource_len(pdev, resno)) pci_release_resource(pdev, resno); ret = pci_resize_resource(pdev, resno, bar_size); if (ret) { drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe)\n", resno, 1 << bar_size, ERR_PTR(ret)); return -1; } drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size); return 1; } static int xe_resize_lmem_bar(struct xe_device *xe, resource_size_t lmem_size) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); struct pci_bus *root = pdev->bus; struct resource *root_res; resource_size_t rebar_size; resource_size_t current_size; u32 pci_cmd; int i; int ret; u64 force_lmem_bar_size = xe_force_lmem_bar_size; current_size = roundup_pow_of_two(pci_resource_len(pdev, GEN12_LMEM_BAR)); if (force_lmem_bar_size) { u32 bar_sizes; rebar_size = force_lmem_bar_size * (resource_size_t)SZ_1M; bar_sizes = pci_rebar_get_possible_sizes(pdev, GEN12_LMEM_BAR); if (rebar_size == current_size) return 0; if (!(bar_sizes & BIT(pci_rebar_bytes_to_size(rebar_size))) || rebar_size >= roundup_pow_of_two(lmem_size)) { rebar_size = lmem_size; drm_info(&xe->drm, "Given bar size is not within supported size, setting it to default: %llu\n", (u64)lmem_size >> 20); } } else { rebar_size = current_size; if (rebar_size != roundup_pow_of_two(lmem_size)) rebar_size = lmem_size; else return 0; } while (root->parent) root = root->parent; pci_bus_for_each_resource(root, root_res, i) { if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) && root_res->start > 0x100000000ull) break; } if (!root_res) { drm_info(&xe->drm, "Can't resize LMEM BAR - platform support is missing\n"); return -1; } pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY); ret = _resize_bar(xe, GEN12_LMEM_BAR, rebar_size); pci_assign_unassigned_bus_resources(pdev->bus); pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd); return ret; } #else static int xe_resize_lmem_bar(struct xe_device *xe, resource_size_t lmem_size) { return 0; } #endif static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar) { if (!pci_resource_flags(pdev, bar)) return false; if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET) return false; if (!pci_resource_len(pdev, bar)) return false; return true; } int xe_mmio_total_vram_size(struct xe_device *xe, u64 *vram_size, u64 *flat_ccs_base) { struct xe_gt *gt = xe_device_get_gt(xe, 0); struct pci_dev *pdev = to_pci_dev(xe->drm.dev); int err; u32 reg; if (!xe->info.has_flat_ccs) { *vram_size = pci_resource_len(pdev, GEN12_LMEM_BAR); if (flat_ccs_base) *flat_ccs_base = *vram_size; return 0; } err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); if (err) return err; reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE0_ADDR_RANGE); *vram_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G; if (flat_ccs_base) { reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR); *flat_ccs_base = (u64)REG_FIELD_GET(GENMASK(31, 8), reg) * SZ_64K; } if (flat_ccs_base) drm_info(&xe->drm, "lmem_size: 0x%llx flat_ccs_base: 0x%llx\n", *vram_size, *flat_ccs_base); return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); } int xe_mmio_probe_vram(struct xe_device *xe) { struct pci_dev *pdev = to_pci_dev(xe->drm.dev); struct xe_gt *gt; u8 id; u64 lmem_size; u64 original_size; u64 current_size; u64 flat_ccs_base; int resize_result, err; if (!IS_DGFX(xe)) { xe->mem.vram.mapping = 0; xe->mem.vram.size = 0; xe->mem.vram.io_start = 0; for_each_gt(gt, xe, id) { gt->mem.vram.mapping = 0; gt->mem.vram.size = 0; gt->mem.vram.io_start = 0; } return 0; } if (!xe_pci_resource_valid(pdev, GEN12_LMEM_BAR)) { drm_err(&xe->drm, "pci resource is not valid\n"); return -ENXIO; } gt = xe_device_get_gt(xe, 0); lmem_size = xe_mmio_read64(gt, GEN12_GSMBASE.reg); original_size = pci_resource_len(pdev, GEN12_LMEM_BAR); err = xe_mmio_total_vram_size(xe, &lmem_size, &flat_ccs_base); if (err) return err; resize_result = xe_resize_lmem_bar(xe, lmem_size); current_size = pci_resource_len(pdev, GEN12_LMEM_BAR); xe->mem.vram.io_start = pci_resource_start(pdev, GEN12_LMEM_BAR); xe->mem.vram.size = min(current_size, lmem_size); if (!xe->mem.vram.size) return -EIO; if (resize_result > 0) drm_info(&xe->drm, "Successfully resize LMEM from %lluMiB to %lluMiB\n", (u64)original_size >> 20, (u64)current_size >> 20); else if (xe->mem.vram.size < lmem_size && !xe_force_lmem_bar_size) drm_info(&xe->drm, "Using a reduced BAR size of %lluMiB. Consider enabling 'Resizable BAR' support in your BIOS.\n", (u64)xe->mem.vram.size >> 20); if (xe->mem.vram.size < lmem_size) drm_warn(&xe->drm, "Restricting VRAM size to PCI resource size (0x%llx->0x%llx)\n", lmem_size, xe->mem.vram.size); #ifdef CONFIG_64BIT xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.size); #endif xe->mem.vram.size = min_t(u64, xe->mem.vram.size, flat_ccs_base); drm_info(&xe->drm, "TOTAL VRAM: %pa, %pa\n", &xe->mem.vram.io_start, &xe->mem.vram.size); /* FIXME: Assuming equally partitioned VRAM, incorrect */ if (xe->info.tile_count > 1) { u8 adj_tile_count = xe->info.tile_count; resource_size_t size, io_start; for_each_gt(gt, xe, id) if (xe_gt_is_media_type(gt)) --adj_tile_count; XE_BUG_ON(!adj_tile_count); size = xe->mem.vram.size / adj_tile_count; io_start = xe->mem.vram.io_start; for_each_gt(gt, xe, id) { if (id && !xe_gt_is_media_type(gt)) io_start += size; gt->mem.vram.size = size; gt->mem.vram.io_start = io_start; gt->mem.vram.mapping = xe->mem.vram.mapping + (io_start - xe->mem.vram.io_start); drm_info(&xe->drm, "VRAM[%u, %u]: %pa, %pa\n", id, gt->info.vram_id, >->mem.vram.io_start, >->mem.vram.size); } } else { gt->mem.vram.size = xe->mem.vram.size; gt->mem.vram.io_start = xe->mem.vram.io_start; gt->mem.vram.mapping = xe->mem.vram.mapping; drm_info(&xe->drm, "VRAM: %pa\n", >->mem.vram.size); } return 0; } static void xe_mmio_probe_tiles(struct xe_device *xe) { struct xe_gt *gt = xe_device_get_gt(xe, 0); u32 mtcfg; u8 adj_tile_count; u8 id; if (xe->info.tile_count == 1) return; mtcfg = xe_mmio_read64(gt, XEHP_MTCFG_ADDR.reg); adj_tile_count = xe->info.tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; if (xe->info.media_ver >= 13) xe->info.tile_count *= 2; drm_info(&xe->drm, "tile_count: %d, adj_tile_count %d\n", xe->info.tile_count, adj_tile_count); if (xe->info.tile_count > 1) { const int mmio_bar = 0; size_t size; void *regs; if (adj_tile_count > 1) { pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); xe->mmio.size = SZ_16M * adj_tile_count; xe->mmio.regs = pci_iomap(to_pci_dev(xe->drm.dev), mmio_bar, xe->mmio.size); } size = xe->mmio.size / adj_tile_count; regs = xe->mmio.regs; for_each_gt(gt, xe, id) { if (id && !xe_gt_is_media_type(gt)) regs += size; gt->mmio.size = size; gt->mmio.regs = regs; } } } static void mmio_fini(struct drm_device *drm, void *arg) { struct xe_device *xe = arg; pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); if (xe->mem.vram.mapping) iounmap(xe->mem.vram.mapping); } int xe_mmio_init(struct xe_device *xe) { struct xe_gt *gt = xe_device_get_gt(xe, 0); const int mmio_bar = 0; int err; /* * Map the entire BAR, which includes registers (0-4MB), reserved space * (4MB-8MB), and GGTT (8MB-16MB). Other parts of the driver (GTs, * GGTTs) will derive the pointers they need from the mapping in the * device structure. */ xe->mmio.size = SZ_16M; xe->mmio.regs = pci_iomap(to_pci_dev(xe->drm.dev), mmio_bar, xe->mmio.size); if (xe->mmio.regs == NULL) { drm_err(&xe->drm, "failed to map registers\n"); return -EIO; } err = drmm_add_action_or_reset(&xe->drm, mmio_fini, xe); if (err) return err; /* 1 GT for now, 1 to 1 mapping, may change on multi-GT devices */ gt->mmio.size = xe->mmio.size; gt->mmio.regs = xe->mmio.regs; /* * The boot firmware initializes local memory and assesses its health. * If memory training fails, the punit will have been instructed to * keep the GT powered down; we won't be able to communicate with it * and we should not continue with driver initialization. */ if (IS_DGFX(xe) && !(xe_mmio_read32(gt, GU_CNTL.reg) & LMEM_INIT)) { drm_err(&xe->drm, "LMEM not initialized by firmware\n"); return -ENODEV; } err = xe_set_dma_info(xe); if (err) return err; xe_mmio_probe_tiles(xe); return 0; } #define VALID_MMIO_FLAGS (\ DRM_XE_MMIO_BITS_MASK |\ DRM_XE_MMIO_READ |\ DRM_XE_MMIO_WRITE) static const i915_reg_t mmio_read_whitelist[] = { RING_TIMESTAMP(RENDER_RING_BASE), }; int xe_mmio_ioctl(struct drm_device *dev, void *data, struct drm_file *file) { struct xe_device *xe = to_xe_device(dev); struct drm_xe_mmio *args = data; unsigned int bits_flag, bytes; bool allowed; int ret = 0; if (XE_IOCTL_ERR(xe, args->extensions)) return -EINVAL; if (XE_IOCTL_ERR(xe, args->flags & ~VALID_MMIO_FLAGS)) return -EINVAL; if (XE_IOCTL_ERR(xe, !(args->flags & DRM_XE_MMIO_WRITE) && args->value)) return -EINVAL; allowed = capable(CAP_SYS_ADMIN); if (!allowed && ((args->flags & ~DRM_XE_MMIO_BITS_MASK) == DRM_XE_MMIO_READ)) { unsigned int i; for (i = 0; i < ARRAY_SIZE(mmio_read_whitelist); i++) { if (mmio_read_whitelist[i].reg == args->addr) { allowed = true; break; } } } if (XE_IOCTL_ERR(xe, !allowed)) return -EPERM; bits_flag = args->flags & DRM_XE_MMIO_BITS_MASK; bytes = 1 << bits_flag; if (XE_IOCTL_ERR(xe, args->addr + bytes > xe->mmio.size)) return -EINVAL; xe_force_wake_get(gt_to_fw(&xe->gt[0]), XE_FORCEWAKE_ALL); if (args->flags & DRM_XE_MMIO_WRITE) { switch (bits_flag) { case DRM_XE_MMIO_8BIT: return -EINVAL; /* TODO */ case DRM_XE_MMIO_16BIT: return -EINVAL; /* TODO */ case DRM_XE_MMIO_32BIT: if (XE_IOCTL_ERR(xe, args->value > U32_MAX)) return -EINVAL; xe_mmio_write32(to_gt(xe), args->addr, args->value); break; case DRM_XE_MMIO_64BIT: xe_mmio_write64(to_gt(xe), args->addr, args->value); break; default: drm_WARN(&xe->drm, 1, "Invalid MMIO bit size"); ret = -EINVAL; goto exit; } } if (args->flags & DRM_XE_MMIO_READ) { switch (bits_flag) { case DRM_XE_MMIO_8BIT: return -EINVAL; /* TODO */ case DRM_XE_MMIO_16BIT: return -EINVAL; /* TODO */ case DRM_XE_MMIO_32BIT: args->value = xe_mmio_read32(to_gt(xe), args->addr); break; case DRM_XE_MMIO_64BIT: args->value = xe_mmio_read64(to_gt(xe), args->addr); break; default: drm_WARN(&xe->drm, 1, "Invalid MMIO bit size"); ret = -EINVAL; } } exit: xe_force_wake_put(gt_to_fw(&xe->gt[0]), XE_FORCEWAKE_ALL); return ret; }