// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2021 Aspeed Technology Inc. * * PWM/TACH controller driver for Aspeed ast2600 SoCs. * This drivers doesn't support earlier version of the IP. * * The hardware operates in time quantities of length * Q := (DIV_L + 1) << DIV_H / input-clk * The length of a PWM period is (DUTY_CYCLE_PERIOD + 1) * Q. * The maximal value for DUTY_CYCLE_PERIOD is used here to provide * a fine grained selection for the duty cycle. * * This driver uses DUTY_CYCLE_RISING_POINT = 0, so from the start of a * period the output is active until DUTY_CYCLE_FALLING_POINT * Q. Note * that if DUTY_CYCLE_RISING_POINT = DUTY_CYCLE_FALLING_POINT the output is * always active. * * Register usage: * PIN_ENABLE: When it is unset the pwm controller will emit inactive level to the external. * Use to determine whether the PWM channel is enabled or disabled * CLK_ENABLE: When it is unset the pwm controller will assert the duty counter reset and * emit inactive level to the PIN_ENABLE mux after that the driver can still change the pwm period * and duty and the value will apply when CLK_ENABLE be set again. * Use to determine whether duty_cycle bigger than 0. * PWM_ASPEED_CTRL_INVERSE: When it is toggled the output value will inverse immediately. * PWM_ASPEED_DUTY_CYCLE_FALLING_POINT/PWM_ASPEED_DUTY_CYCLE_RISING_POINT: When these two * values are equal it means the duty cycle = 100%. * * The glitch may generate at: * - Enabled changing when the duty_cycle bigger than 0% and less than 100%. * - Polarity changing when the duty_cycle bigger than 0% and less than 100%. * * Limitations: * - When changing both duty cycle and period, we cannot prevent in * software that the output might produce a period with mixed * settings. * - Disabling the PWM doesn't complete the current period. * * Improvements: * - When only changing one of duty cycle or period, our pwm controller will not * generate the glitch, the configure will change at next cycle of pwm. * This improvement can disable/enable through PWM_ASPEED_CTRL_DUTY_SYNC_DISABLE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* The channel number of Aspeed pwm controller */ #define PWM_ASPEED_NR_PWMS 16 /* PWM Control Register */ #define PWM_ASPEED_CTRL(ch) ((ch) * 0x10 + 0x00) #define PWM_ASPEED_CTRL_LOAD_SEL_RISING_AS_WDT BIT(19) #define PWM_ASPEED_CTRL_DUTY_LOAD_AS_WDT_ENABLE BIT(18) #define PWM_ASPEED_CTRL_DUTY_SYNC_DISABLE BIT(17) #define PWM_ASPEED_CTRL_CLK_ENABLE BIT(16) #define PWM_ASPEED_CTRL_LEVEL_OUTPUT BIT(15) #define PWM_ASPEED_CTRL_INVERSE BIT(14) #define PWM_ASPEED_CTRL_OPEN_DRAIN_ENABLE BIT(13) #define PWM_ASPEED_CTRL_PIN_ENABLE BIT(12) #define PWM_ASPEED_CTRL_CLK_DIV_H GENMASK(11, 8) #define PWM_ASPEED_CTRL_CLK_DIV_L GENMASK(7, 0) /* PWM Duty Cycle Register */ #define PWM_ASPEED_DUTY_CYCLE(ch) ((ch) * 0x10 + 0x04) #define PWM_ASPEED_DUTY_CYCLE_PERIOD GENMASK(31, 24) #define PWM_ASPEED_DUTY_CYCLE_POINT_AS_WDT GENMASK(23, 16) #define PWM_ASPEED_DUTY_CYCLE_FALLING_POINT GENMASK(15, 8) #define PWM_ASPEED_DUTY_CYCLE_RISING_POINT GENMASK(7, 0) /* PWM fixed value */ #define PWM_ASPEED_FIXED_PERIOD FIELD_MAX(PWM_ASPEED_DUTY_CYCLE_PERIOD) /* The channel number of Aspeed tach controller */ #define TACH_ASPEED_NR_TACHS 16 /* TACH Control Register */ #define TACH_ASPEED_CTRL(ch) (((ch) * 0x10) + 0x08) #define TACH_ASPEED_IER BIT(31) #define TACH_ASPEED_INVERS_LIMIT BIT(30) #define TACH_ASPEED_LOOPBACK BIT(29) #define TACH_ASPEED_ENABLE BIT(28) #define TACH_ASPEED_DEBOUNCE_MASK GENMASK(27, 26) #define TACH_ASPEED_DEBOUNCE_BIT 26 #define TACH_ASPEED_IO_EDGE_MASK GENMASK(25, 24) #define TACH_ASPEED_IO_EDGE_BIT 24 #define TACH_ASPEED_CLK_DIV_T_MASK GENMASK(23, 20) #define TACH_ASPEED_CLK_DIV_BIT 20 #define TACH_ASPEED_THRESHOLD_MASK GENMASK(19, 0) /* [27:26] */ #define DEBOUNCE_3_CLK 0x00 #define DEBOUNCE_2_CLK 0x01 #define DEBOUNCE_1_CLK 0x02 #define DEBOUNCE_0_CLK 0x03 /* [25:24] */ #define F2F_EDGES 0x00 #define R2R_EDGES 0x01 #define BOTH_EDGES 0x02 /* [23:20] */ /* divisor = 4 to the nth power, n = register value */ #define DEFAULT_TACH_DIV 1024 #define DIV_TO_REG(divisor) (ilog2(divisor) >> 1) /* TACH Status Register */ #define TACH_ASPEED_STS(ch) (((ch) * 0x10) + 0x0C) /*PWM_TACH_STS */ #define TACH_ASPEED_ISR BIT(31) #define TACH_ASPEED_PWM_OUT BIT(25) #define TACH_ASPEED_PWM_OEN BIT(24) #define TACH_ASPEED_DEB_INPUT BIT(23) #define TACH_ASPEED_RAW_INPUT BIT(22) #define TACH_ASPEED_VALUE_UPDATE BIT(21) #define TACH_ASPEED_FULL_MEASUREMENT BIT(20) #define TACH_ASPEED_VALUE_MASK GENMASK(19, 0) /********************************************************** * Software setting *********************************************************/ #define DEFAULT_FAN_PULSE_PR 2 struct aspeed_pwm_tach_data { struct device *dev; void __iomem *base; struct clk *clk; struct reset_control *reset; unsigned long clk_rate; struct pwm_chip chip; bool tach_present[TACH_ASPEED_NR_TACHS]; u32 tach_divisor; }; static inline struct aspeed_pwm_tach_data * aspeed_pwm_chip_to_data(struct pwm_chip *chip) { return container_of(chip, struct aspeed_pwm_tach_data, chip); } static int aspeed_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct aspeed_pwm_tach_data *priv = aspeed_pwm_chip_to_data(chip); u32 hwpwm = pwm->hwpwm; bool polarity, pin_en, clk_en; u32 duty_pt, val; u64 div_h, div_l, duty_cycle_period, dividend; val = readl(priv->base + PWM_ASPEED_CTRL(hwpwm)); polarity = FIELD_GET(PWM_ASPEED_CTRL_INVERSE, val); pin_en = FIELD_GET(PWM_ASPEED_CTRL_PIN_ENABLE, val); clk_en = FIELD_GET(PWM_ASPEED_CTRL_CLK_ENABLE, val); div_h = FIELD_GET(PWM_ASPEED_CTRL_CLK_DIV_H, val); div_l = FIELD_GET(PWM_ASPEED_CTRL_CLK_DIV_L, val); val = readl(priv->base + PWM_ASPEED_DUTY_CYCLE(hwpwm)); duty_pt = FIELD_GET(PWM_ASPEED_DUTY_CYCLE_FALLING_POINT, val); duty_cycle_period = FIELD_GET(PWM_ASPEED_DUTY_CYCLE_PERIOD, val); /* * This multiplication doesn't overflow, the upper bound is * 1000000000 * 256 * 256 << 15 = 0x1dcd650000000000 */ dividend = (u64)NSEC_PER_SEC * (div_l + 1) * (duty_cycle_period + 1) << div_h; state->period = DIV_ROUND_UP_ULL(dividend, priv->clk_rate); if (clk_en && duty_pt) { dividend = (u64)NSEC_PER_SEC * (div_l + 1) * duty_pt << div_h; state->duty_cycle = DIV_ROUND_UP_ULL(dividend, priv->clk_rate); } else { state->duty_cycle = clk_en ? state->period : 0; } state->polarity = polarity ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; state->enabled = pin_en; return 0; } static int aspeed_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct aspeed_pwm_tach_data *priv = aspeed_pwm_chip_to_data(chip); u32 hwpwm = pwm->hwpwm, duty_pt, val; u64 div_h, div_l, divisor, expect_period; bool clk_en; expect_period = div64_u64(ULLONG_MAX, (u64)priv->clk_rate); expect_period = min(expect_period, state->period); dev_dbg(chip->dev, "expect period: %lldns, duty_cycle: %lldns", expect_period, state->duty_cycle); /* * Pick the smallest value for div_h so that div_l can be the biggest * which results in a finer resolution near the target period value. */ divisor = (u64)NSEC_PER_SEC * (PWM_ASPEED_FIXED_PERIOD + 1) * (FIELD_MAX(PWM_ASPEED_CTRL_CLK_DIV_L) + 1); div_h = order_base_2(DIV64_U64_ROUND_UP(priv->clk_rate * expect_period, divisor)); if (div_h > 0xf) div_h = 0xf; divisor = ((u64)NSEC_PER_SEC * (PWM_ASPEED_FIXED_PERIOD + 1)) << div_h; div_l = div64_u64(priv->clk_rate * expect_period, divisor); if (div_l == 0) return -ERANGE; div_l -= 1; if (div_l > 255) div_l = 255; dev_dbg(chip->dev, "clk source: %ld div_h %lld, div_l : %lld\n", priv->clk_rate, div_h, div_l); /* duty_pt = duty_cycle * (PERIOD + 1) / period */ duty_pt = div64_u64(state->duty_cycle * priv->clk_rate, (u64)NSEC_PER_SEC * (div_l + 1) << div_h); dev_dbg(chip->dev, "duty_cycle = %lld, duty_pt = %d\n", state->duty_cycle, duty_pt); /* * Fixed DUTY_CYCLE_PERIOD to its max value to get a * fine-grained resolution for duty_cycle at the expense of a * coarser period resolution. */ val = readl(priv->base + PWM_ASPEED_DUTY_CYCLE(hwpwm)); val &= ~PWM_ASPEED_DUTY_CYCLE_PERIOD; val |= FIELD_PREP(PWM_ASPEED_DUTY_CYCLE_PERIOD, PWM_ASPEED_FIXED_PERIOD); writel(val, priv->base + PWM_ASPEED_DUTY_CYCLE(hwpwm)); if (duty_pt == 0) { /* emit inactive level and assert the duty counter reset */ clk_en = 0; } else { clk_en = 1; if (duty_pt >= (PWM_ASPEED_FIXED_PERIOD + 1)) duty_pt = 0; val = readl(priv->base + PWM_ASPEED_DUTY_CYCLE(hwpwm)); val &= ~(PWM_ASPEED_DUTY_CYCLE_RISING_POINT | PWM_ASPEED_DUTY_CYCLE_FALLING_POINT); val |= FIELD_PREP(PWM_ASPEED_DUTY_CYCLE_FALLING_POINT, duty_pt); writel(val, priv->base + PWM_ASPEED_DUTY_CYCLE(hwpwm)); } val = readl(priv->base + PWM_ASPEED_CTRL(hwpwm)); val &= ~(PWM_ASPEED_CTRL_CLK_DIV_H | PWM_ASPEED_CTRL_CLK_DIV_L | PWM_ASPEED_CTRL_PIN_ENABLE | PWM_ASPEED_CTRL_CLK_ENABLE | PWM_ASPEED_CTRL_INVERSE); val |= FIELD_PREP(PWM_ASPEED_CTRL_CLK_DIV_H, div_h) | FIELD_PREP(PWM_ASPEED_CTRL_CLK_DIV_L, div_l) | FIELD_PREP(PWM_ASPEED_CTRL_PIN_ENABLE, state->enabled) | FIELD_PREP(PWM_ASPEED_CTRL_CLK_ENABLE, clk_en) | FIELD_PREP(PWM_ASPEED_CTRL_INVERSE, state->polarity); writel(val, priv->base + PWM_ASPEED_CTRL(hwpwm)); return 0; } static const struct pwm_ops aspeed_pwm_ops = { .apply = aspeed_pwm_apply, .get_state = aspeed_pwm_get_state, }; static void aspeed_tach_ch_enable(struct aspeed_pwm_tach_data *priv, u8 tach_ch, bool enable) { if (enable) writel(readl(priv->base + TACH_ASPEED_CTRL(tach_ch)) | TACH_ASPEED_ENABLE, priv->base + TACH_ASPEED_CTRL(tach_ch)); else writel(readl(priv->base + TACH_ASPEED_CTRL(tach_ch)) & ~TACH_ASPEED_ENABLE, priv->base + TACH_ASPEED_CTRL(tach_ch)); } static int aspeed_tach_val_to_rpm(struct aspeed_pwm_tach_data *priv, u32 tach_val) { u64 rpm; u32 tach_div; tach_div = tach_val * priv->tach_divisor * DEFAULT_FAN_PULSE_PR; dev_dbg(priv->dev, "clk %ld, tach_val %d , tach_div %d\n", priv->clk_rate, tach_val, tach_div); rpm = (u64)priv->clk_rate * 60; do_div(rpm, tach_div); return (int)rpm; } static int aspeed_get_fan_tach_ch_rpm(struct aspeed_pwm_tach_data *priv, u8 fan_tach_ch) { u32 val; val = readl(priv->base + TACH_ASPEED_STS(fan_tach_ch)); if (!(val & TACH_ASPEED_FULL_MEASUREMENT)) return 0; val = FIELD_GET(TACH_ASPEED_VALUE_MASK, val); return aspeed_tach_val_to_rpm(priv, val); } static int aspeed_tach_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct aspeed_pwm_tach_data *priv = dev_get_drvdata(dev); u32 reg_val; switch (attr) { case hwmon_fan_input: *val = aspeed_get_fan_tach_ch_rpm(priv, channel); break; case hwmon_fan_div: reg_val = readl(priv->base + TACH_ASPEED_CTRL(channel)); reg_val = FIELD_GET(TACH_ASPEED_CLK_DIV_T_MASK, reg_val); *val = BIT(reg_val << 1); break; default: return -EOPNOTSUPP; } return 0; } static int aspeed_tach_hwmon_write(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long val) { struct aspeed_pwm_tach_data *priv = dev_get_drvdata(dev); u32 reg_val; switch (attr) { case hwmon_fan_div: if (!is_power_of_2(val) || (ilog2(val) % 2) || DIV_TO_REG(val) > 0xb) return -EINVAL; priv->tach_divisor = val; reg_val = readl(priv->base + TACH_ASPEED_CTRL(channel)); reg_val &= ~TACH_ASPEED_CLK_DIV_T_MASK; reg_val |= FIELD_PREP(TACH_ASPEED_CLK_DIV_T_MASK, DIV_TO_REG(priv->tach_divisor)); writel(reg_val, priv->base + TACH_ASPEED_CTRL(channel)); break; default: return -EOPNOTSUPP; } return 0; } static umode_t aspeed_tach_dev_is_visible(const void *drvdata, enum hwmon_sensor_types type, u32 attr, int channel) { const struct aspeed_pwm_tach_data *priv = drvdata; if (!priv->tach_present[channel]) return 0; switch (attr) { case hwmon_fan_input: return 0444; case hwmon_fan_div: return 0644; } return 0; } static const struct hwmon_ops aspeed_tach_ops = { .is_visible = aspeed_tach_dev_is_visible, .read = aspeed_tach_hwmon_read, .write = aspeed_tach_hwmon_write, }; static const struct hwmon_channel_info *aspeed_tach_info[] = { HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV, HWMON_F_INPUT | HWMON_F_DIV), NULL }; static const struct hwmon_chip_info aspeed_tach_chip_info = { .ops = &aspeed_tach_ops, .info = aspeed_tach_info, }; static void aspeed_present_fan_tach(struct aspeed_pwm_tach_data *priv, u8 *tach_ch, int count) { u8 ch, index; u32 val; for (index = 0; index < count; index++) { ch = tach_ch[index]; priv->tach_present[ch] = true; priv->tach_divisor = DEFAULT_TACH_DIV; val = readl(priv->base + TACH_ASPEED_CTRL(ch)); val &= ~(TACH_ASPEED_INVERS_LIMIT | TACH_ASPEED_DEBOUNCE_MASK | TACH_ASPEED_IO_EDGE_MASK | TACH_ASPEED_CLK_DIV_T_MASK | TACH_ASPEED_THRESHOLD_MASK); val |= (DEBOUNCE_3_CLK << TACH_ASPEED_DEBOUNCE_BIT) | F2F_EDGES | FIELD_PREP(TACH_ASPEED_CLK_DIV_T_MASK, DIV_TO_REG(priv->tach_divisor)); writel(val, priv->base + TACH_ASPEED_CTRL(ch)); aspeed_tach_ch_enable(priv, ch, true); } } static int aspeed_create_fan_monitor(struct device *dev, struct device_node *child, struct aspeed_pwm_tach_data *priv) { int ret, count; u8 *tach_ch; count = of_property_count_u8_elems(child, "tach-ch"); if (count < 1) return -EINVAL; tach_ch = devm_kcalloc(dev, count, sizeof(*tach_ch), GFP_KERNEL); if (!tach_ch) return -ENOMEM; ret = of_property_read_u8_array(child, "tach-ch", tach_ch, count); if (ret) return ret; aspeed_present_fan_tach(priv, tach_ch, count); return 0; } static void aspeed_pwm_tach_reset_assert(void *data) { struct reset_control *rst = data; reset_control_assert(rst); } static int aspeed_pwm_tach_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev, *hwmon; int ret; struct device_node *child; struct aspeed_pwm_tach_data *priv; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(priv->clk)) return dev_err_probe(dev, PTR_ERR(priv->clk), "Couldn't get clock\n"); priv->clk_rate = clk_get_rate(priv->clk); priv->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(priv->reset)) return dev_err_probe(dev, PTR_ERR(priv->reset), "Couldn't get reset control\n"); ret = reset_control_deassert(priv->reset); if (ret) return dev_err_probe(dev, ret, "Couldn't deassert reset control\n"); ret = devm_add_action_or_reset(dev, aspeed_pwm_tach_reset_assert, priv->reset); if (ret) return ret; priv->chip.dev = dev; priv->chip.ops = &aspeed_pwm_ops; priv->chip.npwm = PWM_ASPEED_NR_PWMS; ret = devm_pwmchip_add(dev, &priv->chip); if (ret) return dev_err_probe(dev, ret, "Failed to add PWM chip\n"); for_each_child_of_node(dev->of_node, child) { ret = aspeed_create_fan_monitor(dev, child, priv); if (ret) { of_node_put(child); dev_warn(dev, "Failed to create fan %d", ret); return 0; } } hwmon = devm_hwmon_device_register_with_info(dev, "aspeed_tach", priv, &aspeed_tach_chip_info, NULL); ret = PTR_ERR_OR_ZERO(hwmon); if (ret) return dev_err_probe(dev, ret, "Failed to register hwmon device\n"); of_platform_populate(dev->of_node, NULL, NULL, dev); return 0; } static int aspeed_pwm_tach_remove(struct platform_device *pdev) { struct aspeed_pwm_tach_data *priv = platform_get_drvdata(pdev); reset_control_assert(priv->reset); return 0; } static const struct of_device_id aspeed_pwm_tach_match[] = { { .compatible = "aspeed,ast2600-pwm-tach", }, {}, }; MODULE_DEVICE_TABLE(of, aspeed_pwm_tach_match); static struct platform_driver aspeed_pwm_tach_driver = { .probe = aspeed_pwm_tach_probe, .remove = aspeed_pwm_tach_remove, .driver = { .name = "aspeed-g6-pwm-tach", .of_match_table = aspeed_pwm_tach_match, }, }; module_platform_driver(aspeed_pwm_tach_driver); MODULE_AUTHOR("Billy Tsai "); MODULE_DESCRIPTION("Aspeed ast2600 PWM and Fan Tach device driver"); MODULE_LICENSE("GPL");